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Introduction

• Divide and conquer

• Distributing the learning task among a number of experts

• Combination of experts: committee machine

• Fuses knowledge attained by individual experts to come up with

an overall decision that is superior to that by any individual
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Categories of committee machines

• Static structures: combine expert’s response without reference to

the input

– Ensemble averaging: Linear combination of expert outputs

– Boosting: Use weak algorithm to achieve arbitrarily high

accuracy

• Dynamic structures: Input is directly involved in actuating the

integration mechanism

– Mixture of experts: Nonlinear combination of expert outputs

by means of a single gating network

– Hierarchical mixture of experts: Same as above, but with a

hierarchically arranged gating networks
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Modular Networks

• Mixture of experts and hierarchical mixture of experts are

examples of modular networks (Osherson et al., 1990).

A neural network is said to be modular if the computation

performed by the network can be decomposed into two or

more modules (subsystems) that operate on distinct

inputs without communicating with each other. The

outputs of the modules are mediated by an integrating

unit that is not permitted to feed information back to the

modules. In particular, the integrating unit both (1)

decides how the outputs of the modules should be

combined to form the final output of the system, and (2)

decides which modules should learn which training

patterns.
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Ensemble Averaging
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• Outputs of a number of differently trained experts (given common

input) are combined.

• Motivation for using ensemble averaging:

– The whole, as a network, may contain too many tunable

parameters, resulting in very long training time.

– Risk of overfitting increases with increase in the number of

parameters.
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Bias vs. Variance Revisited

• f(x): true function to learn; F (x): nnet approximation;D: space of all

training sets and all initial conditions.

• We know that the mean error over the spaceD can be decomposed into

bias and variance:

ED
[
(F (x)− E[D|X = x])

2
]

= BD(F (x)) + VD(F (x))

BD(F (x)) = (ED[F (x)]− E[D|X = x])
2
,

VD(F (x)) = ED
[
(F (x)− ED[F (x)])

2
]

Note: f(x) = E[D|X = x].
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Bias/Variance in Ensemble Averages

• Train ensemble average FI(x) using a set of initial conditions I . (Denote

the space of all initial conditions as I.)

• The expected error over this initial condition space I can also be

decomposed into bias/variance:

EI
[
(FI(x)− E[D|X = x])

2
]

= BI(F (x))+VI(F (x)),

BI(F (x)) = (EI [FI(x)]− E[D|X = x])
2

VI(F (x)) = EI
[
(FI(x)− EI [F (x)])

2
]

• By partitioningD into I and the remnantD′ , we can also write:

ED′
[
(FI(x)− E[D|X = x])

2
]

= BD′ (FI(x))+VD′ (FI(x))
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Bias/Variance in Ensemble Avg. (cont’d)

• From ED′
[
(FI(x)− E[D|X = x])2

]
=

BD′ (FI(x)) + VD′ (FI(x)) we know that

BD′ (FI(x)) = (ED′ [FI(x)]− E[D|X = x])
2

VD′ (FI(x)) = ED′
[
(FI(x)− ED′ [FI(x)])

2
]

• Since we also know that

ED′ [FI(x)] = ED[F (x)],

BD′ (FI(x)) = (ED[F (x)]− E[D|X = x])
2

= BD[F (x)]

• From the above and E[(X − E[X])2] = E[X2]− E[X]2 , we

can also deduce that

VD′ (FI(x)) = ED′ [(FI(x))2]− (ED′ [FI(x)])2

= ED′ [(FI(x))2]− (ED[F (x)])2
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Bias/Variance in Ensemble Avg. (cont’d)

• From the following

BD′ (FI(x)) = BD[F (x)]

VD′ (FI(x)) = ED′ [(FI(x))
2
]− (ED[FI(x)])

2

and the observation that

VD(FI(x)) = ED[(FI(x))
2
]− (ED[F (x)])

2

ED[F (x)
2
] ≥ ED′ [(FI(x)

2
],

we can conclude that

VD′ (FI(x)) ≤ VD(F (x))

• In sum, the bias of ensemble averaged FI(x) is the same as that of

F (x), and the variance is less.
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Bias/Variance in Ensemble Averaging

Main result:

• Bias in ensemble-averaged FI(x) is the same as that of the

constituent experts.

