
Slide02

Haykin Chapter 2: Learning

Processes

CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2008

1

Introduction

• Property of primary significance in nnet: learn from its

environment, and improve its performance through learning.

• Iterative adjustment of synaptic weights.

• Learning: hard to define.

– One definition by Mendel and McClaren: Learning is a

process by which the free parameters of a neural network are

adapted through a process of stimulation by the environment

in which the network is embedded. The type of learning is

determined by the manner in which the parameter changes

take place.

2

Learning

Sequence of events in nnet learning:

• nnet is stimulated by the environment.

• nnet undergoes changes in its free parameters as a result of this

stimulation.

• nnet responds in a new way to the environment because of the

changes that have occurred in its internal structure.

A prescribed set of well-defined rules for the solution of the learning

problem is called a learning algorithm.

The manner in which a nnet relates to the environment dictates the

learning paradigm that refers to a model of environment operated on

by the nnet.

3

Overview

Organization of this chapter:

1. Five basic learning rules

error correction, Hebbian, memory-based, copetetive, and

Boltzmann

2. Learning paradigms

credit assignment problem, supervised learning, unsupervised

learning

3. Learning tasks, memory, and adaptation

4. Probabilistic and statistical aspects of learning

4

Error-Correction Learning

• Input x(n), output yk(n), and desired response or target

output dk(n).

• Error signal ek(n) = dk(n)− yk(n)

• ek(n) actuates a control mechanism that gradually adjust the

synaptic weights, to miminize the cost function (or index of

performance):

E(n) =
1

2
e2
k(n)

• When synaptic weights reach a steady state, learning is stopped.
5

Error-Correction Learning: Delta Rule

• Widrow-Hoff rule, with learning rate η:

∆wkj(n) = ηek(n)xj(n)

• With that, we can update the weights:

wkj(n + 1) = wkj(n) + ∆wkj(n)

• There is a sound theoretical reason for doing this, which we will

discuss later.

6

Memory-Based Learning

• All (or most) past experiences are explicitly stored, as input-target

pairs{xi, di)}N
i=1.

• Two classes C1, C2.

• Given a new input xtest, determine class based on local

neighborhood of xtest.

– Criterion used for determining the neighborhood

– Learning rule applied to the neighborhood of the input, within

the set of training examples.

7

Memory-Based Learning: Nearest Neighbor

• A set of instances observed so far:

X = {x1,x2, ...,xN}

• Nearest neighbor x′N ∈ X of xtest:

min
i

d(xi,xtest) = d(xi,xtest)

where d(·, ·) is the Euclidean distance.

• xtest is classified as the same class as x′N .

• Cover and Hart (1967): The bound on error is at max twice that of

the optimal (Bayes probability of error), given

– The classified examples are independently and identically

distributed.

– The sample size N is infinitely large.
8

Memory-Based Learning: k−Nearest Neighbor
0

1

1

1

1
1

1

1

0

0

0

0

0

00
0

0

0
0

01
1

1

x

1
1

1
0

• Identify k classlfied patterns that lie nearest to the test vector

xtest, for some integer k.

• Assign xtest to the class that is most frequently represented by

the k neighbors (use majority vote).

• In effect, it is like averaging. It can deal with outliers. The input x

above will be classified as 1.

9

Hebbian Learning

• Donald Hebb’s postulate of learning appeared in his book The

Organization of Behavior (1949).

When an axon of cell A is near enough to excite a cell B

and repeatedly or persistently takes part in firing it, some

growth process or metabolic changes take place in one or

both cells such that A’s efficiency as one of the cells firing

B, is increased.

• Hebbian synapse

– If two neurons on either side of a synapse are activated

simultaneously, the synapse is strengthened.

– If they are activated asynchronously, the synapse is

weakened or eliminated. (This part was not mentioned in

Hebb.)

