Slide03

Haykin Chapter 3: Single-Layer

Perceptrons

CPSC 636-600 Instructor: Yoonsuck Choe Spring 2008

Historical Overview

- McCulloch and Pitts (1943): neural networks as computing machines.
- Hebb (1949): postulated the first rule for self-organizing learning.
- Rosenblatt (1958): perceptron as a first model of supervised learning.
- Widrow and Hoff (1960): adaptive filters using least-mean-square (LMS) algorithm (delta rule).

Multiple Faces of a Single Neuron

1

What a single neuron does can be viewed from different perspectives:

- Adaptive filter: as in signal processing
- Classifier: as in perceptron

The two aspects will be reviewed, in the above order.

2

Part I: Adaptive Filter

Adaptive Filtering Problem

- Consider an *unknown* dynamical system, that takes *m* inputs and generates one output.
- Behavior of the system described as its input/output pair:

$$\mathcal{T}: \{\mathbf{x}(i), d(i); i=1,2,...,n,...\}$$
 where

 $\mathbf{x}(i) = [x_1(i), x_2(i), ..., x_m(i)]^T$ is the input and d(i) the desired response (or target signal).

- Input vector can be either a spatial **snapshot** or a temporal sequence **uniformly spaced in time**.
- There are two important processes in adaptive filtering:
 - Filtering process: generation of output based on the input: $y(i) = \mathbf{x}^T(i)\mathbf{w}(i).$
 - Adapative process: automatic adjustment of weights to reduce error: e(i) = d(i) y(i).

5

Steepest Descent

• We want the iterative update algorithm to have the following property:

$$\mathcal{E}(\mathbf{w}(n+1)) < \mathcal{E}(\mathbf{w}(n)).$$

- Define the gradient vector $\nabla \mathcal{E}(\mathbf{w})$ as \mathbf{g} .
- The iterative weight update rule then becomes:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta \mathbf{g}(n)$$

where η is a small learning-rate parameter. So we can say,

$$\Delta \mathbf{w}(n) = \mathbf{w}(n+1) - \mathbf{w}(n) = -\eta \mathbf{g}(n)$$

Unconstrained Optimization Techniques

- How can we adjust $\mathbf{w}(i)$ to gradually minimize e(i)? Note that $e(i) = d(i) y(i) = d(i) \mathbf{x}^T(i)\mathbf{w}(i)$. Since d(i) and $\mathbf{x}(i)$ are fixed, only the change in $\mathbf{w}(i)$ can change e(i).
- In other words, we want to minimize the cost function *E*(w) with respect to the weight vector w: Find the optimal solution w^{*}.
- The necessary condition for optimality is

$$\nabla \mathcal{E}(\mathbf{w}^*) = \mathbf{0},$$

where the gradient operator is defined as

$$\nabla = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, \dots \frac{\partial}{\partial w_m}\right]^T$$

With this, we get

$$\nabla \mathcal{E}(\mathbf{w}^*) = \left[\frac{\partial \mathcal{E}}{\partial w_1}, \frac{\partial \mathcal{E}}{\partial w_2}, \dots \frac{\partial \mathcal{E}}{\partial w_m}\right]^T.$$

Steepest Descent (cont'd)

We now check if $\mathcal{E}(\mathbf{w}(n+1)) < \mathcal{E}(\mathbf{w}(n))$.

Using first-order Taylor expansion[†] of $\mathcal{E}(\cdot)$ near $\mathbf{w}(n)$,

$$\mathcal{E}(\mathbf{w}(n+1)) \approx \mathcal{E}(\mathbf{w}(n)) + \mathbf{g}^T(n)\Delta\mathbf{w}(n)$$

and $\Delta \mathbf{w}(n) = -\eta \mathbf{g}(n)$, we get

$$\mathcal{E}(\mathbf{w}(n+1)) \approx \mathcal{E}(\mathbf{w}(n)) - \eta \mathbf{g}^{T}(n) \mathbf{g}(n)$$

= $\mathcal{E}(\mathbf{w}(n)) - \underbrace{\eta \| \mathbf{g}(n) \|^{2}}_{\text{Positive!}}.$

So, it is indeed (for small η):

$$\mathcal{E}(\mathbf{w}(n+1)) < \mathcal{E}(\mathbf{w}(n)).$$

$$\overline{f'} \text{ Taylor series: } f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots$$