• Variance of the ensemble-averaged FI(x) is less than that of the

constituent experts.

Thoughts:

• The experts may be identical, with the only difference being initial

condition.

• Each expert is overtrained (reduce bias, while increased

variance).

• Variance is subsequently reduced through ensemble averaging.
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Boosting

• Experts are trained on data sets with entirely different

distributions.

• This is a general method that can improve the performance of any

learning algorithm.
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Three Approaches to Boosting

1. Boosting by filtering: Filter training examples with different

versions of a weak learning algoritjm. Assumes a large (in theory,

infinite) source of examples, where examples are kept or

discarded during training. Small memory requirement.

2. Boosting by subsampling: Training sample of fixed size. The

examples are “resampled” according to a given probability

distribution during training. Error calculated with a fixed training

sample.

3. Boosting by reweighting: Training sample of fixed size. Weak

learning algorithms can receive “weighted” examples. Error

calculated with respect to the weighted samples.
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Strong vs. Weak Learning Model

• PAC learning: strong learning model

– Less than ε error, with the probability of (1− δ)

• Weak learning model:

– Drastically relaxed requirement

– Hypothesis needs to have error rate slightly less than 1/2.

– Note, for binary concepts, a totally random guessing algorithm

will make 1/2 error.

• Hypothesis boosting problem: Are the notions of strong and weak

learning equivalent? (Kearns and Valiant 1989)

• Answer: Yes! Concept classes that are weakly learnable are also

strongly learnable. (Shapire 1990)
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Boosting by Filtering

1. First expert trained with N1 examples.

2. Expert 1 used to filter another set of examples:

• Flip a fair coin to generate random guess.

• If head, pass new input pattern through expert 1 and discard if

correctly classified, until a pattern is misclassified. Add the

misclassified pattern to the training set for expert 2.

• If tail, do the opposite.

• Repeat until N1 samples have been filtered.

• Expert 2 trained on the filtered samples (Expert 1 makes exactly 1/2

mistakes on this set).

3. Expert 3 trained:

• Pass a new input pattern through expert 1 and expert 2. If the two

agrees, discard the pattern. Otherwise, add to expert 3 training set.

• Continue until N1 examples are generated.

• Train expert 3 with those samples.
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Boosting by Filtering: Computational

Considerations

• Data needed:

– N1 for expert 1.

– N2 for generating N1 inputs for expert 2.

– N3 for generating N1 inputs for expert 3.

– Total: N4 = N1 + N2 + N3.

• Computation:

– Total: 3N1 inputs used for the training of three experts.

• Main idea: Resulting distribution focus on “hard-to-learn” part of

instance space.
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Boosting by Filtering: Classifying New Instances

• Original (Shapire 1990):

– If expert 1 and 2 agree, use that decision.

– Otherwise, use expert 3.

• Modified (Drucker et al. 1993, 1994):

– Addition of respective outputs of the three experts.
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Boosting by Filtering: Error Bound
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• Schapire (1990) showed that the overall error of a committee

machine with each experts committing ε < 1/2 is bounded by:

g(ε) = 3ε2 − 2ε3.
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Boosting by Filtering: Discussion

• Weak learning model can be converted to strong learning model.

• Needs a lot of input for training.

• What to do when the input is limited?: Use AdaBoost
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Boosting by Resampling: AdaBoost

• Freund and Schapire (1996a, 1996b)

• Overcomes excessive input requirement in boosting by filtering.

• Permits the reuse of the training set when resampling.
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AdaBoost: General

• Weak learning model available; Goal is to learn an approximation

with low error rate relative to a given distribution D over the

labeled training examples.

• Different from boosting by filtering:

– Adjusts adaptively to the errors of the weak method.

– Bound on performance depends only on the performance of

the weak learning model on those input distributions that are

actually generated during the learning process.
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AdaBoost Algorithm

• On iteration n, the boosting algorithm provides the weak learning

model with a distribution Dn over the training sample T .

