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Haykin Chapter 7: Committee ® Divide and conquer
. e Distributing the learning task among a nhumber of experts
Machines
e Combination of experts: committee machine
CPSC 636-600 e Fuses knowledge attained by individual experts to come up with
Instructor: Yoonsuck Choe an overall decision that is superior to that by any individual
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Categories of committee machines Modular Networks

. : , . e Mixture of experts and hierarchical mixture of experts are
e Static structures: combine expert’s response without reference to
, examples of modular networks (Osherson et al., 1990).
the input
) ) o A neural network is said to be modular if the computation
— Ensemble averaging: Linear combination of expert outputs .
performed by the network can be decomposed into two or

— Boosting: Use weak algorithm to achieve arbitrarily high more modules (subsystems) that operate on distinct

accuracy inputs without communicating with each other. The
e Dynamic structures: Input is directly involved in actuating the outputs of the modules are mediated by an integrating
integration mechanism unit that is not permitted to feed information back to the

. . o dules. | icular, the i [ i h (1
— Mixture of experts: Nonlinear combination of expert outputs modules. In particular, the integrating unit both (1)

. . decides how the outputs of the modules should be
by means of a single gating network _ .
combined to form the final output of the system, and (2)

— Hierarchical mixture of experts: Same as above, but with a decides which modules should learn which training

hierarchically arranged gating networks patterns.



Ensemble Averaging Bias vs. Variance Revisited

Expertl
xpert e f(x): true function to learn; F'(): nnet approximation; D: space of all

training sets and all initial conditions.

Input x Expert2 Combiner ———= Qutput y

e We know that the mean error over the space D can be decomposed into

bias and variance:

Expert3

Ep [(F(x) - B[DX = x])?| = Bp(F(x)) + Vp(F(x))

e Outputs of a number of differently trained experts (given common 2
o~ | Y perts (9 Bp(F(x)) = (Ep[F(x)] - E[D|X = x])?,
input) are combined.

Vp(F(x)) = Ep |(F(x) — Ep[F(x)))?]

Note: f(x) = E[D|X = x].

e Motivation for using ensemble averaging:

— The whole, as a network, may contain too many tunable
parameters, resulting in very long training time.

— Risk of overfitting increases with increase in the number of

parameters.
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Bias/Variance in Ensemble Averages Bias/Variance in Ensemble Avg. (cont’d)
_ 20 _
e Train ensemble average F'; () using a set of initial conditions 7. (Denote ® From Epy [(FI (x) = E[D|X = x]) } =
the space of all initial conditions as Z.) Bp/ (Fr(x)) + Vpr (Fr(x)) we know that
e The expected error over this initial condition space Z can also be Bps (F1(x)) = (Ep/[F1(x)] — E[D|X = x])*

decomposed into bias/variance: 5
Vi (Fr(x)) = Eps [(Fr(x) = Bp/[F1(x)))?]

Ez [(FI(X) — E[DIX = X])Q] = Bz (F(x))+Vz(F(x)), e Since we also know that
Bz (F(x)) = (Ez[F1(x)] — E[D|X = x])? Ep/[Fi(x)] = Ep[F(x)],
Vz(F(x)) = Ez [(FI(X) - EI[F(X)])2] Bp/(Fr(x)) = (Ep[F(x)] — E[D|X =x])* = Bp[F(x)]

e Fromthe above and E[(X — E[X])?] = E[X?] — E[X]?, we
can also deduce that

Eps [(Fi(x) = BIDIX = x])*| = Bp/ (Fi (x))+Vpr (F1 (x)) Ve, (Fr ()

e By partitioning D into Z and the remnant D’ , we can also write:

=  Ep/[(Fr(x)
Epr[(Fr(x)

’] = (BEp [F1(x)])?

)
)*] = (Ep[F(x)])?
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Bias/Variance in Ensemble Avg. (cont’d)
e From the following
Bpi (F1(x)) = Bp[F(x)]
Vi (Fr(x)) = Ep/ [(F1(x)?] — (Ep[F1(x)])?
and the observation that
Vo (Fi(x)) = Ep[(Fi(x))*] — (Ep[F(x)])”
Ep[F(x)*] 2 Ep/[(F1(x)7],

we can conclude that

Vpr (F1(x)) < Vp (F(x))

e In sum, the bias of ensemble averaged F'1 (x) is the same as that of
F(x), and the variance is less.

