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Motivation
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• How can we project the given data so that the variance in the

projected points is maximized?
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Principal Component Analysis: Variance Probe

• X: m-dimensional random vector (vector random variable

following a certain probability distribution).

• AssumeE[X] = 0.

• Projection of a unit vector q ((qqT )1/2 = 1) onto X:

A = XT q = qT X.

• We knowE[A] = E[qT X] = qTE[X] = 0.

• The variance can also be calculated:

σ2 = E[A2] = E[(qT X)(XT q)]

= qT E[XXT ]︸ ︷︷ ︸
correl matrix

q

= qT Rq.
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Principal Component Analysis: Variance Probe

(cont’d)

• This is sort of a variance probe: ψ(q) = qT Rq.

• Using different unit vectors q for the projection of the input data

points will result in smaller or larger variance in the projected

points.

• With this, we can ask which vector direction does the variance

probe ψ(q) has extermal value?

• The solution to the question is obtained by finding unit vectors

satisfying the following condition:

Rq = λq,

where λ is a scaling factor. This is basically an eigenvalue

problem.
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PCA

• With an m×m correlation matrix R, we can get m eigenvectors and

m eigenvalues:

Rqj = λjqj , j = 1, 2, ..., m

• We can sort the eigenvectors/eigenvalues according to the eigenvalues, so

that

λ1 > λ2 > ... > λm.

and arrange the eigenvectors in a column-wise matrix

Q = [q1, q2, ..., qm].

• Then we can write

RQ = Qλ

where λ = diag(λ1, λ2, ..., λm).

• Q is orthogonal, so that QQT = I. That is, Q−1 = QT .
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PCA: Summary

• The eigenvectors of the correlation matrix R of zero-mean

random input vector X define the principal directions qj along

with the variance of the projected inputs have extremal values.

• The associated eigenvaluess define the extremal values of the

variance probe.

6

PCA: Usage

• Project input x to the principal directions:

a = QT x.

• We can also recover the input from the projected point a:

x = (QT )−1a = Qa.

• Note that we don’t need allm principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.
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PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode x.

[a1, a2, ..., al]
T = [q1,q2, ...,ql]

T x.

• Note that we only need to calculate l projections a1, a2, ..., al,

where l ≤ m.

• Decoding: Once [a1, a2, ..., al]
T is obtained, we want to

reconstruct the full [x1, x2, ..., xl, ..., xm]T .

x = Qa ≈ [q1,q2, ...,ql][a1, a2, ..., al]
T = x̂.

Or, alternatively

x̂ = Q[a1, a2, ..., al, 0, 0, ..., 0︸ ︷︷ ︸
m− l zeros

]T .
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PCA: Total Variance

• The total variance of th em components of the data vector is

m∑
j=1

σ2
j =

m∑
j=1

λj .

• The truncated version with the first l components have variance

l∑
j=1

σ2
j =

l∑
j=1

λj .

• The larger the variance in the truncated version, i.e., the smaller

the variance in the remaining components, the more accurate the

dimensionality reduction.
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PCA Example
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line 1
line 2
line 3
line 4

inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

Q =

[
0.70285 −0.71134

0.71134 0.70285

]
λ =

[
0.14425 0.00000

0.00000 0.02161

]
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PCA’s Relation to Neural Networks: Hebbian-Based

Maximum Eigenfilter

• How does all the above relate to neural networks?

• A remarkable result by Oja (1982) shows that a single linear

neuron with Hebbian synapse can evolve into a filter for the first

principal component of the input distribution!

• Activation:

y =

m∑
i=1

wixi

• Learning rule:

wi(n + 1) =
wi(n) + ηy(n)xi(n)(∑m

i=1
[wi(n) + ηy(n)xi(n)]2

)1/2
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Hebbian-Based Maximum Eigenfilter

• Expanding the weight update rule using Taylor series, we get

wi(n+1) = wi(n)+ηy(n)[xi(n)−y(n)wi(n)]+O(η2),

withO(η2) including the second- and higher-order effects of η,

which we can ignore for small η.