• In response, the weak learning model computes Fn : X → Y

that correctly classifies a fraction of the training samples. The

error is measured with respect to Dn.

• The process continues for T iterations, then all F1, F2, ..., FT

are combined into Ffin.
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AdaBoost: Sketch

• Updating Dn:

– Start with uniform distibution D1(i) = 1/n for all i.

– Learn Fn given Dn.

– Change distribution: multiply by βn = err/(1− err) if

Fn(xi) = di (reduce weight) and leave alone if not.

Normalize with sum of Dn.

• Combining :

– Take weighted vote of F1, F2, ..., FT .

– Given input x, Ffin outputs the label d that maximizes the

sum of weights of the Fi predicting that label.

– Weight is log(1/βn), which is larger for smaller error.
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AdaBoost: Algorithm

Input: Training sample {〈xi, di〉}N
i=1;

Distribution D over N labeled examples;

Weak learning model; Number of iterations T

Init: Set D1(i) = 1/N for all i.

Computation: Do the following for n = 1, 2, ..., T .

1. Call weak learning model, with distribution Dn.

2. Get back Fn : X → Y .

3. Calculate error of Fn:

εn =
∑

i:Fn(xi) 6=di

Dn(i)
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AdaBoost: Algorithm (Cont’d)

4. Set βn = εn
1−εn

(note: βn ∈ [0, 1))

5. Update distribution Dn:

Dn+1(i) =
Dn(i)

Zn
×

{
βn if Fn(xi) = di

1 otherwise

where Zn is a normalization constant.

6. Output: The final approximation is

Fn(x) = arg max
d∈D

∑
n:Fn(x)=d

log
1

βn

24



AdaBoost: Theoretical Importance

Freund and Schapire (1996a):

• Suppose the weak learning model, when called by AdaBoost,

generates Fi(x) with errors ε1, ε2, ..., εT , where

εn =
∑

i:Fn(xi) 6=di

Dn(i).

• Assume that εn ≤ 1/2, and let γn = 1/2− εn. Then the
following upper bound holds on the error of the final
approximation:

1

N
|{i : Ffin(xi) 6= di}| ≤

T∏
n=1

√
1− 4γ2

n ≤ exp

(
−2

T∑
n=1

γ
2
n

)
.

• In other words, if weak algorithm does slightly better than 1/2,

training error of Ffin drops to zero exponentially fast.25

Training and Generalization in AdaBoost
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• Theoretical bound on training error is often weak.

• Generalization error tends to be much better than what the theory

would suggest.

• Very often, test error continues to decrease even after training

error reaches 0. (No over-fitting!)
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Mixture of Experts
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Dynamic (input influences the committee decision)

• Experts: yk = wT
k x

• Gating: gk =
exp(uk)∑K

j=1
exp(uj)

, uk = aT
k x

• Final output: y =
∑K

k=1
gkyk .
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Hierarchical Mixture of Experts (HME)
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• Dynamic (input influences the committee decision)

• Multiple levels of gating decisions.
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Hierarchical Mixture of Experts (cont’d)

• HME is based on a divide and conquer strategy.

• HME is a soft-decision tree: it is a probabilistic generalization of

the standard decision tree (hard

• HME may perform better than hard decision trees:

– Hard decisions result in loss of information.

– Hard decisions are irrevertible, and thus suffer problems

inherent in greedy methods.
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Learning in HME

• Stochastic gradient approach:

– Conduct gradient descent on wjk of each experts.

– Conduct gradient descent on ak of the gating network (top

level)

– Conduct gradient descent on ajk of the gating network

(intermediate levels)

• Expectation-maximixation approach (EM: Dempster 1970)

– Expectation step: using observable data and current estimate

of the parameters, construct the unobserved (missing) data.

– Maxmization step: given the complete data (observable data

+ current estimate of the missing data), tune the parameters.

– Indicator variables are introduced as “dummy” missing data,

to facilitate the use of EM in HME learning.
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Summary

• Static: Ensemble averaging and boosting

• Dynamic: Mixture of experts, Hierarchical mixture of experts

• Balances between

– Simple learning model’s understandability

– Complex learning model’s performance
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