Detecting Salient Contours Using Orientation Energy Distribution

CPSC 636 Slide13, Spring 2008

Yoonsuck Choe

Co-work with S. Sarma and H.-C. Lee Based on Lee and Choe (2003); Sarma (2003); Sarma and Choe (2006)

1

Part I: Thresholding Based on Response Distribution

The Problem: How Does the Visual System Detect

Salient Contours?

- Neurons in the visual cortex have Gabor-like receptive fields.
- Looking at the **response properties** of these neurons can help us answer the question.
- The simplest statistical property can be measured by looking at the **response histogram**.

Questioning from a slightly different perspective, "how can the particular response property of visual cortical neurons be utilized by later processing?"

2

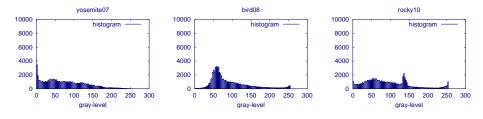
Observation

- Grayscale intensity distributions are quite **different** across different images.
- However, Gabor response distributions are quite **similar** across different images.

A Typical Grayscale Image

• Although not evident from the above, the intensity histogram can be widely different across different images.

Grayscale Intensity Distribution



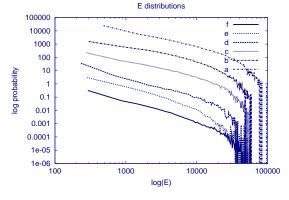
- Grayscale intensity histograms are drastically different across different images.
- Thus, a general algorithm for utilizing the intensity distribution cannot be easily derived.

5 6

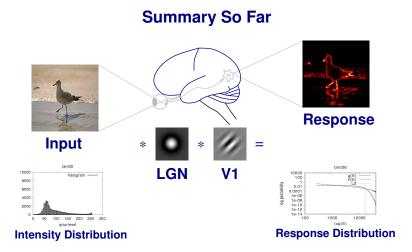
A Typical Gabor Response (Orientation Energy)

- High values near contours or edges.
- The energy distribution is strikingly uniform across images.

Gabor Response Distribution

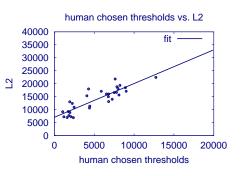


- The Gabor response (or **orientation energy**; E) distributions on the other hand are quite similar across differen images (shown in Log-Log plot).
- The distribution shows a power law property ($f(x) = 1/x^a$): sharp peak and heavy tail.



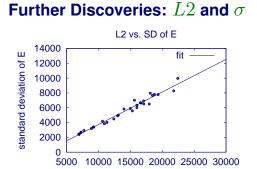
• Input and response disrtibutions show quite different statistical properties.

9



- High orientation energy E indicate a strong edge component in images.
- Can there be a relationship between the threshold of E above which humans see it as **salient** and the point L2?
- Clearly, there is a linear relationship between the two!

- What to Make of the Power Law? August 2 to Make of the Power Law? August 2 to Make of the Power Law? h(E) = 0 g(E) = 0 g(E) = 0 h(E) = 0 h(E) = 0 g(E) = 0 h(E) = 0 h(E) = 0 g(E) = 0 h(E) = 0h(E) = 0
- Comparing the power law distribution with a normal distribution with the **same variance** can provide us with some information.
- Assumption: normal distribution can be a suitable standard.
- The point L2 where h(E) becomes greater than g(E) may be important, i.e., orientation energy is **suspiciously high**. 10

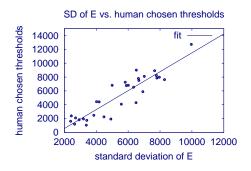


• Further, the raw standard deviation σ of the orientation energy distribution is **linearly related** to L2.

L2

• Question: Is there an analytical solution to $1/x^a = b \times exp(-x^2/c)$, where the constants a, b, and c depend on σ ?

Using σ to Estimate Optimal E Threshold



• Relating σ back to the human-chosen E threshold gives again a **linear relation**:

$$T_{\sigma} = 1.37\sigma - 2176.59.$$

• Thus, instead of calculating the histogram, etc., we can simply calculate the raw standard deviation σ to estimate the appropriate E threshold.

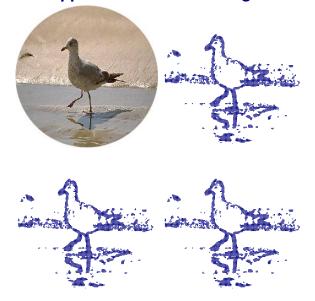
Extraction of Salient Edges

(a) Original Image

(b) Thresholded Edges (c) Magnified (b)

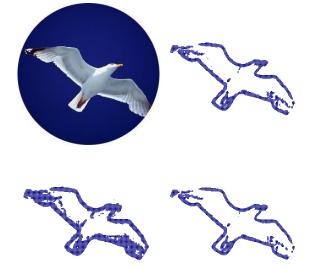
• Using T_{σ} as a threshold gives good results, comparable to humans' preference.

