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e How can we project the given data so that the variance in the
projected points is maximized?
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Principal Component Analysis: Variance Probe Principal Component Analysis: Variance Probe

e X: m-dimensional random vector (vector random variable (cont'd)
following a certain probability distribution). e This is sort of a variance probe: @b(q) — qTRq.
e Assume E[X] = 0. e Using different unit vectors q for the projection of the input data
e Projection of a unit vector q ((qu)l/2 = 1) onto X: points will result in smaller or larger variance in the projected
oints.
A=XTq=q"X. P
e With this, we can ask which vector direction does the variance
_ T _ ~T _
e Weknow E[A] = E[q" X] = q" E[X] = 0. probe 1(q) has extermal value?
e The variance can also be calculated: e The solution to the question is obtained by finding unit vectors
o2 = E[AQ] — E[(qTX)(XTq)] satisfying the following condition:
T
= aq' BE[XX'] q Rq = Aq,
N——
correl matrix where A\ is a scaling factor. This is basically an eigenvalue
= qT Raq. problem.
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PCA PCA: Summary
With an ™ X m correlation matrix R., we can get m eigenvectors and
m eigenvalues: e The eigenvectors of the correlation matrix R of zero-mean
random input vector X define the principal directions q; along

RQj :quj,j:1,2,...,m . . . .
with the variance of the projected inputs have extremal values.

We can sort the eigenvectors/eigenvalues according to the eigenvalues, so

that e The associated eigenvaluess define the extremal values of the

A1 > Ao > > A variance probe.

and arrange the eigenvectors in a column-wise matrix
Q - [CI17 q2, ..., qm]

Then we can write
RQ = QX
where A = diag(A1, A2, ..., A ).
Q is orthogonal, so that QQ” = I. Thatis, Q ' = Q7.
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PCA: Usage PCA: Dimensionality Reduction

e Encoding: We can use the first [ eigenvectors to encode x.
Project input x to the principal directions:

[a1, a2, ... al]T = [q1,92, ... ql]Tx.

a=QTx.
e Note that we only need to calculate [ projections a1, a2, ..., a;,
We can also recover the input from the projected point a: where [ < m.
x=(QT)la=Qa. e Decoding: Once [a1,as, ..., a;]” is obtained, we want to
reconstruct the full [, T2, ..., 27, ..., ] 7.

Note that we don’t need all m principal directions, depending on T .
x = Qa =~ [q1,q92, ..., q][a1,a2,...,a;]7 = %.

how much variance is captured in the first few eigenvalues: We
can do dimensionality reduction. Or, alternatively
o T
x = Qla1,az2,...,a;, 0,0,...,0 ]*.
——

m — [ zeros



PCA: Total Variance PCA Example

1.8

line 1
e The total variance of th emn components of the data vector is 161 ne2
14 ¢
m m 12
§ : 2 _ E : ) 1r
O_j - >‘J : 0.8t
j—= j— 0.6
7=1 7=1 04l
0.2 r
e The truncated version with the first [ components have variance ol
l l _0'2-0.5 0 05 : 15 2
§ 2 _ E .
05 = >‘J' inp=[randn (800,2)/9+0.5; randn (1000, 2) /6+ones (1000,2)];
j=1 j=1
. . L 0.70285 —0.71134
o The larger the variance in the truncated version, i.e., the smaller =
: . i 0.71134 0.70285
the variance in the remaining components, the more accurate the
dimensionality reduction. B 0.14425  0.00000
~ | 0.00000 0.02161
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PCA'’s Relation to Neural Networks: Hebbian-Based Hebbian-Based Maximum Eigenfilter

Maximum Eigenfilter
e Expanding the weight update rule using Taylor series, we get
o How does all the above relate to neural networks?

i(n+1l) = w; i(n)— i o(n?),
o A remarkable result by Oja (1982) shows that a single linear v (n+ ) v (n)—i—ny(n)[az (n) y(n)w (n)]+ (77 )

neuron with Hebbian synapse can evolve into a filter for the first with O(n2) including the second- and higher-order effects of 7,
principal component of the input distribution! which we can ignore for small 7.
® Activation:

e Based on that, we get

m
Yy = E Wi T4
i=1

wi(n+1) = wi(n) +ny(n)[zi(n) — y(n)w;(n))
® Learning rule:

wi(n) + ny(n)z;(n) = wi(n) +1 [ y()zi(n) — y(n)*wi(n)
(Zzl[wi(”) + ﬁy(”)xi(”)P) e Hebbian term  Stabilization term

w;(n+1) =
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Matrix Formulation of the Algorithm