10

Hebbian Synapses

• Time-dependent mechanism

• Local mechanism

• Interactive mechanism

• Correlative/conjunctive mechanism

Strong evidence for Hebbian plasticity in the Hippocampus (brain

region).

11

Classification of Synaptic Plasticity

Hebbian: time-dependent, highly local, heavily interactive.

Type Positively correlated Negatively correlated

Hebbian Strengthen Weaken

Anti-Hebbian Weaken Strengthen

Non-Hebbian × ×

12

Mathematical Models of Synaptic Plasticity

• General form: ∆wkj(n) = F (yk(n), xj(n))

• Hebbian learning (with learning rate η): ∆wkj(n) = ηyk(n)xj(n)

• Covariance rule:∆wkj = η(xj − x̄)(yk − ȳ)

13

Covariance Rule (Sejnowski 1977)

∆wkj = η(xj − x̄)(yk − ȳ)

• Convergence to a nontrivial state

• Prediction of both potentiation and depression.

• Observations:

– Weight enhanced when both pre- and post-synaptic activities

are above average.

– Weight depressed when

∗ Presynaptic activity more than average, and postsynaptic

activity less than average.

∗ Presynaptic activity less than average, and postsynaptic

activity more than average.

14

Competetive Learning

• Output neurons compete with each other for a chance to become

active.

• Highly suited to discover statistically salient features (that may aid

in classification).

• Three basic elements:

– Same type of neurons with different weight sets, so that they

respond differently to a given set of inputs.

– A limit imposed on the strength of each neuron.

– Competition mechanism, to choose one winner:

winner-takes-all neuron.

15

Inputs and Weights Seen as Vectors in

High-dimensional Space

x1

x2

x3

xn

yk

wk2
wk3

wk1

wkn

x1 x2 x3 xn...()

wk1 wk3wk2 wkn...()

...

x

coordinate system

w

• Inputs and weights can be seen as vectors: x and wk . Note that

the weight vector belongs to a certain output neuron k, and thus

the index.

16

Competetive Learning: Example

• Single layer, feedforward excitatory, and lateral in-

hibitory connections

• Winner selection

yk =

(
1 if vk > vj for all j, j 6= k

0 otherwise

• Limit:
P

j wkj = 1 for all k.

• Adaptation:

∆wkj =

(
η(xj − wkj) if k is the winner

0 otherwise

* The synaptic weight vector wk =

(wk1, wk2, ..., wkn) is moved toward

the input vector.

17

Competetive Learning

x

w(n)

x−w(n)

w(n+1) η (x−w(n))

• Adaptation:

∆wkj =

8<: η(xj − wkj) if k is the winner

0 otherwise

Interpreting this as a vector, we get the above plot.

• Weight vectors converge toward local input clusters: clustering.

18

Boltzmann Learning

• Stochastic learning algorithm rooted in statistical mechanics.

• Recurrent network, binary neurons (on: ‘+1’, off: ‘-1’).

• Energy function E:

E = −
1

2

X
j

X
k,k 6=j

wkjxkxj

• Activation:

– Choose a random neuron k.

– Flip state with a probability (given temperature T)

P (xk → −xk) =
1

1 + exp(−∆Ek/T)

where ∆Ek is the change in E due to the flip.

19

Boltzmann Machine

• Two types of neurons

– Visible neurons: can be affected by the environment

– Hidden neurons: isolated

• Two modes of operation

– Clamped: visible neuron states are fixed by environmental input and

held constant.

– Free-running: all neurons are allowed to update their activity freely.

20

Boltzmann Machine: Learning and Operation

• Learning:

– Correlation of activity during clamped condition ρ+
kj

– Correlation of activity during free-running condition ρ−kj

– Weight update: ∆wkj = η(ρ+
kj − ρ−kj), j 6= k.

• Train weights wkj with various clamping input patterns.

• After training is completed, present new clamping input pattern

that is a partial input of one of the known vectors.

• Let it run clamped on the new input (subset of visible neurons),

and eventually it will complete the pattern (pattern completion).