Application: Thresholding E



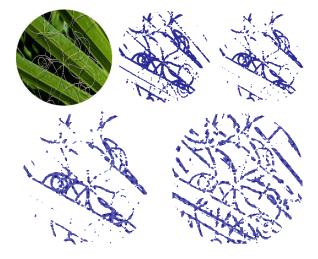
• Original, human-selected, 85-percentile, and T_{σ} .

Thresholding E: Limitations of Fixed Percentile



• Original, human-selected, 85-percentile, and T_{σ} .

Thresholding *E*: Limitations of Global Thresholding



- Original, human-selected, 85-percentile, T_{σ} , and T_{σ} local.
 - 17

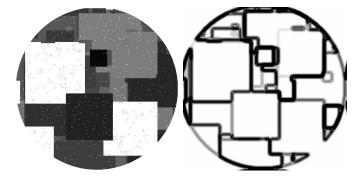
Part II: Quantitative Comparison

Summary of Thresholding Results

- Fixed percentile thresholding does not give consistent results.
- The σ -based T_{σ} threshold works well.
- However, globally applying the same threshold has limitations.
- This problem can be overcome by applying the **same principle** derived here to calculate the **local thresholds**.
- The proposed method is an **efficient** way of detecting salient contours.

18

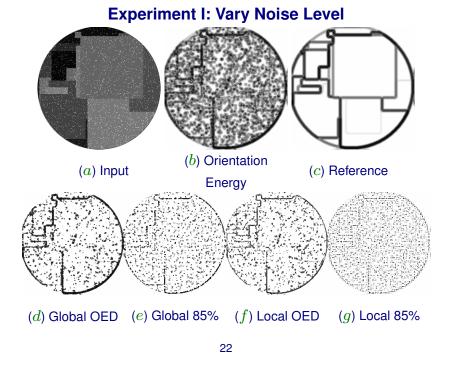
Approach



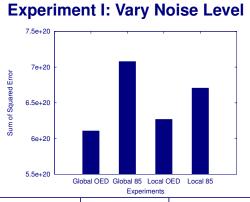
- Generate synthetic image (left) with known salient edges (right) and compare the thresholded version to this ground truth.
- Add noise and vary number of objects to make it interesting.

Compared Thresholding Methods

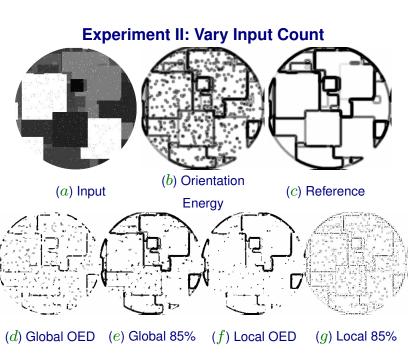
- Global OED: threshold derived from OED from the entire response matrix, using the normal distribution baseline.
- Local OED: threshold derived from OED from the local surrounding area of a pixel in the response matrix. using the normal distribution baseline.
- Global 85%: threshold derived from OED from the entire response matrix, using the 85-percentile point as the threshold.
- Local 85%: threshold derived from OED from the local surrounding area of a pixel in the response matrix, using the 85-percentile point as the threshold.



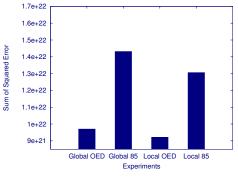
21



	Global OED	Global 85%	Local OED	Local 85%
Global OED	Х	< (p=0.018)	< (p=0.35)	< (p=0.021)
Global 85%	Х	Х	> (p=0.019)	> (p=0.014)
Local OED	Х	Х	Х	< (p=0.025)
Local 85%	Х	Х	Х	Х



Experiment II: Vary Input Count



	Global OED	Global 85%	Local OED	Local 85%
Global OED	Х	< (p=0.0107)	> (p=0.258)	< (p=0.014)
Global 85%	Х	х	> (p=0.011)	> (p=0.006)
Local OED	Х	х	Х	< (p=0.015)
Local 85%	Х	х	Х	Х

25

Part III: Analysis

Summary

- Thresholding based on orientation energy distribution (OED) did consistently better than fixed-percentile methods in noisy, synthetic images.
- Differences between glocal and local OED thresholding were not significant.

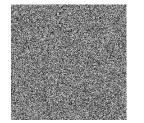
26

Relationship Between T_{σ} Thresholding and Suspicious Coincidence

 What is the relationship between salience defined as super-Gaussian and the conventional definition of suspiciousness (Barlow 1994, 1989)?

P(A, B) > P(A)P(B).

