
Slide04

Haykin Chapter 4: Multi-Layer

Perceptrons

CPSC 636-600
Instructor: Yoonsuck Choe
Spring 2008

Some materials from this lecture are from Mitchell (1997) Machine Learning, McGraw-Hill.

1

Introduction

• Networks typically consisting of input, hidden, and output layers.

• Commonly referred to as Multilayer perceptrons.

• Popular learning algorithm is the error backpropagation algorithm

(backpropagation, or backprop, for short), which is a generalization of the

LMS rule.

– Forward pass: activate the network, layer by layer

– Backward pass: error signal backpropagates from output to hidden

and hidden to input, based on which weights are updated.

2

Multilayer Perceptrons: Characteristics

• Each model neuron has a nonlinear activation function, typically a logistic

function: yj = 1
1+exp(−vj)

• Network contains one or more hidden layers (layers that are not either an

input or an output layer).

• Network exhibits a high degree of connectivity.
3

Multilayer Networks

• Differentiable threshold unit: sigmoid φ(v) = 1
1+exp(−v) . Interesting

property: dφ(v)
dv = φ(v)(1− φ(v)).

• Output: y = φ(xT w)

• Other functions: tanh(v) =
exp(−2v)−1
exp(−2v)+1

4

Multilayer Networks and Backpropagation

F1 F2

head hid who’d hood
... ...

• Nonlinear decision surfaces.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Output

sigm(x+y-1.1)
 0.8
 0.6
 0.4
 0.2

Input 1
Input 2

Output

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55

Output

sigm(sigm(x+y-1.1)+sigm(-x-y+1.13)-1)
 0.54
 0.53
 0.52
 0.51

Input 1
Input 2

Output

(a) One output (b) Two hidden, one output

• Another example: XOR

5

Error Gradient for a Single Sigmoid Unit

For n input-output pairs {(xk, dk)}n
k=1 :

∂E

∂wi

=
∂

∂wi

1

2

X
k

(dk − yk)
2

=
1

2

X
k

∂

∂wi

(dk − yk)
2

=
1

2

X
k

2(dk − yk)
∂

∂wi

(dk − yk)

=
X

k

(dk − yk)

„
−

∂yk

∂wi

«

= −
X

k

(dk − yk)
∂yk

∂vk

∂vk

∂wi| {z }
Chain rule

6

Error Gradient for a Sigmoid Unit

From the previous page:

∂E

∂wi

= −
X

k

(dk − yk)
∂yk

∂vk

∂vk

∂wi

But we know:
∂yk

∂vk

=
∂φ(vk)

∂vk

= yk(1− yk)

∂vk

∂wi

=
∂(xT

k w)

∂wi

= xi,k

So:

∂E

∂wi

= −
X

k

(dk − yk)yk(1− yk)xi,k

7

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

• For each training example, Do

1. Input the training example to the network and compute the network

outputs

2. For each output unit j

δj ← yj(1− yj)(dj − yj)

3. For each hidden unit h

δh ← yh(1− yh)
P

j∈outputs wjhδj

4. Update each network weight wi,j

wji ← wji + ∆wji where

∆wji = ηδjxi .

Note: wji is the weight from i to j (i.e., wj←i).

8

The δ Term

• For output unit:

δj ← yj(1− yj)| {z }
φ′(vj)

(dj − yj)| {z }
Error

• For hidden unit:

δh ← yh(1− yh)| {z }
φ′(vh)

X
j∈outputs

wjhδj| {z }
Backpropagated error

• In sum, δ is the derivative times the error.

• Derivation to be presented later.

9

Derivation of ∆w

• Want to update weight as:

∆wji = −η
∂E

∂wji
,

where error is defined as

E(w) ≡
1

2

X
j∈outputs

(dj − yj)
2

• Given vj =
P

j wjixi,

∂E

∂wji
=

∂E

∂vj

∂vj

∂wji

• Different formula for output and hidden.

