
Slide11

Haykin Chapter 8: Principal

Components Analysis

CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2008

1

Motivation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

cloud.dat

• How can we project the given data so that the variance in the

projected points is maximized?

2

Principal Component Analysis: Variance Probe

• X: m-dimensional random vector (vector random variable

following a certain probability distribution).

• AssumeE[X] = 0.

• Projection of a unit vector q ((qqT)1/2 = 1) onto X:

A = XT q = qT X.

• We knowE[A] = E[qT X] = qTE[X] = 0.

• The variance can also be calculated:

σ2 = E[A2] = E[(qT X)(XT q)]

= qT E[XXT]︸ ︷︷ ︸
correl matrix

q

= qT Rq.
3

Principal Component Analysis: Variance Probe

(cont’d)

• This is sort of a variance probe: ψ(q) = qT Rq.

• Using different unit vectors q for the projection of the input data

points will result in smaller or larger variance in the projected

points.

• With this, we can ask which vector direction does the variance

probe ψ(q) has extermal value?

• The solution to the question is obtained by finding unit vectors

satisfying the following condition:

Rq = λq,

where λ is a scaling factor. This is basically an eigenvalue

problem.
4

PCA

• With an m×m correlation matrix R, we can get m eigenvectors and

m eigenvalues:

Rqj = λjqj , j = 1, 2, ..., m

• We can sort the eigenvectors/eigenvalues according to the eigenvalues, so

that

λ1 > λ2 > ... > λm.

and arrange the eigenvectors in a column-wise matrix

Q = [q1, q2, ..., qm].

• Then we can write

RQ = Qλ

where λ = diag(λ1, λ2, ..., λm).

• Q is orthogonal, so that QQT = I. That is, Q−1 = QT .

5

PCA: Summary

• The eigenvectors of the correlation matrix R of zero-mean

random input vector X define the principal directions qj along

with the variance of the projected inputs have extremal values.

• The associated eigenvaluess define the extremal values of the

variance probe.

6

PCA: Usage

• Project input x to the principal directions:

a = QT x.

• We can also recover the input from the projected point a:

x = (QT)−1a = Qa.

• Note that we don’t need allm principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.

7

PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode x.

[a1, a2, ..., al]
T = [q1,q2, ...,ql]

T x.

• Note that we only need to calculate l projections a1, a2, ..., al,

where l ≤ m.

• Decoding: Once [a1, a2, ..., al]
T is obtained, we want to

reconstruct the full [x1, x2, ..., xl, ..., xm]T .

x = Qa ≈ [q1,q2, ...,ql][a1, a2, ..., al]
T = x̂.

Or, alternatively

x̂ = Q[a1, a2, ..., al, 0, 0, ..., 0︸ ︷︷ ︸
m− l zeros

]T .

8

PCA: Total Variance

• The total variance of th em components of the data vector is

m∑
j=1

σ2
j =

m∑
j=1

λj .

• The truncated version with the first l components have variance

l∑
j=1

σ2
j =

l∑
j=1

λj .

• The larger the variance in the truncated version, i.e., the smaller

the variance in the remaining components, the more accurate the

dimensionality reduction.

9

PCA Example

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

-0.5 0 0.5 1 1.5 2

line 1
line 2
line 3
line 4

inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

Q =

[
0.70285 −0.71134

0.71134 0.70285

]
λ =

[
0.14425 0.00000

0.00000 0.02161

]
10

PCA’s Relation to Neural Networks: Hebbian-Based

Maximum Eigenfilter

• How does all the above relate to neural networks?

• A remarkable result by Oja (1982) shows that a single linear

neuron with Hebbian synapse can evolve into a filter for the first

principal component of the input distribution!

• Activation:

y =

m∑
i=1

wixi

• Learning rule:

wi(n + 1) =
wi(n) + ηy(n)xi(n)(∑m

i=1
[wi(n) + ηy(n)xi(n)]2

)1/2

11

Hebbian-Based Maximum Eigenfilter

• Expanding the weight update rule using Taylor series, we get

wi(n+1) = wi(n)+ηy(n)[xi(n)−y(n)wi(n)]+O(η2),

withO(η2) including the second- and higher-order effects of η,

which we can ignore for small η.

• Based on that, we get

wi(n+ 1) = wi(n) + ηy(n)[xi(n)− y(n)wi(n)]

= wi(n) + η

 y(n)xi(n)︸ ︷︷ ︸
Hebbian term

− y(n)2wi(n)︸ ︷︷ ︸
Stabilization term

 .