Correl(x, y) =
Cov(x, y)

σxσy

21

Learning Paradigms

How neural networks relate to their environment

• credit assignment problem

• learning with a teacher

• learning without a teacher

22

Credit-Assignment Problem

• How to assign credit or blame for overall outcome to individual

decisions made by the learning machine.

• In many cases, the outcomes depend on a sequence of actions.

– Assignment of credit for outcomes of actions (temporal

credit-assignment problem): When does a particular action

deserve credit.

– Assignment of credit for actions to internal decisions

(structural credit-assignment problem): assign credit to

internal structures of actions generated by the system.

Credit-assignment problem routinely arises in neural network learning.

Which neuron, which connection to credit or blame?

23

Learning with a Teacher

• Also known as supervised learning

• Teacher has knowledge, represented as input–output examples. The

environment is unknown to the nnet.

• Nnet tries to emulate the teacher gradually.

• Error-correction learning is one way to achieve this.

• Error surface, gradient, steepest descent, etc.
24

Learning without a Teacher

Two classes

• Reinforcement learning (RL)/Neurodynamic programming

• Unsupervised learning/Self-organization

25

Learning without a Teacher: Reinforcement Learning

• Learning input-output mapping through continued

interaction with the environment.

• Actor-critic: cricit converts primary reinforce-

ment signal into higher-quality, heuristic rein-

forcement signal (Barto, Sutton, ...).

• Goal is to optimize the cumulative cost of actions.

• In many cases, learning is under delayed rein-

forcement. Delayed RL is difficult since (1) teacher

does not provide desired action at each step, and

(2) must solve temporal credit-assignment problem.

• Relation to dynamic programming, in the context

of optimal control theory (Bellman).

26

Learning without a Teacher: Unsupervised Learning

• Learn based on task-independent measure of the quality of

representation.

• Internal representations for encoding features of the input space.

• Competetive learning rule needed, such as winner-takes-all.

27

Learning Tasks, Memory, and Adaptation

Learning tasks

• Pattern association

• Pattern recognition

• Function approximation

• Control

• Filtering/Beamforming

Memory and adaptation

28

Pattern Association

• Associtive memory: brainlike distributed memory that learns

association. Storage and retrieval (recall).

• Pattern association (xk : key pattern, yk : memorized pattern):

xk → yk, k = 1, 2, ..., q

– autoassociation (xk = yk): given partial or corrupted

version of stored pattern and retrieve the original.

– heteroassociation (xk 6= yk): Learn arbitrary pattern pairs

and retrieve them.

• Relevant issues: storage capacity vs. accuracy.

29

Pattern Classification
• Mapping between input pattern and a pre-

scrived number of classes (categories).

• Two general types:

– Feature extraction (observation space to

feature space: cf. dimensionality reduc-

tion), then classification (feature space to

decision space).

– Single step (observation space to deci-

sion space).

30

Function Approximation

• Nonlinear input-output mapping: d = f(x) for an unknown f .

• Given a set of labeled examples T = {(xi,di)}N
i=1, estimate

F(·) such that

‖F(x)− f(x)‖ < ε, for all x

31

Function Apprix: System Identification and Inverse

System Modeling

• System identification: learn function of an unknown system.

d = f(x)

• Inverse system modeling: learn inverse function:

x = f−1(d)

32

Control

• Control of a plant, a process or critical part of a system that is to

be maintained in a controlled condition.

• Feedback controller: adjust plant input u so that the output of the

plant y tracks the reference signal d. Learning is in the form of

free-parameter adjustment in the controller.

33

Filtering, Smoothing, and Prediction

Extract information about a quantity of interest from a set of noisy data.

• Filtering: estimate quantity at time n, based on measurements up

to time n.

• Smoothing: estimate quantity at time n, based on measurements

up to time n + α (α > 0).

• Prediction: estimate quantity at time n + α, based on

measurements up to time n (α > 0).