Steepest Descent: Example

- Convergence to optimal w is very slow.
- Small η : overdamped, smooth trajectory
- Large η : underdamped, jzgged trajectory
- η too large: algorithm becomes unstable

9

Newton's Method

- Newton's method is an extension of steepest descent, where the second-order term in the Taylor series expansion is used.
- It is generally faster and shows a less erratic meandering compared to the steepest descent method.
- There are certain conditions to be met though, such as the Hessian matrix $\nabla^2 \mathcal{E}(\mathbf{w})$ being positive definite (for an arbitrary $\mathbf{x}, \mathbf{x}^T \mathbf{H} \mathbf{x} > 0$).

Steepest Descent: Another Example

For $f(\mathbf{x}) = f(x, y) = x^2 + y^2$, $\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x} \end{bmatrix}^T = [2x, 2y]^T$. Note that (1) the gradient vectors are pointing upward, away from the origin, (2) length of the vectors are shorter near the origin. If you follow $-\nabla f(x, y)$, you will end up at the origin. We can see that the gradient vectors are perpendicular to the level curves. * The vector lengths were scaled down by a factor of 10 to avoid clutter.

Gauss-Newton Method

• Applicable for cost-functions expressed as sum of error squares:

$$\mathcal{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} e_i(\mathbf{w})^2$$

where $e_i(\mathbf{w})$ is the error in the *i*-th trial, with the weight \mathbf{w} .

• Recalling the Taylor series f(x) = f(a) + f'(a)(x - a)..., we can express $e_i(\mathbf{w})$ evaluated near $e_i(\mathbf{w}_k)$ as

$$e_i(\mathbf{w}) = e_i(\mathbf{w}_k) + \left[\frac{\partial e_i}{\partial \mathbf{w}}\right]_{\mathbf{w}=\mathbf{w}_k}^T (\mathbf{w} - \mathbf{w}_k)$$

In matrix notation, we get:

$$\mathbf{e}(\mathbf{w}) = \mathbf{e}(\mathbf{w}_k) + \mathbf{J}_{\mathbf{e}}(\mathbf{w}_k)(\mathbf{w} - \mathbf{w}_k).$$

* We will use a slightly different notation than the textbook, for clarity.

Gauss-Newton Method (cont'd)

• **J**_e(**w**) is the **Jacobian matrix**, where each row is the gradient of $e_i(\mathbf{w})$:

$$\mathbf{J}_{\mathbf{e}}(\mathbf{w}) = \begin{bmatrix} \frac{\frac{\partial e(1)}{\partial w_{1}} & \frac{\partial e(1)}{\partial w_{2}} & \dots & \frac{\partial e(1)}{\partial w_{n}} \\ \frac{\partial e(2)}{\partial w_{1}} & \frac{\partial e(2)}{\partial w_{2}} & \dots & \frac{\partial e(2)}{\partial w_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial e(n)}{\partial w_{1}} & \frac{\partial e(n)}{\partial w_{2}} & \dots & \frac{\partial e(n)}{\partial w_{n}} \end{bmatrix}} = \begin{bmatrix} (\nabla e_{1}(\mathbf{w}))^{T} \\ (\nabla e_{2}(\mathbf{w}))^{T} \\ \vdots \\ \vdots \\ \vdots \\ (\nabla e_{n}(\mathbf{w}))^{T} \end{bmatrix}$$

 We can then evaluate J_e(w_k) by plugging in actual values of w_k into the Jabobian matrix above.

13

Gauss-Newton Method (cont'd)

• Again, starting with

$$\mathbf{e}(\mathbf{w}) = \mathbf{e}(\mathbf{w}_k) + \mathbf{J}_{\mathbf{e}}(\mathbf{w}_k)(\mathbf{w} - \mathbf{w}_k),$$

what we want is to set \mathbf{w} so that the error appraoches 0.

