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Neural Networks with Temporal Behavior

• Inclusion of feedback gives temporal characteristics to neural

networks: recurrent networks.

• Two ways to add feedback:

– Local feedback

– Global feedback

• Recurrent networks can become unstable or stable.

• Main interest is in recurrent network’s stability: neurodynamics.

• Stability is a property of the whole system: coordination between

parts is necessary.

2

Stability in Nonlinear Dynamical System

• Lyapunov stablity: more on this later.

• Study of neurodynamics:

– Deterministic neurodynamics: expressed as nonlinear

differential equations.

– Stochastic neurodynamics: expressed in terms of stochastic

nonlinear differential equations. Recurrent networks

perturbed by noise.
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Preliminaries: Dynamical Systems

• A dynamical system is a system whose state varies with time.

• State-space model: values of state variables change over time.

• Example: x1(t), x2(t), ..., xN (t) are state variables that hold

different values under independent variable t. This describes a

system of order N , and x(t) is called the state vector. The

dynamics of the system is expressed using ordinary differential

equations:

d

dt
xj(t) = Fj(xj(t)), j = 1, 2, ..., N.

or, more conveniently

d

dt
x(t) = F(x(t)).

4



Autonomous vs. Non-autonomous Dynamical

Systems

• Autonomous: F(·) does not explicitly depend on time.

• Non-autonomous: F(·) explicitly depends on time.

F as a Vector Field

• Since dx
dt

can be seen as velocity, F(x) can be seen as a

velocity vector field, or a vector field.

• In a vector field, each point in space (x) is associated with one

unique vector (direction and magnitude). In a scalar field, one

point has one scalar value.
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State Space

x1

x2

t=0t=1

t=2

...

dx/dt

• It is convenient to view the state-space equation dx
dt

= F(x) as

describing the motion of a point in N-dimensional space

(Euclidean or non-Euclidean). Note: t is continuous!

• The points traversed over time is called the trajectory or the

orbit.

• The tangent vector shows the instantaneous velocity at the initial

condition.
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Phase Portrait and Vector Field

• Red curves show the state (phase) portrait represented by

trajectories from different initial points.

• The blue arrows in the background shows the vector field.

Source: http://www.math.ku.edu/˜byers/ode/b_cp_lab/pict.html
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Conditions for the Solution of the State Space

Equation

• A unique solution to the state space equation exists only under certain

conditions, which resticts the form of F(x).

• For a solution to exist, it is sufficient for F(x) to be continuous in all of its

arguments.

• For uniqueness, it must meet the Lipschitz condition.

• Lipschitz condition:

– Let x and u be a pair of vectors in an open setM in a normal vector

space. A vector function F(x) that satisfies:

‖F(x)− F(u)‖ ≤ K‖x− u‖

for some constant K , the above is said to be Lipschitz, and K is

called the Lipschitz constant for F(x).

– If ∂Fi/∂xj are finite everywhere, F(x) meet the Lipschitz

condition.
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Stability of Equilibrium States

• x̄ ∈ M is said to be an equilibrium state (or singular point) of the system

if
dx̄

dt
= F(x̄) = 0.

• How the system behaves near these equilibrium states is of great interest.

• Near these points, we can approximate the dynamics by linearizing F(x)

(using Taylor expansion) around x̄, i.e., x(t) = x̄ + ∆x(t):

F(x) ≈ x̄ + A∆x(t)

where A is the Jacobian:

A =
∂

∂x
F(x)

∣∣∣
x=x̄
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Stability of in Linearized System

• In the linearized system, the property of the Jacobian matrix A

determine the behavior near equilibrium points.

• This is because

d

dt
∆x(t) ≈ A∆x(t).

• If A is nonsingular, A−1 exists and this can be used to describe

the local behavior near the equilibrium x̄.

• The eigenvalues of the matrix A characterize different classes of

behaviors.
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Eigenvalues/Eigenvectors

• For a square matrix A, if a vector x and a scalar value λ exists

so that

(A− λI)x = 0

then x is called an eigenvector of A and λ an eigenvalue.

• Note, the above is simply

Ax = λx

• An intuitive meaning is: x is the direction in which applying the

linear transformation A only changes the magnitude of x (by λ)

but not the angle.

• There can be as many as n eigenvector/eigenvalue for an n× n

matrix.
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Example: 2nd-Order System

Positive/negative, real/imaginary character of eigenvalues of Jacobian

determine behavior.

• Stable node (real -), unstable focus (Complex, + real)

• Stable focus (Complex, - real), Saddle point (real + -)

• Unstable node(real +), Center (Complex, 0 real)
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Definitions of Stability

• Uniformly stable for an arbitrary ε > 0, if there exists a positive

δ such that ‖x(0)− x̄‖ < δ implies ‖x(t)− x̄‖ < ε for all

t > 0.

• Convergent if there exists a positive δ such that

‖x(0)− x̄‖ < δ implies x(t) → x̄ as t →∞

• Asymptotically stable if both stable and convergent.

• Globally asymptotically stable if stable and all trajectoreis of the

system converge to x̄ as time t approaches infinity.
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Lyapunov’s Theorem

• Theorem 1: The equilibrium state x̄ is stable if in a small

neighborhood of x̄ there exists a positive definite function V (x)

such that its derivative with respect to time is negative

semidefinite in that region.

• Theorem 2: The equilibrium state x̄ is asymptotically stable if in a

small neighborhood of x̄ there exists a positive definite function

V (x) such that its derivative with respect to time is negative

definite in that region.

• A scalar function V (x) that satisfies these conditions is called a

Lyapunov function for the equilibrium state x̄.
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Attractors

• Dissipative systems are characterized by attracting sets or

manifolds of dimensionality lower than that of the embedding

space. These are called attractors.