34

Blind Source Separation and Nonlinear Prediction

• Blind source separation: recover u(n) from distorted signal

x(n) when mixing matrix A is unknown.

x(n) = Au(n)

• Nonlinear prediction: given x(n− T), x(n− 2T), ...,

estimate x(n) (x̂(n) is the estimated value).

35

Linear Algebra Tip: Partitioned (or Block) Matrices

• When multiplying matrices or matrix and a vector, partitioning them and

multiplying the corresponding partitions can be very convenient.

• Consider the 4 × 5 matrix above (let’s call it X). If you have another

5 × 4 matrix partitioned similarly into

"
E, F

G, H

#
(let’s call it Y), then

you can calculate the product as another block matrix:

XY =

"
A, B

C, D

"
E, F

G, H

#
=

"
AE + BG, AF + BH

CE + CG, CF + CH

#

Example from http:

//algebra.math.ust.hk/matrix_linear_trans/08_partition/lecture.shtml.

36

Memory

• Memory: relatively enduring neural alterations induced by an

organism’s interaction with the environment.

• Memory needs to be accessible by the nervous system to

influence behavior.

• Activity patterns need to be stored through a learning process.

• Types of memory: short-term and long-term memory.

37

Associative Memory
xk1 yk1

xk2 yk2

xkm ykm

x kj yki

wij(k)

. . .
. . .

. . .
. . .

q pattern pairs: (xk,yk), for k = 1, 2, ..., q.

• Input (key vector) xk = [xk1, xk2, ..., xkm]T .

• Output (memorized vector) yk = [yk1, yk2, ..., ykm]T .

• Weights can be represented as a weight matrix:

yk = W(k)xk, for k = 1, 2, ..., q

yki =

mX
j=1

wij(k)xkj , for m = 1, 2, ..., m

38

Associative Memory (cont’d)

• Weight matrix:

yk = W(k)xk, for k = 1, 2, ..., q

yki =
mX

j=1

wij(k)xkj , for i = 1, 2, ..., m

yki = [wi1(k), wi2(k), ..., wim(k)]

266664
xk1

xk2

:

xkm

377775 , i = 1, 2, ..., m

266664
yk1

yk2

:

ykm

377775 =

266664
w11(k), w12(k), ..., w1m(k)

w21(k), w22(k), ..., w2m(k)

...

wm1(k), wm2(k), ..., wmm(k)

377775
266664

xk1

xk2

:

xkm

377775
39

Associative Memory (cont’d)

• With a single W(k), we can only represent one mapping (xk to

yk). For all pairs (xk,yk) (k = 1, 2, ..., q), we need q such

weight matrices.

yk = W(k)xk, for k = 1, 2, ..., q

• One strategy is to combine all W(k) into a single memory

matrix M by simple summation:

M =

qX
k=1

W(k)

• Will such a simple strategy work? That is, can the following be

possible with M?

yk ≈ Mxk, for k = 1, 2, ..., q

40

Associative Memory: Example – Storing Multiple

Mappings

With fixed set of key vectors xk , an m × m matrix can store m arbitrary

output vectors yk .

• Let xk = [0, 0, ...1, ...0]T where only the k-th element is 1 and all

the rest is 0.

• Construct a memory matrix M with each column representing the

arbitrary output vectors yk :

M =

2664 y1, y2, ..., ym

3775
• Then, yk = Mxk, for all k = 1, 2, ..., m.

• But, we want xk to be arbitrary too!

41

Correlation Matrix Memory

• With q pairs (xk, yk), we can construct a candidate memory matrix that

stores all q mappings as:

M̂ =

qX
k=1

ykx
T
k = y1x

T
1 + y2x

T
2 + ... + yqx

T
q ,

where ykxT
k represents the outer product of vectors that results in a

matrix, i.e.,

(ykx
T
k)ij = ykixkj .