10

Derivation of ∆w: Output Unit Weights

From the previous page, ∂E
∂wji

= ∂E
∂vj

∂vj

∂wji

• First, calculate ∂E
∂vj

:

∂E

∂vj
=

∂E

∂yj

∂yj

∂vj

∂E

∂yj
=

∂

∂yj

1

2

X
j∈outputs

(dj − yj)
2

=
∂

∂yj

1

2
(dj − yj)

2

= 2
1

2
(dj − yj)

∂(dj − yj)

∂yj

= −(dj − yj)
11

Derivation of ∆w: Output Unit Weights

From the previous page, ∂E
∂vj

= ∂E
∂yj

∂yj

∂vj
= −(dj − yj)

∂yj

∂vj
:

• Next, calculate
∂yj

∂vj
: Since yj = φ(vj), and

φ′(vj) = yj(1− yj),

∂yj

∂vj
= yj(1− yj).

Putting everything together,

∂E

∂vj
=

∂E

∂yj

∂yj

∂vj
= −(dj − yj)yj(1− yj).

12

Derivation of ∆w: Output Unit Weights

From the previous page:

∂E

∂vj
=

∂E

∂yj

∂yj

∂vj
= −(dj − yj)yj(1− yj).

Since
∂vj

∂wji
=

∂
P

i′ wji′xi′
∂wji

= xi,

∂E

∂wji
=

∂E

∂vj

∂vj

∂wji

= − (dj − yj)yj(1− yj)| {z }
δj=error×φ′(net)

xi|{z}
input

13

Derivation of ∆w: Hidden Unit Weights

Start with ∂E
∂wji

= ∂E
∂vj

∂vj

∂wji
= ∂E

∂vj
xi:

∂E

∂vj

=
X

k∈Downstream(j)

∂E

∂vk

∂vk

∂vj

=
X

k∈Downstream(j)

−δk
∂vk

∂vj

=
X

k∈Downstream(j)

−δk
∂vk

∂yj

∂yj

∂vj

=
X

k∈Downstream(j)

−δkwkj
∂yj

∂vj

=
X

k∈Downstream(j)

−δkwkj yj(1− yj)| {z }
φ′(net)

(1)

14

Derivation of ∆w: Hidden Unit Weights

Finally, given
∂E

∂wji

=
∂E

∂vj

∂vj

∂wji

=
∂E

∂vj

xi,

and
∂E

∂vj

=
X

k∈Downstream(j)

−δkwkj yj(1− yj)| {z }
φ′(net)

,

∆wji = −η
∂E

∂wji

= η [yj(1− yj)| {z }
φ′(net)

X
k∈Downstream(j)

δkwkj

| {z }
error

]

| {z }
δj

xi

15

Summary

∆wji(n)| {z }
weight correction

= η|{z}
learning rate

· δj(n)| {z }
local gradient

· yi(n)| {z }
input signal

16

Extension to Different Network Topologies

input

hidden

output

wji

wkj

j

i

k

• Arbitrary number of layers: for neurons in layer m:

δr = yr(1− yr)
X

s∈layer m+1

wsrδs.

• Arbitrary acyclic graph:

δr = yr(1− yr)
X

s∈Downstream(r)

wsrδs.

17

Backpropagation: Properties

• Gradient descent over entire network weight vector.

• Easily generalized to arbitrary directed graphs.

• Will find a local, not necessarily global error minimum:

– In practice, often works well (can run multiple times with

different initial weights).

• Minimizes error over training examples:

– Will it generalize well to subsequent examples?

• Training can take thousands of iterations→ slow!

• Using the network after training is very fast.

18

Learning Rate and Momentum

• Tradeoffs regarding learning rate:

– Smaller learning rate: smoother trajectory but slower

convergence

– Larger learning rate: fast convergence, but can become

unstable.

• Momentum can help overcome the issues above.

∆wji(n) = ηδj(n)yi(n) + α∆wji(n− 1).

The update rule can be written as:

∆wji(n) = η

nX
t=0

αn−tδj(t)yi(t) = −η

nX
t=0

αn−t ∂E(t)

∂wji(t)
.

19

Momentum (cont’d)

∆wji(n) =

nX
t=0

αn−t ∂E(t)

∂wji(t)

• The weight vector is the sum of an exponentially weighted time

series.

• Behavior:

– When successive ∂E(t)
∂wji(t)

take the same sign:

Weight update is accelerated (speed up downhill).

