
Slide03

Haykin Chapter 3: Single-Layer

Perceptrons

CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2008

1

Historical Overview

• McCulloch and Pitts (1943): neural networks as computing

machines.

• Hebb (1949): postulated the first rule for self-organizing learning.

• Rosenblatt (1958): perceptron as a first model of supervised

learning.

• Widrow and Hoff (1960): adaptive filters using least-mean-square

(LMS) algorithm (delta rule).

2

Multiple Faces of a Single Neuron

What a single neuron does can be viewed from different perspectives:

• Adaptive filter: as in signal processing

• Classifier: as in perceptron

The two aspects will be reviewed, in the above order.

3

Part I: Adaptive Filter

4

Adaptive Filtering Problem

• Consider an unknown dynamical system, that takes m inputs and

generates one output.

• Behavior of the system described as its input/output pair:

T : {x(i), d(i); i = 1, 2, ..., n, ...} where

x(i) = [x1(i), x2(i), ..., xm(i)]T is the input and d(i) the

desired response (or target signal).

• Input vector can be either a spatial snapshot or a temporal sequence

uniformly spaced in time.

• There are two important processes in adaptive filtering:

– Filtering process: generation of output based on the input:

y(i) = xT (i)w(i).

– Adapative process: automatic adjustment of weights to reduce error:

e(i) = d(i)− y(i).

5

Unconstrained Optimization Techniques

• How can we adjust w(i) to gradually minimize e(i)? Note that

e(i) = d(i)− y(i) = d(i)− xT (i)w(i). Since d(i) and x(i)

are fixed, only the change in w(i) can change e(i).

• In other words, we want to minimize the cost function E(w) with respect

to the weight vector w: Find the optimal solution w∗ .

• The necessary condition for optimality is

∇E(w
∗
) = 0,

where the gradient operator is defined as

∇ =

»
∂

∂w1
,

∂

∂w2
, ...

∂

∂wm

–T

With this, we get

∇E(w
∗
) =

»
∂E

∂w1
,

∂E
∂w2

, ...
∂E

∂wm

–T

.

6

Steepest Descent

• We want the iterative update algorithm to have the following

property:

E(w(n + 1)) < E(w(n)).

• Define the gradient vector∇E(w) as g.

• The iterative weight update rule then becomes:

w(n + 1) = w(n)− ηg(n)

where η is a small learning-rate parameter. So we can say,

∆w(n) = w(n + 1)−w(n) = −ηg(n)

7

Steepest Descent (cont’d)

We now check if E(w(n + 1)) < E(w(n)).

Using first-order Taylor expansion† of E(·) near w(n),

E(w(n + 1)) ≈ E(w(n)) + gT (n)∆w(n)

and ∆w(n) = −ηg(n), we get

E(w(n + 1)) ≈ E(w(n))− ηgT (n)g(n)

= E(w(n))− η‖g(n)‖2| {z }
Positive!

.

So, it is indeed (for small η):

E(w(n + 1)) < E(w(n)).

† Taylor series: f(x) = f(a) + f ′(a)(x− a) +
f′′(a)(x−a)2

2! +
8

Steepest Descent: Example

• Convergence to optimal w is very slow.

• Small η: overdamped, smooth trajectory

• Large η: underdamped, jzgged trajectory

• η too large: algorithm becomes unstable

9

Steepest Descent: Another Example

x*x+y*y
 200
 180
 160
 140
 120
 100
 80
 60
 40
 20

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

-7

 0

 7

-7 0 7

y

x

Gradient of x*x+y*y

For f(x) = f(x, y) = x2 + y2 ,

∇f(x, y) =
h

∂f
∂x , ∂f

∂x

iT
= [2x, 2y]T . Note that (1) the gradient

vectors are pointing upward, away from the origin, (2) length of the vectors are

shorter near the origin. If you follow−∇f(x, y), you will end up at the origin.

We can see that the gradient vectors are perpendicular to the level curves.