• A more convenient notation is:

M̂ =
h

y1, y2, ..., yq

i
266664

x1

x2

...

xq

377775 = YX
T

.

This can be verified easily using partitioned matrices.
42

Correlation Matrix Memory: Recall

• Will M̂xk give yk?

• For convenience, let’s say

M̂ =

qX
k=1

ykxT
k =

qX
k=1

W(k).

• First, consider W(k) = ykxT
k only.

Check if W(k)xk = yk :

W(k)xk = ykxT
k xk = yk(xT

k xk) = cyk

where c = xT
k xk , a scalar value (the length of vector xk

squared). If all xks were normalized to have length 1,

W(k)xk = yk will hold!

43

Correlation Matrix Memory: Recall (cont’d)

• Now, back to M̂: under what condition will M̂xj give yj for all j? Let’s

begin by assuming xT
k x=

k 1 (key vectors are normalized).

• We can decompose M̂xj as follows:

M̂xj =

qX
k=1

ykx
T
k xj = yjx

T
j xj +

qX
k=1,k 6=j

ykx
T
k xj .

• We know yjx
T
j xj = yj , so it now becomes:

M̂xj = yj +
qX

k=1,k 6=j

ykx
T
k xj

| {z }
Noise term

.

• If all keys are orthogonal (perpendicular to each other), then for an arbitrary

k 6= j, xT
k xj = ‖xk‖‖xj‖ cos(θkj) = 1 × 1 × 0 = 0 , so

the noise term becomes 0, and hence M̂xj = yj + 0 = yj . The

example in page 41 is one such (extreme) case!
44

Correlation Matrix Memory: Recall (cont’d)

• We can also ask how many items can be stored in M̂, i.e., its

capacity.

• The capacity is closely related with the rank of the matrix M̂.

The rank means the number of linearly independent column

vectors (or row vectors) in the matrix.

• Linear independence means a linear combination of the vectors

can be zero only when the coefficients are all zero:

c1x1 + c2x2 + ... + cnxn = 0

only when ci = 0 for all i = 1, 2, ..., n.

• The above and the examples in the previous pages are best

understood by running simple calculations in Octave or Matlab.

See the src/ directory for example scripts.

45

Adaptation

• When the environment is stationary (the statistic characteristics

do not change over time), supervised learning can be used to

obtain a relatively stable set of parameters.

• If the environment is nonstationary, the parameters need to be

adapted over time, on an on-going basis (continuous learning or

learning-on-the-fly).

• If the signal is locally stationary (pseudostationary), then the

parameters can repeatedly be retrained based on a small window

of samples, assuming these are stationary: continual training

with time-ordered samples.

46

Statistical Nature of Learning

• Deviation between the target function f(x) and the neural

network relization of the function F (x,w) can be expressed in

statistical terms (note F (·, ·) is parameterized by the weight w).

• Random input vectors X ∈ {xi}N
i=1 and random output scalar

values D ∈ {di}N
i=1

• Suppose we have a training set T = {(xi, di)}N
i=1. The

problem is that the target values D in the training set may only be

approximate (D ≈ f(X), i.e., D 6= f(X)).

• So, we end up with a regressive model:

D = f(X) + ε,

where f(·) is deterministic and ε is a random expectational error

representing our ignorance.

47

Statistical Nature of Learning (cont’d)

• The error term ε is typically assumed to have a zero mean:

E[ε|x] = 0. (E[·] is the expected value of a random variable.)

• In this light, f(x) can be expressed in statistical terms:

f(x) = E[D|x], since from

D = f(X) + ε, we can get

E[D|x] = E[f(x) + ε] = f(x) + E[ε|x] = f(x).

• A property that can be derived from the above is that the

expectational error term is independent of the regressive function:

E[εf(X)] = 0. This will become useful in the following.

48

Statistical Nature of Learning (cont’d)

• Neural network realization of the regressive model:

Y = F (X,w).

We want to map the knowledge in the training data T into the

weights w.