Activation

Learning
w(n +1) =w(n) +ny(n)[x(n) — y(n)w(n)]
Combining the above,

w(n+1) = w(n)+nx(n)x"(n)w(n)
—wh(n)x(n)x" (n)w(n)w(n)]

represents a nonlinear stochastic difference equation, which is
hard to analyze.
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Conditions for Stability

. n(n) is a decreasing sequence of positive real numbers such that

oo oo
anl n(n) = oo, anl n?(n) < ocoforp > 1,
n(n) — 0 as n — oo.

. Sequence of parameter vectors w (- ) is bounded iwth probability 1.

. The update function h(w, x) is continuously differentiable w.r.t. w and
X, and it derivatives are bounded in time.

. Thelimit h(w) = lim,, _, .o E[h(w, X)] exists for each w, where
X is a random vector.

. There is a locally asymptotically stable solution to the ODE

d N
Zw(t) = h(w(?)).

. Let g1 denote the solution to the ODE above with a basin of attraction
B(q). The parameter vector w(n.) enters the compact subset A of
B(q) infinitely often with prob. 1.
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Asymptotic Stability Theorem

o To ease the analysis, we rewrite the learning rule as
w(n+1) = w(n) +n(n)h(w(n),x(n)).
e The goal is to associate a deterministic ordinary differential
equation (ODE) with the stochastic equation.

e Under certain reasonable conditions on 7, h(-, -), and w, we get
the asymptotic stability theorem stating that
lim w(n) =q
n—oo

infinitely often with probability 1.
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Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem:

e Set the learning rate to be (n) = 1/n.
e Seth(-,)to
h(w,x) = x(n)y(n) — y*w(n)
= x(n)x"(n)w(n) — [w (n)x(n)x" (n)w(n)]w(n)
e Taking expectaion over all x,
h = limp — oo E[X(n)XT(n)w(n) — (wT(n)X('rL)XT(n)w(n))w(n)}
e Substituting / into the ODE,

%w(t) = h(w(t)) = Rw(t) — [wT () Rw(t)]w(t).
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Stability Analysis of Maximum Eigenfilter

e Expanding w (%) with the eigenvectors of R,

w(t) = > ou(Han,
k=1

and using basic definitions

T
Rar = A\rq,q;, Ry = X,
we get

m

Z d@k(t) ZAkek t)an — Z/\le (t) ng(t

k=1 =1

Stability Analysis of Maximum Eigenfilter (cont’d)

e Recalling the original expansion

m
w(t) = Z t)dk,

we can conclude that
w(t) — q1, ast — oo.

where q is the normalized eigenvector associated with the
largest eigenvalue \1 of the correlation matrix R..

e Other conditions of stability can also be shown to hold (see the
textbook).
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Stability Analysis of Maximum Eigenfilter (cont’d)

e Factoring out Z;nzl qg, we get

dO(t)

5 = OR(t) - RACIKAGE

e We can analyze the above in two cases:
- Casel:k # 1
Ok (1)

In this case, 0 Oast — oo.

— Casell: k=1
In this case, 01 (t) — +1ast — oo.
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Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed
point, which is characterized as follows:

e Variance of output approaches the largest eigenvalue of the
correlation matrix R:

lim o2(n) = lim E[Y%(n)] =\

n—oo n—oo

® Synaptic weight vector approaches the associated eigenvector
lim w(n) =aq1
n—oo
with
lim |[w(n)|| = 1.

n—oo
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Generalized Hebbian Algorithm for full PCA

e Sanger (1989) showed how to construct a feedfoward network to
learn all the eigenvectors of R..

o Activation

m

=1
® |earning

J
Awji(n) =n |yj(n)xi(n) —y;(n) Zwki (n)yr(n)| ,
k=1
i=1,2,....m, j=1,2,..,1
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