– When successive ∂E(t)
∂wji(t)

have different signs:

Weight update is damped (stabilize oscillation).

20

Sequential (online) vs. Batch Training

• Sequential mode:

– Update rule applied after each input-target presentation.

– Order of presentation should be randomized.

– Benefits: less storage, stochastic search through weight

space helps avoid local minima.

– Disadvantages: hard to establish theoretical convergence

conditions.

• Batch mode:

– Update rule applied after all input-target pairs are seen.

– Benefits: accurate estimate of the gradient, convergence to

local minimum is guaranteed under simpler conditions.

21

Representational Power of Feedforward Networks

• Boolean functions: every boolean function representable with two

layers (hidden unit size can grow exponentially in the worst case:

one hidden unit per input example, and “OR” them).

• Continous functions: Every bounded continuous function can be

approximated with an arbitrarily small error (output units are

linear).

• Arbitrary functions: with three layers (output units are linear).

22

Learning Hidden Layer Representations
Inputs Outputs

Input Output

10000000 → 10000000

01000000 → 01000000

00100000 → 00100000

00010000 → 00010000

00001000 → 00001000

00000100 → 00000100

00000010 → 00000010

00000001 → 00000001

23

Learned Hidden Layer Representations
Inputs Outputs

Input Hidden Output

Values

10000000 → .89 .04 .08 → 10000000

01000000 → .01 .11 .88 → 01000000

00100000 → .01 .97 .27 → 00100000

00010000 → .99 .97 .71 → 00010000

00001000 → .03 .05 .02 → 00001000

00000100 → .22 .99 .99 → 00000100

00000010 → .80 .01 .98 → 00000010

00000001 → .60 .94 .01 → 00000001

24

Learned Hidden Layer Representations

• Learned encoding is similar to standard 3-bit binary code.

• Automatic discovery of useful hidden layer representations is a

key feature of ANN.

• Note: The hidden layer representation is compressed.
25

Overfitting

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

Er
ro

r

Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

Er
ro

r

Number of weight updates

Error versus weight updates (example 2)

Training set error
Validation set error

• Error in two different robot perception tasks.

• Training set and validation set error.

• Early stopping ensures good performance on unobserved

samples, but must be careful.

• Weight decay, use of validation sets, use of k-fold

cross-validation, etc. to overcome the problem.

26

Recurrent Networks

output

hidden

input context

delay

• Sequence recognition.

• Store tree structure (next

slide).

• Can be trained with plain

backpropagation.

• Generalization may not be

perfect.

27

Recurrent Networks (Cont’d)

A B

BA

(A, B)

C (A, B)

(C, A, B)

C (A, B)

input

delay

stack

input stack

delay
input, stack

• Autoassociation (intput = output)

• Represent a stack using the hidden layer representation.

• Accuracy depends on numerical precision.

28

Some Applications: NETtalk

• NETtalk: Sejnowski and Rosenberg (1987).

• Learn to pronounce English text.

• Demo

• Data available in UCI ML repository

29

NETtalk data

aardvark a-rdvark 1<<<>2<<0

aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0

abaft xb@ft 0>1<<0

abalone @bxloni 2<0>1>0 0

abandon xb@ndxn 0>1<>0<0

abase xbes-0>1<<0

abash xb@S-0>1<<0

abate xbet-0>1<<0

abatis @bxti-1<0>2<2

...

• Word – Pronunciation – Stress/Syllable

• about 20,000 words

30

More Applications: Data Compression

• Construct an autoassocia-

tive memory where Input =

Output.

• Train with small hidden

layer.

• Encode using input-to-

hidden weights.

• Send or store hidden layer

activation.

• Decode received or stored

hidden layer activation

with the hidden-to-output

weights.

31

Backpropagation Exercise

• URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

• Untar and read the README file:

gzip -dc backprop-1.6.tar.gz | tar

xvf -

• Run make to build (on departmental unix machines).

• Run ./bp conf/xor.conf etc.

32

Backpropagation: Example Results

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

Er
ro

r

10,000 Epochs

Backprop

OR
AND
XOR

• Epoch: one full cycle of training through all training input patterns.

• OR was easiest, AND the next, and XOR was the most difficult to

learn.