• We can now define the cost function:

E(w) =
1

2

NX
i=1

(di − F (xi,w))2

which can be written equivalently as an average over the training

set ET [·]:

E(w) =
1

2
ET

ˆ
(di − F (x, T))2

˜
49

Statistical Nature of Learning (cont’d)

d−F (x, T) = d−f(x)+f(x)−F (x, T) = ε+(f(x)−F (x, T)).

With that,

E(w) =
1

2
ET

h
(di − F (x, T))

2
i

becomes

=
1

2
ET

h
(ε + (f(x) − F (x, T))

2
i

=
1

2
ET

h
ε
2

+ 2ε(f(x) − F (x, T)) + (f(x) − F (x, T))
2

i
=

1

2
ET [ε

2
]| {z }

Intrinsic error

+ ET [ε(f(x) − F (x, T))]| {z }
This reduces to 0

+
1

2
ET [(f(x) − F (x, T))

2
]| {z }

We’re interested in this!

50

Statistical Nature of Learning: Bias/Variance Dillema

The cost function we derived

ET [(f(x) − F (x, T))
2
]

can be rewritten, knowing f(x) = E[D|x]:

ET [(E[D|x] − F (x, T))2]

= ET [(E[D|x] − ET [F (x, T)] + ET [F (x, T)] − F (x, T))2]

= (ET [F (x, T)] − E[D|x])
2| {z }

Bias

+ ET [(F (x, T) − ET [F (x, T)])
2
].| {z }

V ariance

The last step above is obtained using ET [E[D|x]2] = E[D|x]2,

ET [ET [F (x, T)]2], = ET [F (x, T)]2, and

ET [E[D|x]F (x, T)] == E[D|x]ET [F (x, T)].

* Note: E[c] = c and E[cX] = cE[X] for constant c and random variable X .

51

Bias/Variance Dillema (cont’d)

• The bias indicates how much F (x, T) differs from the true

function f(x): approximation error

• The variance indicates the variance in F (x, T) over the entire

training set T : estimation error

• Typically, achieving smaller bias leads to higher variance, and

smaller variance leads to higher bias.

52

Statistical Learning Theory

• Statistical learning theory addresses the fundamental issue of

how to control the generalization ability of a neural network in

mathematical terms.

• Certain quantities such as sample size and the

Vapnik-Chevonenkis dimension (VC dimension) is closely

related to the bounds on generalization error.

• The probably approximately correct (PAC) learning model is

another framework to study such bounds. In this case, the the

confidence δ (probably) and tolerable error level ε (approximately

correct) are important quantities. Given these, and other

measures such as the VC dimension, we can calculate the

sample complexity (how many samples are needed to achieve

that level of correctness ε with that much confidence δ).

53

Appendix on VC Dimension

• The concept of Shattering

• VC dimension

54

Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into

two disjoint subsets.

Definition: a set of instances S is shattered by a function

class F if and only if for every dichotomy of S there exists

some function in F consistent with this dichotomy.

55

Three Instances Shattered
Instance space X

Each closed contour indicates one dichotomy. What kind of classifier

function can shatter the instances?

56

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension,

V C(F), of function class F defined over sample space X

is the size of the largest finite subset of X shattered by F . If

arbitrarily large finite sets of X can be shattered by F , then

V C(F) ≡ ∞.

Note that |F| can be infinite, while V C(H) finite!

57

VC Dim. of Linear Decision Surfaces

()()a b

• When F is a set of lines, and S a set of points, V C(F) = 3.

• (a) can be shattered, but (b) cannot be. However, if at least one

subset of size 3 can be shattered, that’s fine.

• Set of size 4 cannot be shattered, for any combination of points

(think about an XOR-like situation).

58

Uses of VC Dimension

• Training error decreases monotinically as the VC dimension is

increased.

• Confidence interval increases monotinically as the VC dimension

is increased.

• Sample complexity (in PAC framework) increases as VC

dimension increases.

59