• That is, we want to minimize the norm of $\mathbf{e}(\mathbf{w})$:

$$\begin{aligned} |\mathbf{e}(\mathbf{w})||^2 &= \|\mathbf{e}(\mathbf{w}_k)\|^2 + 2\mathbf{e}(\mathbf{w}_k)^T \mathbf{J}_{\mathbf{e}}(\mathbf{w}_k)(\mathbf{w} - \mathbf{w}_k) \\ &+ (\mathbf{w} - \mathbf{w}_k)^T \mathbf{J}_{\mathbf{e}}^T(\mathbf{w}_k) \mathbf{J}_{\mathbf{e}}(\mathbf{w}_k)(\mathbf{w} - \mathbf{w}_k). \end{aligned}$$

• Differentiating the above wrt ${f w}$ and setting the result to 0, we get

$$\begin{aligned} \mathbf{J}_{\mathbf{e}}^{T}(\mathbf{w}_{k})\mathbf{e}(\mathbf{w}_{k}) + \mathbf{J}_{\mathbf{e}}^{T}(\mathbf{w}_{k})\mathbf{J}_{\mathbf{e}}(\mathbf{w}_{k})(\mathbf{w} - \mathbf{w}_{k}) &= \mathbf{0}, \text{ from which we get} \\ \mathbf{w} &= \mathbf{w}_{k} - (\mathbf{J}_{\mathbf{e}}^{T}(\mathbf{w}_{k})\mathbf{J}_{\mathbf{e}}(\mathbf{w}_{k}))^{-1}\mathbf{J}_{\mathbf{e}}^{T}(\mathbf{w}_{k})\mathbf{e}(\mathbf{w}_{k}). \\ ^{*}\mathbf{J}_{\mathbf{e}}^{T}(\mathbf{w}_{k})\mathbf{J}_{\mathbf{e}}(\mathbf{w}_{k}) \text{ needs to be nonsingular (inverse is needed).} \end{aligned}$$

Quick Example: Jacobian Matrix

Given

$$\mathbf{e}(x,y) = \begin{bmatrix} e_1(x,y) \\ e_2(x,y) \end{bmatrix} = \begin{bmatrix} x^2 + y^2 \\ \cos(x) + \sin(y) \end{bmatrix},$$

• The Jacobian of $\mathbf{e}(x, y)$ becomes

$$\mathbf{J}_{\mathbf{e}}(x,y) = \begin{bmatrix} \frac{\partial e_1(x,y)}{\partial x} & \frac{\partial e_1(x,y)}{\partial y} \\ \frac{\partial e_2(x,y)}{\partial x} & \frac{\partial e_2(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & 2y \\ -\sin(x) & \cos(y) \end{bmatrix}$$

• For
$$(x,y)=(0.5\pi,\pi)$$
, we get

$$\mathbf{J}_{\mathbf{e}}(0.5\pi,\pi) = \begin{bmatrix} \pi & 2\pi \\ -\sin(0.5\pi) & \cos(\pi) \end{bmatrix} = \begin{bmatrix} \pi & 2\pi \\ -1 & -1 \end{bmatrix}.$$

14

Linear Least-Square Filter

• Given m input and 1 output function $y(i) = \phi(\mathbf{x}_i^T \mathbf{w}_i)$ where $\phi(x) = x$, i.e., it is **linear**, and a set of training samples $\{\mathbf{x}_i, d_i\}_{i=1}^n$, we can define the error vector for an arbitrary weight \mathbf{w} as

$$\mathbf{e}(\mathbf{w}) = \mathbf{d} - [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^T \mathbf{w}$$

where $\mathbf{d} = [d_1, d_2, ..., d_n]^T$. Setting $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^T$, we get: $\mathbf{e}(\mathbf{w}) = \mathbf{d} - \mathbf{X}\mathbf{w}$.

- Differentiating the above wrt \mathbf{w} , we get $\nabla \mathbf{e}(\mathbf{w}) = -\mathbf{X}^T$. So, the Jacobian becomes $\mathbf{J}_{\mathbf{e}}(\mathbf{w}) = (\nabla \mathbf{e}(\mathbf{w}))^T = -\mathbf{X}$.
- Plugging this in to the Gauss-Newton equation, we finally get:

$$\mathbf{w} = \mathbf{w}_k + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{d} - \mathbf{X} \mathbf{w}_k)$$

= $\mathbf{w}_k + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{d} - \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{w}_k}_{\text{This is } \mathbf{I} \mathbf{w}_k = \mathbf{w}_k.}$
= $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{d}.$

16

Linear Least-Square Filter (cont'd)

Points worth noting:

- X does not need to be a square matrix!
- We get $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{d}$ off the bat partly because the output is linear (otherwise, the formula would be more complex).
- The Jacobian of the error function only depends on the input, and is invariant wrt the weight w.
- The factor $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ (let's call it \mathbf{X}^+) is like an inverse. Multiply \mathbf{X} to both sides of

$$\mathbf{d} = \mathbf{X}\mathbf{w}$$

then we get:

$$\mathbf{w} = \mathbf{X}^{+}\mathbf{d} = \underbrace{\mathbf{X}^{+}\mathbf{X}}_{=\mathbf{I}}\mathbf{w}.$$

Least-Mean-Square Algorithm

Cost function is based on instantaneous values.

$$\mathcal{E}(\mathbf{w}) = rac{1}{2}e^2(\mathbf{w})$$

Differentiating the above wrt w, we get

$$\frac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}} = e(\mathbf{w}) \frac{\partial e(\mathbf{w})}{\partial \mathbf{w}}$$

• Pluggin in $e(\mathbf{w}) = d - \mathbf{x}^T \mathbf{w}$,

$$rac{\partial e(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{x}, ext{ and hence } rac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{x} e(\mathbf{w}).$$

Using this in the steepest descent rule, we get the LMS algorithm:

$$\hat{\mathbf{w}}_{n+1} = \hat{\mathbf{w}}_n + \eta \mathbf{x}_n e_n.$$

• Note that this weight update is done with **only one** (\mathbf{x}_i, d_i) pair!

Linear Least-Square Filter: Example

See src/pseudoinv.m.

```
X = ceil(rand(4,2)*10), wtrue = rand(2,1)*10, d=X*wtrue, w = inv(X'*X)*X'*d
Х =
 10
      7
   3
      7
   3 6
   5
      4
wtrue =
  0.56644
  4.99120
d =
  40.603
  36.638
  31.647
  22.797
w =
 0.56644
  4.99120
                                 18
```

Least-Mean-Square Algorithm: Evaluation

- LMS algorithm behaves like a low-pass filter.
- LMS algorithm is simple, model-independent, and thus robust.
- LMS does not follow the direction of steepest descent: Instead, it follows it stochastically (stochastic gradient descent).
- Slow convergence is an issue.
- LMS is sensitive to the input correlation matrix's condition number (ratio between largest vs. smallest eigenvalue of the correl. matrix).
- LMS can be shown to converge if the learning rate has the following property:

$$0 < \eta < \frac{2}{\lambda_{\max}}$$

where λ_{max} is the largest eigenvalue of the correl. matrix. $^{20}_{20}$

Improving Convergence in LMS

- The main problem arises because of the fixed η .
- One solution: Use a time-varying learning rate: $\eta(n) = c/n$, as in *stochastic optimization theory*.
- A better alternative: use a hybrid method called *search-then-converge*.

$$\eta(n) = \frac{\eta_0}{1 + (n/\tau)}$$

When $n < \tau$, performance is similar to standard LMS. When $n > \tau$, it behaves like stochastic optimization.

Part II: Perceptron

Search-Then-Converge in LMS

22

The Perceptron Model

Perceptron uses a non-linear neuron model (McCulloch-Pitts model).

$$v = \sum_{i=1}^{m} w_i x_i + b, \qquad y = \phi(v) = \begin{cases} 1 & \text{if } v > 0 \\ 0 & \text{if } v \le 0 \end{cases}$$

.

• Goal: classify input vectors into two classes.

Boolean Logic Gates with Perceptron Units

Russel & Norvig

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

What Perceptrons Can Represent

Perceptrons can only represent linearly separable functions.

• Output of the perceptron:

$$W_0 \times I_0 + W_1 \times I_1 - t > 0$$
, then output is 1

$$W_0 imes I_0 + W_1 imes I_1 - t \le 0$$
, then output is 0

26

25

• Rearranging

$$W_0 \times I_0 + W_1 \times I_1 - t > 0$$
, then output is 1,

we get (if $W_1 > 0$)

$$I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1},$$

where points above the line, the output is 1, and 0 for those below the line. Compare with

$$y = \frac{-W_0}{W_{\bullet}^{27}} \times x + \frac{t}{W_1}.$$

- Without the bias (t = 0), learning is limited to adjustment of the slope of the separating line passing through the origin.
- Three example lines with different weights are shown.

Limitation of Perceptrons

- Only functions where the 0 points and 1 points are clearly linearly separable can be represented by perceptrons.
- The geometric interpretation is generalizable to functions of *n* arguments, i.e. perceptron with *n* inputs plus one threshold (or bias) unit.