White-Noise Analysis



- If the Gaussian baseline assumption was correct, the *E* response distribution to white noise images should not be perceived as salient compared to a Gaussian with the same variance.
- In white-noise images, each pixel is independent, so, given pixel *A* and pixel *B*:

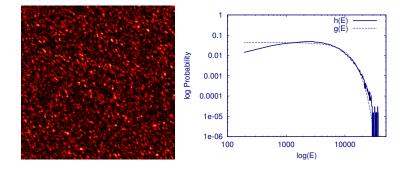
$$P(A,B) = P(A)P(B).$$

29

Use of White Noise Response as a Baseline

- Can we use the white-noise response as a baseline for thresholding *E*?: Yes!
- Generate white noise response, and scale it by σ_h/σ_r where σ_h and σ_r are the STD in the natural image response and the white noise response.
- Recalculate the response distribution (if necessary).

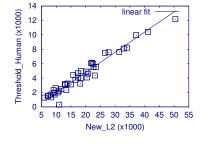
Gabor Response to White Noise Images



- The orientation energy distribution is very close to a Gaussian, especially near the high E values.
- Thus, the T_{σ} thresholding will result in no salient contours in white noise images.

30

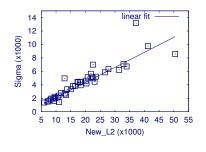
New Baseline for Salience vs. Humans



New L_2 vs. Human Chosen Threshold (r = 0.98)*

- Strong linearity is found between the new L_2 and the human selected threshold.
- * This is much tighter than the Gaussian baseline (r = 0.91)!

New Baseline for Salience vs. σ



New L_2 vs. σ (r = 0.91)

• The same linearity between L_2 and the σ is maintained.

Related Work

- Malik et al. (Malik et al. 1999) used peak values of orientation energy to define boundaries of regions of coherent brightness and texture.
- The non-Gaussian nature of orientation energy (or wavelet response) histograms has also been recognized and utilized for some time now, especially in denoising and compression (Simoncelli and Adelson 1996).
- Other kinds of histograms, e.g., spectral histogram by Liu and Wang (2002), or spatial frequency distributions (Field 1987), may be amenable to a similar analysis.

34

Discussion

• The local (or even global) threshold calculation can be easily implemented in a neural network.

33

$$\sigma^2 = \sum_{i,j} w_{ij} g(V_{ij}),$$

where w_{ij} are connection weights serving as normalization constants, $g(x)=x^2,$ and V_{ij} is the V1 response at location i,j.

- The resulting value can be passed through another activation function $f(x) = \sqrt{x}$.
- These are all plausible functions that can be implemented in a biological neural network.

Summary

 Gaussian baseline was found to have a close relationship to the idea of suspicious coincidence by Barlow (1994)

Lesson Learned

- Studying statistical properties of raw natural signal distributions can be useful in determining why the visual system is structured in the current form (e.g., PCA, ICA, etc. predicts the **receptive field** shape).
- However, what's more interesting is that the response properties of cortical neurons can have certain invariant properties and this can be exploited.
- So, we need to **go beyond** finding out what receptive fields look like and why, and start to explore how cortical neuron response can be utilized by the rest of the brain.

Conclusion

- Cortical response distribution has a unique invariant property (the power-law).
- Such properties can be exploited in tasks such as salient contour detection.
- Gaussian distribution forms a good baseline for determining the threshold.
- The above may be related to the idea of suspicious coincidence.

37

References

Barlow, H. (1994). What is the computational goal of the neocortex? In Koch, C., and Davis, J. L., editors, *Large Scale Neuronal Theories of the Brain*, 1–22. Cambridge, MA: MIT Press.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1:295–311.

- Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. *Journal of the Optical Society of America A*, 4:2379–2394.
- Lee, H.-C., and Choe, Y. (2003). Detecting salient contours using orientation energy distribution. In *Proceedings of the* International Joint Conference on Neural Networks, 206–211. IEEE.
- Liu, X., and Wang, D. (2002). A spectral histogram model for texton modeling and texture discrimination. Vision Research, 42:2617–2634.
- Malik, J., Belongie, S., Shi, J., and Leung, T. K. (1999). Textons, contours and regions: Cue integration in image segmentation. In *ICCV(2)*, 918–925.
- Sarma, S., and Choe, Y. (2006). Salience in orientation-filter response measured as suspicious coincidence in natural images. In Gil, Y., and Mooney, R., editors, *Proceedings of the 21st National Conference on Artificial Intelligence*. 193–198.

38

- Sarma, S. P. (2003). Relationship between suspicious coincidence in natural images and contour-salience in oriented filter responses. Master's thesis, Department of Computer Science, Texas A&M University.
- Simoncelli, E. P., and Adelson, E. H. (1996). Noise removal via bayesian wavelet coring. In Proceedings of IEEE International Conference on Image Processing, vol. I, 379–382.