* The vector lengths were scaled down by a factor of 10 to avoid clutter.
10

Newton’s Method

• Newton’s method is an extension of steepest descent, where the

second-order term in the Taylor series expansion is used.

• It is generally faster and shows a less erratic meandering

compared to the steepest descent method.

• There are certain conditions to be met though, such as the

Hessian matrix∇2E(w) being positive definite (for an arbitarry

x, xT Hx > 0).

11

Gauss-Newton Method

• Applicable for cost-functions expressed as sum of error squares:

E(w) =
1

2

nX
i=1

ei(w)
2
,

where ei(w) is the error in the i-th trial, with the weight w.

• Recalling the Taylor series f(x) = f(a) + f ′(a)(x− a)..., we can

express ei(w) evaluated near ei(wk) as

ei(w) = ei(wk) +

»
∂ei

∂w

–T

w=wk

(w −wk).

• In matrix notation, we get:

e(w) = e(wk) + Je(wk)(w −wk).

* We will use a slightly different notation than the textbook, for clarity.

12

Gauss-Newton Method (cont’d)

• Je(w) is the Jacobian matrix, where each row is the gradient
of ei(w):

Je(w) =

26666666664

∂e(1)
∂w1

∂e(1)
∂w2

...
∂e(1)
∂wn

∂e(2)
∂w1

∂e(2)
∂w2

...
∂e(2)
∂wn

: : :

: : :

∂e(n)
∂w1

∂e(n)
∂w2

...
∂e(n)
∂wn

37777777775
=

26666666664

(∇e1(w))T

(∇e2(w))T

:

:

(∇en(w))T

37777777775
• We can then evaluate Je(wk) by plugging in actual values of

wk into the Jabobian matrix above.

13

Quick Example: Jacobian Matrix

• Given

e(x, y) =

24 e1(x, y)

e2(x, y)

35 =

24 x2 + y2

cos(x) + sin(y)

35 ,

• The Jacobian of e(x, y) becomes

Je(x, y) =

"
∂e1(x,y)

∂x
∂e1(x,y)

∂y
∂e2(x,y)

∂x
∂e2(x,y)

∂y

#
=

"
2x 2y

− sin(x) cos(y)

#
.

• For (x, y) = (0.5π, π), we get

Je(0.5π, π) =

"
π 2π

− sin(0.5π) cos(π)

#
=

"
π 2π

−1 −1

#
.

14

Gauss-Newton Method (cont’d)

• Again, starting with

e(w) = e(wk) + Je(wk)(w −wk),

what we want is to set w so that the error appraoches 0.

• That is, we want to minimize the norm of e(w):

‖e(w)‖2 = ‖e(wk)‖2 + 2e(wk)T Je(wk)(w −wk)

+ (w −wk)T JT
e (wk)Je(wk)(w −wk).

• Differentiating the above wrt w and setting the result to 0, we get

J
T
e (wk)e(wk)+J

T
e (wk)Je(wk)(w−wk) = 0, from which we get

w = wk − (J
T
e (wk)Je(wk))

−1
J

T
e (wk)e(wk).

* JT
e (wk)Je(wk) needs to be nonsingular (inverse is needed).

15

Linear Least-Square Filter

• Given m input and 1 output function y(i) = φ(xT
i wi) where

φ(x) = x, i.e., it is linear, and a set of training samples {xi, di}n
i=1 ,

we can define the error vector for an arbitrary weight w as

e(w) = d− [x1, x2, ..., xn]
T
w.

where d = [d1, d2, ..., dn]T . Setting X = [x1, x2, ..., xn]T ,

we get: e(w) = d−Xw.

• Differentiating the above wrt w, we get∇e(w) = −XT . So, the

Jacobian becomes Je(w) = (∇e(w))T = −X.

• Plugging this in to the Gauss-Newton equation, we finally get:

w = wk + (XT X)−1XT (d−Xwk)

= wk + (XT X)−1XT d− (X
T
X)

−1
X

T
Xwk| {z }

This is Iwk = wk .