12

Matrix Formulation of the Algorithm

• Activation

y(n) = xT (n)w(n) = wT (n)x(n)

• Learning

w(n+ 1) = w(n) + ηy(n)[x(n)− y(n)w(n)]

• Combining the above,

w(n+ 1) = w(n) + η[x(n)xT (n)w(n)

−wT (n)x(n)xT (n)w(n)w(n)]
,

represents a nonlinear stochastic difference equation, which is

hard to analyze.

13

Asymptotic Stability Theorem

• To ease the analysis, we rewrite the learning rule as

w(n+ 1) = w(n) + η(n)h(w(n),x(n)).

• The goal is to associate a deterministic ordinary differential

equation (ODE) with the stochastic equation.

• Under certain reasonable conditions on η, h(·, ·), and w, we get

the asymptotic stability theorem stating that

lim
n→∞

w(n) = q1

infinitely often with probability 1.

14

Conditions for Stability

1. η(n) is a decreasing sequence of positive real numbers such that∑∞
n=1

η(n) = ∞,
∑∞

n=1
ηp(n) < ∞for p > 1,

η(n) → 0 as n →∞.

2. Sequence of parameter vectors w(·) is bounded iwth probability 1.

3. The update function h(w, x) is continuously differentiable w.r.t. w and

x, and it derivatives are bounded in time.

4. The limit h̄(w) = limn→∞ E[h(w, X)] exists for each w, where

X is a random vector.

5. There is a locally asymptotically stable solution to the ODE

d

dt
w(t) = ĥ(w(t)).

6. Let q1 denote the solution to the ODE above with a basin of attraction

B(q). The parameter vector w(n) enters the compact subsetA of

B(q) infinitely often with prob. 1.

15

Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem:

• Set the learning rate to be η(n) = 1/n.

• Set h(·, ·) to

h(w, x) = x(n)y(n)− y2w(n)

= x(n)xT (n)w(n)− [wT (n)x(n)xT (n)w(n)]w(n)

• Taking expectaion over all x,

h̄ = limn→∞ E[X(n)XT (n)w(n) − (wT (n)X(n)XT (n)w(n))w(n)]

= Rw(∞) −
[
wT (∞)Rw(∞)

]
w(∞)

• Substituting h̄ into the ODE,

d

dt
w(t) = h̄(w(t)) = Rw(t)− [w

T
(t)Rw(t)]w(t).

16

Stability Analysis of Maximum Eigenfilter

• Expanding w(t) with the eigenvectors of R,

w(t) =

m∑
k=1

θk(t)qk,

and using basic definitions

Rqk = λkq, q
T
k Rqk = λk

we get

m∑
k=1

dθk(t)

dt
qk =

m∑
k=1

λkθk(t)qk−

[
m∑

l=1

λlθ
2
l (t)

]
m∑

k=1

θk(t)qk.

17

Stability Analysis of Maximum Eigenfilter (cont’d)

• Factoring out
∑m

k=1
qk , we get

dθk(t)

dt
= λkθk(t)−

[
λlθ

2
l (t)

]
θk(t).

• We can analyze the above in two cases:

– Case I: k 6= 1

In this case,
θk(t)
θ1(t)

→ 0 as t→∞.

– Case II: k = 1

In this case, θ1(t) → ±1 as t→∞.

18

Stability Analysis of Maximum Eigenfilter (cont’d)

• Recalling the original expansion

w(t) =

m∑
k=1

θk(t)qk,

we can conclude that

w(t) → q1, as t→∞.

where q1 is the normalized eigenvector associated with the

largest eigenvalue λ1 of the correlation matrix R.

• Other conditions of stability can also be shown to hold (see the

textbook).

19

Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed

point, which is characterized as follows:

• Variance of output approaches the largest eigenvalue of the

correlation matrix R:

lim
n→∞

σ2(n) = lim
n→∞

E[Y 2(n)] = λ1

• Synaptic weight vector approaches the associated eigenvector

lim
n→∞

w(n) = q1

with

lim
n→∞

‖w(n)‖ = 1.

20

Generalized Hebbian Algorithm for full PCA

• Sanger (1989) showed how to construct a feedfoward network to

learn all the eigenvectors of R.

• Activation

yj(n) =

m∑
i=1

wji(n)xi(n), j = 1, 2, ..., l

• Learning

∆wji(n) = η

[
yj(n)xi(n)− yj(n)

j∑
k=1

wki(n)yk(n)

]
,

i = 1, 2, ...,m, j = 1, 2, ..., l.

21