29

- For functions that take integer or real values as arguments and output either 0 or 1.
- Left: linearly separable (i.e., can draw a straight line between the classes).
- Right: not linearly separable (i.e., perceptrons cannot represent such a function)

- $\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x_0} = (x_0, y_0, z_0).$
- Equation of a plane: $\vec{n} \cdot (\vec{x} \vec{x_0}) = 0$
- In short, ax + by + cz + d = 0, where a, b, c can serve as the weight, and $d = -\vec{n} \cdot \vec{x_0}$ as the bias.
- For *n*-D input space, the decision boundary becomes a (n-1)-D hyperplane (1-D less than the input space).

- Perceptrons cannot represent XOR!
- Minsky and Papert (1969)

33

Perceptron Learning Rule

- Given a linearly separable set of inputs that can belong to class C_1 or C_2 ,
- The goal of perceptron learning is to have

$$\mathbf{w}^T \mathbf{x} > 0$$
 for all input in class C_1
 $\mathbf{w}^T \mathbf{x} \le 0$ for all input in class C_2

• If all inputs are correctly classified with the current weights $\mathbf{w}(n)$,

$$\mathbf{w}(n)^T \mathbf{x} > 0$$
, for all input in class \mathcal{C}_1 , and

$$\mathbf{w}(n)^T \mathbf{x} \leq 0$$
, for all input in class \mathcal{C}_2 ,

then $\mathbf{w}(n+1) = \mathbf{w}(n)$ (no change).

• Otherwise, adjust the weights.

Perceptrons: A Different Perspective

$$\mathbf{w}^T \mathbf{x} > b \text{ then, output is 1}$$
$$\mathbf{w}^T \mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta > b \text{ then, output is 1}$$
$$\|\mathbf{x}\| \cos \theta > \frac{b}{\|\mathbf{w}\|} \text{ then, output is 1}$$

So, if $d = ||\mathbf{x}|| \cos \theta$ in the figure above is greater than $\frac{b}{||\mathbf{w}||}$, then output = 1. Adjusting \mathbf{w} changes the tilt of the decision boundary, and adjusting the bias b (and $||\mathbf{w}||$) moves the decision boundary closer or away from the origin.

34

Perceptron Learning Rule (cont'd)

For misclassified inputs ($\eta(n)$ is the learning rate):

- $\mathbf{w}(n+1) = \mathbf{w}(n) \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T \mathbf{x} > 0$ and $\mathbf{x} \in \mathcal{C}_2$.
- $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T \mathbf{x} \le 0$ and $\mathbf{x} \in \mathcal{C}_1$.

Or, simply $\mathbf{x}(n+1) = \mathbf{w}(n) + \eta(n)e(n)\mathbf{x}(n)$, where e(n) = d(n) - y(n) (the error).

Learning in Perceptron: Another Look

- When a positive example (C_1) is misclassified, $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n).$
- When a negative example (C_2) is misclassified, $\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n).$
- Note the tilt in the weight vector, and observe how it would change the decision boundary.

37

Perceptron Convergence Theorem (cont'd)

• Using Cauchy-Schwartz inequality

$$\|\mathbf{w}_0\|^2 \|\mathbf{w}(n+1)\|^2 \ge \left[\mathbf{w}_0^T \mathbf{w}(n+1)\right]^2$$

• From the above and $\mathbf{w}_0^T \mathbf{w}(n+1) > n\alpha$,

$$\|\mathbf{w}_0\|^2 \|\mathbf{w}(n+1)\|^2 \ge n^2 \alpha^2$$

So, finally, we get

$$\frac{\|\mathbf{w}(n+1)\|^2 \ge \frac{n^2 \alpha^2}{\|\mathbf{w}_0\|^2}}{\text{First main result}}$$
(4)

Perceptron Convergence Theorem

- Given a set of linearly separable inputs, Without loss of generality, assume $\eta=1, \mathbf{w}(0)=\mathbf{0}.$
- Assume the first n examples $\in \mathcal{C}_1$ are all misclassified.
- Then, using $\mathbf{w}(n+1) = \mathbf{w}(n) + \mathbf{x}(n),$ we get

$$\mathbf{w}(n+1) = \mathbf{x}(1) + \mathbf{x}(2) + \dots + \mathbf{x}(n).$$
 (1)

• Since the input set is linearly separable, there is at least on solution \mathbf{w}_0 such that $\mathbf{w}_0^T \mathbf{x}(n) > 0$ for all inputs in \mathcal{C}_1 .