= (XT X)−1XT d.

16

Linear Least-Square Filter (cont’d)

Points worth noting:

• X does not need to be a square matrix!

• We get w = (XT X)−1XT d off the bat partly because the

output is linear (otherwise, the formula would be more complex).

• The Jacobian of the error function only depends on the input, and

is invariant wrt the weight w.

• The factor (XT X)−1XT (let’s call it X+) is like an inverse.

Multiply X to both sides of

d = Xw

then we get:

w = X+d = X+X| {z }
=I

w.

17

Linear Least-Square Filter: Example
See src/pseudoinv.m.

X = ceil(rand(4,2)*10), wtrue = rand(2,1)*10 , d=X*wtrue, w = inv(X’*X)*X’*d

X =

10 7

3 7

3 6

5 4

wtrue =

0.56644

4.99120

d =

40.603

36.638

31.647

22.797

w =

0.56644

4.99120

18

Least-Mean-Square Algorithm

• Cost function is based on instantaneous values.

E(w) =
1

2
e
2
(w)

• Differentiating the above wrt w, we get

∂E(w)

∂w
= e(w)

∂e(w)

∂w
.

• Pluggin in e(w) = d− xT w,

∂e(w)

∂w
= −x, and hence

∂E(w)

∂w
= −xe(w).

• Using this in the steepest descent rule, we get the LMS algorithm:

ŵn+1 = ŵn + ηxnen.

• Note that this weight update is done with only one (xi, di) pair!

19

Least-Mean-Square Algorithm: Evaluation

• LMS algorithm behaves like a low-pass filter.

• LMS algorithm is simple, model-independent, and thus robust.

• LMS does not follow the direction of steepest descent: Instead, it

follows it stochastically (stochastic gradient descent).

• Slow convergence is an issue.

• LMS is sensitive to the input correlation matrix’s condition number

(ratio between largest vs. smallest eigenvalue of the correl.

matrix).

• LMS can be shown to converge if the learning rate has the

following property:

0 < η <
2

λmax

where λmax is the largest eigenvalue of the correl. matrix.
20

Improving Convergence in LMS

• The main problem arises because of the fixed η.

• One solution: Use a time-varying learning rate: η(n) = c/n, as

in stochastic optimization theory.

• A better alternative: use a hybrid method called

search-then-converge.

η(n) =
η0

1 + (n/τ)

When n < τ , performance is similar to standard LMS. When

n > τ , it behaves like stochastic optimization.

21

Search-Then-Converge in LMS

η(n) =
η0

n
vs. η(n) =

η0

1 + (n/τ)

22

Part II: Perceptron

23

The Perceptron Model

• Perceptron uses a non-linear neuron model (McCulloch-Pitts

model).

v =

mX
i=1

wixi + b, y = φ(v) =

8<: 1 if v > 0

0 if v ≤ 0

• Goal: classify input vectors into two classes.

24

Boolean Logic Gates with Perceptron Units
−1 t=1.5

W1=1

W2=1

−1

W1=1

W2=1

−1t=0.5

W1=−1

t=−0.5

AND OR NOT

Russel & Norvig

• Perceptrons can represent basic boolean functions.

• Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

25

What Perceptrons Can Represent

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

Perceptrons can only represent linearly separable functions.

• Output of the perceptron:

W0 × I0 + W1 × I1 − t > 0, then output is 1

W0 × I0 + W1 × I1 − t ≤ 0, then output is 0

26

Geometric Interpretation

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Rearranging

W0 × I0 + W1 × I1 − t > 0, then output is 1,

we get (if W1 > 0)

I1 >
−W0

W1
× I0 +

t

W1
,

where points above the line, the output is 1, and 0 for those below the line.

Compare with

y =
−W0

W1
× x +

t

W1
.

27

The Role of the Bias

−1

I0

I1

w0

w1

t = 0

W1
t

Slope = −W0
W1

I0= 0

I1

• Without the bias (t = 0), learning is limited to adjustment of the

slope of the separating line passing through the origin.