Boosting

e Experts are trained on data sets with entirely different
distributions.

e This is a general method that can improve the performance of any

learning algorithm.
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Bias/Variance in Ensemble Averaging
Main result:

e Bias in ensemble-averaged F1(x) is the same as that of the
constituent experts.

e Variance of the ensemble-averaged F1(x) is less than that of the

constituent experts.

Thoughts:

e The experts may be identical, with the only difference being initial

condition.

e Each expert is overtrained (reduce bias, while increased

variance).

e Variance is subsequently reduced through ensemble averaging.
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Three Approaches to Boosting

1. Boosting by filtering: Filter training examples with different

versions of a weak learning algoritjm. Assumes a large (in theory,

infinite) source of examples, where examples are kept or

discarded during training. Small memory requirement.

2. Boosting by subsampling: Training sample of fixed size. The
examples are “resampled” according to a given probability
distribution during training. Error calculated with a fixed training
sample.

3. Boosting by reweighting: Training sample of fixed size. Weak
learning algorithms can receive “weighted” examples. Error
calculated with respect to the weighted samples.
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Strong vs. Weak Learning Model
PAC learning: strong learning model
— Less than € error, with the probability of (1 — &)

Weak learning model:
— Drastically relaxed requirement
— Hypothesis needs to have error rate slightly less than 1/2.

— Note, for binary concepts, a totally random guessing algorithm
will make 1/2 error.

Hypothesis boosting problem: Are the notions of strong and weak
learning equivalent? (Kearns and Valiant 1989)

Answer: Yes! Concept classes that are weakly learnable are also
strongly learnable. (Shapire 1990)
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Boosting by Filtering: Computational
Considerations

Data needed:

N7 for expert 1.

N for generating /N1 inputs for expert 2.

N3 for generating /N1 inputs for expert 3.
Total: Ny = N1 + No + N3.

Computation:

— Total: 3/N1 inputs used for the training of three experts.

Main idea: Resulting distribution focus on “hard-to-learn” part of

instance space.
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Boosting by Filtering
1. First expert trained with /N1 examples.

2. Expert 1 used to filter another set of examples:
e Flip a fair coin to generate random guess.

e |f head, pass new input pattern through expert 1 and discard if
correctly classified, until a pattern is misclassified. Add the
misclassified pattern to the training set for expert 2.

e |f tail, do the opposite.
e Repeat until IV samples have been filtered.

e Expert 2 trained on the filtered samples (Expert 1 makes exactly 1/2
mistakes on this set).

3. Expert 3 trained:

® Pass a new input pattern through expert 1 and expert 2. If the two
agrees, discard the pattern. Otherwise, add to expert 3 training set.

e Continue until N1 examples are generated.

e Train expert 3 with those sam‘PAIfes.

Boosting by Filtering: Classifying New Instances

e Original (Shapire 1990):
— If expert 1 and 2 agree, use that decision.

— Otherwise, use expert 3.

o Modified (Drucker et al. 1993, 1994):

— Addition of respective outputs of the three experts.
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Boosting by Filtering: Error Bound
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® Schapire (1990) showed that the overall error of a committee

machine with each experts committing € < 1/2 is bounded by:

g(e) = 32 — 263,
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Boosting by Resampling: AdaBoost

o Freund and Schapire (1996a, 1996b)
e Overcomes excessive input requirement in boosting by filtering.

e Permits the reuse of the training set when resampling.
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Boosting by Filtering: Discussion

e Weak learning model can be converted to strong learning model.
e Needs a lot of input for training.

e What to do when the input is limited?: Use AdaBoost

18

AdaBoost: General

e Weak learning model available; Goal is to learn an approximation
with low error rate relative to a given distribution D over the
labeled training examples.

e Different from boosting by filtering:

— Adjusts adaptively to the errors of the weak method.