- Define
$$\alpha = \min_{\mathbf{x}(n) \in \mathcal{C}_1} \mathbf{w}_0^T \mathbf{x}(n) > 0.$$

– Multiply both sides in eq. 1 with \mathbf{w}_0 , we get:

$$\mathbf{w}_{0}^{T}\mathbf{w}(n+1) = \mathbf{w}_{0}^{T}\mathbf{x}(1) + \mathbf{w}_{0}^{T}\mathbf{x}(2) + \dots + \mathbf{w}_{0}^{T}\mathbf{x}(n).$$
 (2)

- From the two steps above, we get:

$$\mathbf{w}_0^T \mathbf{w}(n+1) > n\alpha \tag{3}$$

38

Perceptron Convergence Theorem (cont'd)

• Taking the Euclidean norm of $\mathbf{w}(k+1) = \mathbf{w}(k) + \mathbf{x}(k)$,

$$\|\mathbf{w}(k+1)\|^{2} = \|\mathbf{w}(k)\|^{2} + 2\mathbf{w}^{T}(k)\mathbf{x}(k) + \|\mathbf{x}(k)\|^{2}$$

• Since all n inputs in C_1 are misclassified, $\mathbf{w}^T(k)\mathbf{x}(k) \leq 0$ for k = 1, 2, ..., n,

$$\|\mathbf{w}(k+1)\|^{2} - \|\mathbf{w}(k)\|^{2} - \|\mathbf{x}(k)\|^{2} = 2\mathbf{w}^{T}(k)\mathbf{x}(k) \le 0,$$
$$\|\mathbf{w}(k+1)\|^{2} \le \|\mathbf{w}(k)\|^{2} + \|\mathbf{x}(k)\|^{2}$$
$$\|\mathbf{w}(k+1)\|^{2} - \|\mathbf{w}(k)\|^{2} \le \|\mathbf{x}(k)\|^{2}$$

- Summing up the inequalities for all k=1,2,...,n, and $\mathbf{w}(0)=\mathbf{0},$ we get

$$\|\mathbf{w}(k+1)\|^2 \le \sum_{k=1}^n \|\mathbf{x}(k)\|^2 \le n\beta,$$
 (5)

where $\beta = \max_{\mathbf{x}}(k) \in \mathcal{C}_1 \|\mathbf{x}(k)\|^2$.

Perceptron Convergence Theorem (cont'd)

• From eq. 4 and eq. 5,

$$\frac{n^2 \alpha^2}{\|\mathbf{w}_0\|^2} \le \|\mathbf{w}(n+1)\|^2 \le n\beta$$

- Here, α is a constant, depending on the fixed input set and the fixed solution w₀ (so, ||w₀|| is also a constant), and β is also a constant since it depends only on the fixed input set.
- In this case, if n grows to a large value, the above inequality will becomes invalid (n is a positive integer).
- Thus, n cannot grow beyond a certain n_{\max} , where

$$\frac{n_{\max}^2 \alpha^2}{\|\mathbf{w}_0\|^2} = n_{\max}\beta$$

$$n_{\max} = \frac{\beta \|\mathbf{w}_0\|^2}{\alpha^2},$$

and when $n = n_{\max}$, all inputs will be correctly classified

41

Fixed-Increment Convergence Theorem

Let the subsets of training vectors C_1 and C_2 be linearly separable. Let the inputs presented to perceptron originate from these two subsets. The perceptron converges after some n_0 iterations, in the sense that

$$\mathbf{w}(n_0) = \mathbf{w}(n_0 + 1) = \mathbf{w}(n_0 + 2) = \dots$$

is a solution vector for $n_0 \leq n_{\max}$.

42

Summary

- Adaptive filter using the LMS algorithm and perceptrons are closely related (the learning rule is almost identical).
- LMS and perceptrons are different, however, since one uses linear activation and the other hard limiters.
- LMS is used in continuous learning, while perceptrons are trained for only a finite number of steps.
- Single-neuron or single-layer has severe limits: How can multiple layers help?

XOR with Multilayer Perceptrons

Note: the bias units are not shown in the network on the right, but they are needed.

- Only three perceptron units are needed to implement XOR.
- However, you need two layers to achieve this.