• Three example lines with different weights are shown.

28

Limitation of Perceptrons

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Only functions where the 0 points and 1 points are clearly linearly

separable can be represented by perceptrons.

• The geometric interpretation is generalizable to functions of n

arguments, i.e. perceptron with n inputs plus one threshold (or

bias) unit.

29

Generalizing to n-Dimensions
z

Tn = [a b c]

x

y

(x0,y0,z0)

(x,y,z) 1

x

y

z

a
b

c

d

http://mathworld.wolfram.com/Plane.html

• ~n = (a, b, c), ~x = (x, y, z), ~x0 = (x0, y0, z0).

• Equation of a plane: ~n · (~x− ~x0) = 0

• In short, ax + by + cz + d = 0, where a, b, c can serve as

the weight, and d = −~n · ~x0 as the bias.

• For n-D input space, the decision boundary becomes a

(n− 1)-D hyperplane (1-D less than the input space).
30

Linear Separability

I0

I1

Linearly−separable Not Linearly−separable Not Linearly−separable

I0

I1

I0

I1

• For functions that take integer or real values as arguments and

output either 0 or 1.

• Left: linearly separable (i.e., can draw a straight line between the

classes).

• Right: not linearly separable (i.e., perceptrons cannot represent

such a function)

31

Linear Separability (cont’d)

I1

I0

I1

I0

I1

I0
AND OR XOR

0

0 00 0 1

1 01 1 1

1

?

• Perceptrons cannot represent XOR!

• Minsky and Papert (1969)

32

XOR in Detail
I0 I1 XOR

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

W0 × I0 + W1 × I1 − t > 0, then output is 1:

1 −t ≤ 0 → t ≥ 0

2 W1 − t > 0 → W1 > t

3 W0 − t > 0 → W0 > t

4 W0 + W1 − t ≤ 0 → W0 + W1 ≤ t

2t < W0 + W1 < t (from 2, 3, and 4), but t ≥ 0 (from 1), a

contradiction.

33

Perceptrons: A Different Perspective

w
xi

d
θ

wT x > b then, output is 1

wT x = ‖w‖‖x‖ cos θ > b then, output is 1

‖x‖ cos θ > b
‖w‖ then, output is 1

So, if d = ‖x‖ cos θ in the figure above is greater than b
‖w‖ , then output = 1.

Adjusting w changes the tilt of the decision boundary, and adjusting the bias b

(and ‖w‖) moves the decision boundary closer or away from the origin.

34

Perceptron Learning Rule

• Given a linearly separable set of inputs that can belong to class C1 or C2 ,

• The goal of perceptron learning is to have

w
T
x > 0 for all input in class C1

w
T
x ≤ 0 for all input in class C2

• If all inputs are correctly classified with the current weights w(n),

w(n)
T
x > 0, for all input in class C1 , and

w(n)
T
x ≤ 0, for all input in class C2 ,

then w(n + 1) = w(n) (no change).

• Otherwise, adjust the weights.

35

Perceptron Learning Rule (cont’d)

For misclassified inputs (η(n) is the learning rate):

• w(n + 1) = w(n)− η(n)x(n) if wT x > 0 and x ∈ C2.

• w(n + 1) = w(n) + η(n)x(n) if wT x ≤ 0 and x ∈ C1.

Or, simply x(n + 1) = w(n) + η(n)e(n)x(n), where

e(n) = d(n)− y(n) (the error).

36

Learning in Perceptron: Another Look

w

− −
− −

− −
−

−−−

−−
+

+

+

− −
− −

− −
−

−−−

−−

+ +
+ +

+

+
+

++

+x
x w−x

+ +
−

+ +

+
+

+
x+w

w

w−x

• When a positive example (C1) is misclassified,

w(n + 1) = w(n) + η(n)x(n).

• When a negative example (C2) is misclassified,

w(n + 1) = w(n)− η(n)x(n).

• Note the tilt in the weight vector, and observe how it would change

the decision boundary.