• Network had 2 input, 2 hidden and 1 output unit. Learning rate

was 0.001.

33

Backpropagation: Example Results (cont’d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

Er
ro

r

10,000 Epochs

Backprop

OR
AND
XOR

OR

AND

XOR
Output to (0,0), (0,1), (1,0), and (1,1) form each row.

34

Backpropagation: Things to Try

• How does increasing the number of hidden layer units affect the

(1) time and the (2) number of epochs of training?

• How does increasing or decreasing the learning rate affect the

rate of convergence?

• How does changing the slope of the sigmoid affect the rate of

convergence?

• Different problem domains: handwriting recognition, etc.

35

MLP as a General Function Approximator

• MLP can be seen as performing nonlinear input-output mapping.

• Universal approximation theorem: Let φ(·) be a nonconstant, bounded,

monotone-increasing continuous function. Let Im0 denote the

m0-dimensional unit hypercube [0, 1]m0 . The space of continuous

functions on Im0 is denoted by C(Im0). Then given any function

f ∈ C(Im0) and ε > 0, there exists an integer m1 and a set of real

constants αi , bi , and wij , where i = 1, ..., m1 and

j = 1, ..., m0 , such that we may define

F (x1, ..., xm0)−
m1X
i=1

αiφ

0@ m0X
j=1

wijxj + bi

1A
as an approximate realization of the function f(·); that is

|F (x1, ..., xm0)− f(x1, ..., xm0)| < ε

for all x1, ..., xm0 that lie in the input space.

36

MLP as a General Function Approximator (cont’d)

• The universal approximation theorem is an existence theorem,

and it merely generalizes approximations by finite Fourier series.

• The universal approximation theorem is directly applicable to

neural networks (MLP), and it implies that one hidden layer is

sufficient.

• The theorem does not say that a single hidden layer is optimum in

terms of learning time, generalization, etc.

37

Generalization

• A network is said to generalize well when the input-output

mapping computed by the network is correct (or nearly so) for test

data never used during training.

• This view is apt when we take the curve-fitting view.

• Issues: overfitting or overtraining, due to memorization.

Smoothness in the mapping is desired, and this is related to

criteria like Occam’s razor.

38

Generalization and Training Set Size

• Generalization is influenced by three factors:

– Size of the training set, and how representative they are.

– The architecture of the network.

– Physical complexity of the problem.

• Sample complexity and VC dimension are related. In practice,

N = O

„
W

ε

«
,

where W is the total number of free parameters, and ε is the

error tolerance.

39

Training Set Size and Curse of Dimensionality

3D: 64 inputs1D: 4 inputs 2D: 16 inputs

• As the dimensionality of the input grows, exponentially more

inputs are needed to maintain the same density in unit space.

• In other words, the sampling density of N inputs in

m-dimensional space is proportional to N1/m.

• One way to overcome this is to use prior knowledge about the

function.
40

Cross-Validation

Use of validation set (not used during training, used for measuring

generalizability).

• Model selection

• Early stopping

• Hold-out method: multiple cross-validation, leave-one-out

method, etc.
41

Virtues and Limitations of Backprop

• Connectionism: biological metaphor, local computation, graceful

degradation, paralellism. (Some limitations exist regarding the biological

plausibility of backprop.)

• Feature detection: hidden neurons perform feature detection.

• Function approximation: a form of nested sigmoid.

• Computational complexity: computation is polynomial in the number of

adjustable parameters, thus it can be said to be efficient.

• Sensitivity analysis: sensitivity SF
ω =

∂F/F
∂ω/ω

can be estimated

efficiently.

• Robustness: disturbances can only cause small estimation errors.

• Convergence: stochastic approximation, and it can be slow.

• Local minima and scaling issues

42

Heuristic for Accelerating Convergence

Learning rate adaptation

• Separate learning rate for each tunable weight.

• Each learning rate is allowed to adjust after each iteration.

• If the derivative of the cost function has the same sign for several

iterations, increase the learning rate.

• If the derivative of the cost function alternates the sign over

several iterations, decrease the learning rate.

43

Summary

• Backprop for MLP is local and efficient (in calculating the partial

derivative).

• Backprop can handle nonlinear mappings.

44