— Bound on performance depends only on the performance of
the weak learning model on those input distributions that are
actually generated during the learning process.
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AdaBoost Algorithm

e On iteration n, the boosting algorithm provides the weak learning

model with a distribution D,, over the training sample 7 .

e In response, the weak learning model computes ), : X — Y
that correctly classifies a fraction of the training samples. The
error is measured with respect to D, .

e The process continues for 1" iterations, then all F'y, F», ..., Fp
are combined into Ffy,.

21

AdaBoost: Algorithm
Input: Training sample {(z;, d;) };* 1;
Distribution D over N labeled examples;
Weak learning model; Number of iterations I’
Init: Set D1 (i) = 1/N forall 4.
Computation: Do the following forn = 1,2, ..., 7T
1. Call weak learning model, with distribution D, .
2. Getback F), : X — Y.
3. Calculate error of F},:

€n = Z Dy (i)

i Fp (x;)#d;
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AdaBoost: Sketch

e Updating D, :

— Start with uniform distibution D1 (i) = 1/n for all 4.

— Learn F3, given D,,.

— Change distribution: multiply by 3, = err /(1 — err) if
Fy, (z;) = d; (reduce weight) and leave alone if not.
Normalize with sum of D,,.

e Combining :

— Take weighted vote of F'1, Fo, ..., F'p.

— Given input z, Ff,, outputs the label d that maximizes the
sum of weights of the F; predicting that label.

- Weight is log(1//3,,), which is larger for smaller error.
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AdaBoost: Algorithm (Cont’d)

4. Set 3, = 1i’én (note: 3, € [0, 1))

5. Update distribution D, :

X
Zn 1 otherwise

Dny1(i) =

where Z,, is a normalization constant.

6. Output: The final approximation is

1
Fn — ]. R
() = arg glea% E og 3,
n:Fp(x)=d
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AdaBoost: Theoretical Importance

Freund and Schapire (1996a):

® Suppose the weak learning model, when called by AdaBoost,
generates F; (x) with errors €1, €2, ..., €7, where

i Fp (2)#d;
e Assumethate, < 1/2,andlety,, = 1/2 — €. Thenthe

following upper bound holds on the error of the final
approximation:

T
1
< His Fn(e) #di} < [ [ V/1- 192 oxp | -2
n=1

e In other words, if weak algorithm does slightly better than 1/2,

T
2
fy'fL
1

n—

training error of F;,, drops to,gero exponentially fast.

Mixture of Experts

Expertl
i Yi
Input x. Y2

Expert2! x Output y
y//\J

ExpertK] [

Gating
Networl

Dynamic (input influences the committee decision)

e Experts: yp = ng

e Gating: g, = ;Xp(uk) , U = agx
Zj:l exp(uj)

e Final output: y = Zle Ik Yk-
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Training and Generalization in AdaBoost

\ Training error rate
\ Test error rate — — —

Error rate

Number of boosting iterations

e Theoretical bound on training error is often weak.

e Generalization error tends to be much better than what the theory
would suggest.

e Very often, test error continues to decrease even after training
error reaches 0. (No over-fitting!)
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Hierarchical Mixture of Experts (HME)

Input x — Output y

Gating
Networl

e Dynamic (input influences the committee decision)

e Multiple levels of gating decisions.
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Hierarchical Mixture of Experts (cont’d) Learning in HME

e Stochastic gradient approach:

e HME is based on a divide and conquer strategy.
— Conduct gradient descent on w ;. of each experts.

e HME is a soft-decision tree: it is a probabilistic generalization of — Conduct gradient descent on a,, of the gating network (top
the standard decision tree (hard level)
e HME may perform better than hard decision trees: - Conduct gradient descent on a ;. of the gating network

— Hard decisions result in loss of information. (intermediate levels)

— Hard decisions are irrevertible, and thus suffer problems ¢ Expectation-maximixation approach (EM: Dempster 1970)

inherent in greedy methods. — Expectation step: using observable data and current estimate
of the parameters, construct the unobserved (missing) data.

— Maxmization step: given the complete data (observable data
+ current estimate of the missing data), tune the parameters.

— Indicator variables are introduced as “dummy” missing data,

to facilitate the use of EM in HME learning.
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Summary

e Static: Ensemble averaging and boosting
o Dynamic: Mixture of experts, Hierarchical mixture of experts

e Balances between
— Simple learning model’s understandability

— Complex learning model’s performance
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