• Regions of initial conditions of nonzero state space volume

converge to these attractors as time t increases.
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Types of Attractors

• Point attractors (left)

• Limit cycle attractors (right)

• Strange (chaotic) attractors (not shown)
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Neurodynamical Models

We will focus on state variables are continuous-valued, and those with

dynamics expressed in differential equations or difference equations.

Properties:

• Large number of degree of freedom.

• Nonlinearity

• Dissipative (as opposed to conservative), i.e., open system.

• Noise
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Manipulation of Attractors as a Recurrent Nnet

Paradigm

• We can identify attractors with computational objects (associative

memories, input-output mappers, etc.).

• In order to do so, we must exercise control over the location of the

attractors in the state space of the system.

• A learning algorithm will manipulate the equations governing the

dynamical behavior so that a desired location of attractors are set.

• One good way to do this is to use the energy minimization

paradigm (e.g., by Hopfield).
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Hopfield Model

• N units with full connection among every node (no self-feedback).

• Given M input patterns, each having the same dimensionality as the

network, can be memorized in attractors of the network.

• Starting with an initial pattern, the dynamic will converge toward the

attractor of the basin of attraction where the inital pattern was placed.
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Discrete Hopfield Model

• Based on McCulloch-Pitts model (neurons with +1 or -1 output).

• Energy function is defined as

E = −
1

2

N∑
i=1

N∑
j=1

wjixixj(i 6= j).

• Network dynamics will evolve in the direction that minimizes E.

• Implements a content-addressable memory.
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Content-Addressable Memory

• Map a set of patterns to be memorized ξµ onto fixed points xµ in

the dynamical system realized by the recurrent network.

• Encoding: Mapping from ξµ to xµ

• Decoding: Reverse mapping from state space xµ to ξµ.
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Hopfield Model: Storage

• The learning is similar to Hebbian learning:

wji =
1

N

M∑
µ=1

ξµ,jξµ,i

with wji = 0 if i = j. (Learning is one-shot.)

• In matrix form the above becomes:

W =
1

N

M∑
µ=1

ξµξT
µ −MI

• The resulting weight matrix W is symmetric: W = WT .
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Hopfield Model: Activation (Retrieval)

• Initialize the network with a probe pattern ξprobe.

xj(0) = ξprobe,j .

• Update output of each neuron (picking them by random) as

xj(n + 1) = sgn

(
N∑

i=1

wjixi(n)

)
.

until x reaches a fixed point.
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Spurious States

• The weight matrix W is symmetric, thus the eigenvalues of W are all

real.

• For large number of patters M , the matrix is degenerate, i.e., several

eigenvectors can have the same eigenvalue.

• These eigenvectors form a subspace, and when the associated eigenvalue

is 0, it is called a null space.

• This is due to M being smaller than the number of neurons N .

• Hopfield network as content addressable memory:

– Discrete Hopfield network acts as a vector projector (project probe

vector onto subspace spanned by training patterns).

– Underlying dynamics drive the network to converge to one of the

corners of the unit hypercube.

• Spurious states are those corners of the hypercube that do not belong to

the training pattern set.
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Storage Capacity of Hopfield Network

• Given a probe equal to the stored pattern ξν , the activation of the jth

neuron can be decomposed into the signal term and the noise term:

vj =
∑N

i=1
wjiξv,i

= 1
N

∑M

µ=1
ξµ,j

∑N

i=1
ξµ,iξν,i

= ξν,j︸︷︷︸
signal

+
1

N

M∑
µ=1,µ 6=ν

ξµ,j

N∑
i=1

ξµ,iξν,i︸ ︷︷ ︸
noise

• The signal-to-noise ratio is defined as

ρ =
variance of signal

variance of noise
=

1

(M − 1)/N
≈

N

M

• The reciprocal of ρ, called the load parameter is designated as α.

According to Amit and others, this value needs to be less than 0.14 (critical

value αc). 25

Storage Capacity of Hopfield Network (cont’d)

• Given α = 0.14, the storage capacity becomes

Mc = αcN = 0.14N

when some error is allowed in the final patterns.

• For almost error-free performance, the storage capacity become

Mc =
N

2 loge N

• Thus, storage capacity of Hopfield network scales less than

linearly with the size N of the network.

• This is a major limitation of the Hopfield model.
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Cohen-Grossberg Theorem

• Cohen and Grossberg (1983) showed how to assess the stability

of a certain class of neural networks:

d

dt
uj = aj(uj)

[
bj(uj)−

N∑
i=1

cjiϕi(ui)

]
, j = 1, 2, ..., N

.

• Neural network with the above dynamics admits a Lyapunov

function defined as:

E =
1

2

N∑
i=1

N∑
j=1

cjiϕi(ui)ϕj(uj)−
N∑

j=1

∫ uj

0

b−j(λ)ϕ′j(λ)dλ,

where

ϕ′(λ) =
d

dλ
(ϕj(λ)).
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Cohen-Grossberg Theorem (cont’d)

• For the definition in the previous slide to be valid, the following

conditions need to be met.

– The synaptic weights are symmetric.

– The function aj(uj) satisfies the condition for nonnegativity.

– The nonlinear activation function ϕj(uj) needs to follow the

monotonicity condition:

ϕ′j(uj) =
d

duj
ϕj(uj) ≥ 0.

• With the above
dE

dt
≤ 0

ensuring global stability of the system.

• Hopfield model can be seen as a special case of the

Cohen-Grossberg theorem. 28



Demo

• Noisy input

• Partial input

• Capacity overload
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