37

Perceptron Convergence Theorem

• Given a set of linearly separable inputs, Without loss of generality, assume

η = 1, w(0) = 0.

• Assume the first n examples∈ C1 are all misclassified.

• Then, using w(n + 1) = w(n) + x(n), we get

w(n + 1) = x(1) + x(2) + ... + x(n). (1)

• Since the input set is linearly separable, there is at least on solution w0

such that wT
0 x(n) > 0 for all inputs in C1 .

– Define α = minx(n)∈C1 wT
0 x(n) > 0.

– Multiply both sides in eq. 1 with w0 , we get:

w
T
0 w(n+1) = w

T
0 x(1)+w

T
0 x(2)+...+w

T
0 x(n). (2)

– From the two steps above, we get:

w
T
0 w(n + 1) > nα (3)

38

Perceptron Convergence Theorem (cont’d)

• Using Cauchy-Schwartz inequality

‖w0‖2‖w(n + 1)‖2 ≥
h
w

T
0 w(n + 1)

i2

• From the above and wT
0 w(n + 1) > nα,

‖w0‖2‖w(n + 1)‖2 ≥ n
2
α

2

So, finally, we get

‖w(n + 1)‖2 ≥
n2α2

‖w0‖2| {z }
First main result

(4)

39

Perceptron Convergence Theorem (cont’d)

• Taking the Euclidean norm of w(k + 1) = w(k) + x(k),

‖w(k + 1)‖2 = ‖w(k)‖2 + 2w
T

(k)x(k) + ‖x(k)‖2

• Since all n inputs in C1 are misclassified, wT (k)x(k) ≤ 0 for

k = 1, 2, ..., n,

‖w(k + 1)‖2 − ‖w(k)‖2 − ‖x(k)‖2 = 2w
T

(k)x(k) ≤ 0,

‖w(k + 1)‖2 ≤ ‖w(k)‖2 + ‖x(k)‖2

‖w(k + 1)‖2 − ‖w(k)‖2 ≤ ‖x(k)‖2

• Summing up the inequalities for all k = 1, 2, ..., n, and w(0) = 0,

we get

‖w(k + 1)‖2 ≤
nX

k=1

‖x(k)‖2 ≤ nβ, (5)

where β = maxx(k) ∈ C1‖x(k)‖2 .

40

Perceptron Convergence Theorem (cont’d)
• From eq. 4 and eq. 5,

n2α2

‖w0‖2
≤ ‖w(n + 1)‖2 ≤ nβ

• Here, α is a constant, depending on the fixed input set and the fixed

solution w0 (so, ‖w0‖ is also a constant), and β is also a constant since

it depends only on the fixed input set.

• In this case, if n grows to a large value, the above inequality will becomes

invalid (n is a positive integer).

• Thus, n cannot grow beyond a certain nmax , where

n2
maxα2

‖w0‖2
= nmaxβ

nmax =
β‖w0‖2

α2
,

and when n = nmax , all inputs will be correctly classified

41

Fixed-Increment Convergence Theorem

Let the subsets of training vectors C1 and C2 be linearly separable. Let

the inputs presented to perceptron originate from these two subsets.

The perceptron converges after some n0 iterations, in the sense that

w(n0) = w(n0 + 1) = w(n0 + 2) =

is a solution vector for n0 ≤ nmax.

42

43

Summary

• Adaptive filter using the LMS algorithm and perceptrons are

closely related (the learning rule is almost identical).

• LMS and perceptrons are different, however, since one uses

linear activation and the other hard limiters.

• LMS is used in continuous learning, while perceptrons are trained

for only a finite number of steps.

• Single-neuron or single-layer has severe limits: How can multiple

layers help?

44

XOR with Multilayer Perceptrons

XOR
AND

1

10

01

10

1

1

1

1

0

Note: the bias units are not shown in the network on the right, but they are needed.

• Only three perceptron units are needed to implement XOR.

• However, you need two layers to achieve this.

45