• Based on that, we get

wi(n+ 1) = wi(n) + ηy(n)[xi(n)− y(n)wi(n)]

= wi(n) + η

 y(n)xi(n)︸ ︷︷ ︸
Hebbian term

− y(n)2wi(n)︸ ︷︷ ︸
Stabilization term

 .
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Matrix Formulation of the Algorithm

• Activation

y(n) = xT (n)w(n) = wT (n)x(n)

• Learning

w(n+ 1) = w(n) + ηy(n)[x(n)− y(n)w(n)]

• Combining the above,

w(n+ 1) = w(n) + η[x(n)xT (n)w(n)

−wT (n)x(n)xT (n)w(n)w(n)]
,

represents a nonlinear stochastic difference equation, which is

hard to analyze.
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Asymptotic Stability Theorem

• To ease the analysis, we rewrite the learning rule as

w(n+ 1) = w(n) + η(n)h(w(n),x(n)).

• The goal is to associate a deterministic ordinary differential

equation (ODE) with the stochastic equation.

• Under certain reasonable conditions on η, h(·, ·), and w, we get

the asymptotic stability theorem stating that

lim
n→∞

w(n) = q1

infinitely often with probability 1.
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Conditions for Stability

1. η(n) is a decreasing sequence of positive real numbers such that∑∞
n=1

η(n) = ∞,
∑∞

n=1
ηp(n) < ∞for p > 1,

η(n) → 0 as n →∞.

2. Sequence of parameter vectors w(·) is bounded iwth probability 1.

3. The update function h(w, x) is continuously differentiable w.r.t. w and

x, and it derivatives are bounded in time.

4. The limit h̄(w) = limn→∞ E[h(w, X)] exists for each w, where

X is a random vector.

5. There is a locally asymptotically stable solution to the ODE

d

dt
w(t) = ĥ(w(t)).

6. Let q1 denote the solution to the ODE above with a basin of attraction

B(q). The parameter vector w(n) enters the compact subsetA of

B(q) infinitely often with prob. 1.
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Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem:

• Set the learning rate to be η(n) = 1/n.

• Set h(·, ·) to

h(w, x) = x(n)y(n)− y2w(n)

= x(n)xT (n)w(n)− [wT (n)x(n)xT (n)w(n)]w(n)

• Taking expectaion over all x,

h̄ = limn→∞ E[X(n)XT (n)w(n) − (wT (n)X(n)XT (n)w(n))w(n)]

= Rw(∞) −
[
wT (∞)Rw(∞)

]
w(∞)

• Substituting h̄ into the ODE,

d

dt
w(t) = h̄(w(t)) = Rw(t)− [w

T
(t)Rw(t)]w(t).

16



Stability Analysis of Maximum Eigenfilter

• Expanding w(t) with the eigenvectors of R,

w(t) =

m∑
k=1

θk(t)qk,

and using basic definitions

Rqk = λkq, q
T
k Rqk = λk

we get

m∑
k=1

dθk(t)

dt
qk =

m∑
k=1

λkθk(t)qk−

[
m∑

l=1

λlθ
2
l (t)

]
m∑

k=1

θk(t)qk.
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Stability Analysis of Maximum Eigenfilter (cont’d)

• Factoring out
∑m

k=1
qk , we get

dθk(t)

dt
= λkθk(t)−

[
λlθ

2
l (t)

]
θk(t).

• We can analyze the above in two cases:

– Case I: k 6= 1

In this case,
θk(t)
θ1(t)

→ 0 as t→∞.

– Case II: k = 1

In this case, θ1(t) → ±1 as t→∞.
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Stability Analysis of Maximum Eigenfilter (cont’d)

• Recalling the original expansion

w(t) =

m∑
k=1

θk(t)qk,

we can conclude that

w(t) → q1, as t→∞.

where q1 is the normalized eigenvector associated with the

largest eigenvalue λ1 of the correlation matrix R.

• Other conditions of stability can also be shown to hold (see the

textbook).
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Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed

point, which is characterized as follows:

• Variance of output approaches the largest eigenvalue of the

correlation matrix R:

lim
n→∞

σ2(n) = lim
n→∞

E[Y 2(n)] = λ1

• Synaptic weight vector approaches the associated eigenvector

lim
n→∞

w(n) = q1

with

lim
n→∞

‖w(n)‖ = 1.
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Generalized Hebbian Algorithm for full PCA

• Sanger (1989) showed how to construct a feedfoward network to

learn all the eigenvectors of R.

• Activation

yj(n) =

m∑
i=1

wji(n)xi(n), j = 1, 2, ..., l

• Learning

∆wji(n) = η

[
yj(n)xi(n)− yj(n)

j∑
k=1

wki(n)yk(n)

]
,

i = 1, 2, ...,m, j = 1, 2, ..., l.
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