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Motivation and Overview

Important aspects of vision may be hidden in its coupling

with motor function.

1. Grounding of internal representations in the visual

system.

2. Development/co-development of visual receptive

fields with their grounding.

3. Visual recognition facilitated by motor exploration.
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Part I: Grounding

Choe et al. (2007)
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What Is Grounding?
... How can the meanings of the meaningless symbol tokens,

manipulated solely on the basis of their (arbitrary) shapes, be

grounded in anything but other meaningless symbols? ...

– Harnad (1990)

• Given a representation, figure out what it represents/means.

• Given an activity pattern in the brain, figure out what information it

carries.

Miikkulainen et al. (2005); Weliky et al. (1995)
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What Do Those Green Lights

Represent?

• It is hard to get any idea at all.

• Actually, this is how it might be like looking at the

brain’s activity from the inside of the brain.
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They Are Visual Cortical Responses

to Oriented Lines
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A Clearer Picture Emerges, or Does

It?

• By having access to the external input, we get a

much better understanding of the nature of those

green lights.

• However, this poses a dillema: How can the rest of

the brain understand the green lights without

access to those inputs?.

8 http://faculty.cs.tamu.edu/choe



Grounding in the Brain

I f
S

fI
S

(a) External observer (b) Internal observer

The problem of grounding, within the brain:

• External observer (e.g., a neuroscientist) can

figure out how spike S relates to input I .

• Internal observer cannot seem to, which does not

make sense at all.
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Example: The Visual Cortex

f: I    S

I
S

f

V1 Response to Input Gabor-like RFs

• With access to both I and S, Hubel and Wiesel

(1959) figured out f : I → S in V1 (oriented

Gabor-like receptive fields Jones and Palmer 1987).

• But even before that, and with access to only S,

humans had no problem perceiving orientation.
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Possible Solution: Allow Action

fI
S

• A major problem in the picture is the passiveness of

the whole situation.

• Adding action can help solve the problem.

• But why and how?
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Experimental Evidence

Held and Hein (1963)

• Active animal developed normal vision.

• Passive animal did not.

• Suggests the importance of action in vision.
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Experimental Evidence

Bach y Rita (1972; 1983)

• Vibrotactile array linked to a

video camera.

• Passive viewing results in

tactile sensation.

• Moving the camera results

in a vision-like sensation.

• Sensation as related to

voluntary/intentional

action may be the key!
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Theoretical Insights

• Philipona et al. (2003) showed that properties of

ambient space (such as the dimensionality) can be

inferred based on internal sensory input alone.

• The key concept is about the compensability

between ego-motion and the change in the

environmental input conveyed to exteroceptors.
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Approach: Grounding Through

Action

π

Filter
Bank

Sensor
Array

sfI a

Action
Vector

Visual FieldVisual Environment

Action

Perception

• Direct access to encoded internal state (sensory

array) only.

• Action is enabled, which can move the gaze.

• How does this solve the grounding problem?15 http://faculty.cs.tamu.edu/choe



Action for Unchanging Internal State

• Diagonal motion causes the internal state to remain

unchanging over time.

• Property of such a movement exactly reflects the

property of the input I : Semantics figured out

through action.
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Task

• Given an encoded sensory signal s, we want to

learn action a that maximizes the invariance in the

internal state over time.

• The learned action a will give meaning to s.

• This is basically a reinforcement learning task.
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Methods: Orientation Response
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rθ.
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Methods: Reinforcement Learning

• Policy π: Given reward probability

R(s, a) = P (a|s) and state s, stochastically

generate action a with probability P (a|s).

• Reward: measure similarity between previous and

current response vector r

ρt+1 = rt · rt+1

• Learning R(s, a):

Rt+1(st, at) = Rt(st, at) + α ρt+1,

and then normalize over all actions for a given state.
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Reward Probability Table

R(s ,a )
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• Reward probability R(s, a) can be tabulated.

• In an ideal case (world consists of straight lines only), we expect

to see two diagonal matrices (shaded gray, above).
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Results: Learned R(s, a)

(a) Initial (b) Ideal (c) Final

Synthetic image

(a) Initial (b) Ideal (c) Plant (d) Oleander

Natural images

• Learned R(s, a) close to ideal.
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Results: Gaze Trajectory

(a) Input (b) Initial (c) Final
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Results: Demo
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Part I: Summary

π
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Action

Perception

• Using invariance as the only criterion, particular

action pattern that has the same property as the

input that triggered the sensors was learned.
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Part II: Receptive Field Learning

Yang and Choe (2007)
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Theories of RF Formation

Hoyer and Hyvärinen (2000)

Well-developed understanding on how RFs form:

• Olshausen and Field (1997): Sparse coding; Barlow (1994):

Redundancy reduction; Bell and Sejnowski (1997): Information

maximization; Miikkulainen et al. (2005): Self-organization

through Hebbian learning.

However, how is the resulting code to be used remains a question.
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Questions

• The motor-based grounding experiment assumed

that receptive fields are given and fixed.

• Can these be learned (developed) along with the

grounding process?
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Learning RFs along with Their

Grounding (Decoding)

• Grounding (decoding): Same as Part I.

• RFs develop through normalized Hebbian learning:

gij =
gij + α(Iij − gij)∑

mn gmn + α(Imn − gmn)
,

where gij is the afferent connection weight and Iij

the input pixel value.
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Experiments

• Effects of different action policy on RF learning.

– Random R(s, a)

– Ideal R(s, a)

• Simultaneous learning of RF and action policy.

– RF learning through normalized Hebbian learning

– Reinforcement learning of R(s, a) based on

internal-state invariance
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Effects of R(s, a) on RF Learning

Fixed Random R Fixed Ideal R

RF w/ Random Policy RF w/ Ideal Policy

Reference RFs Reference RFs
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Simul. Learning of RFs & R(s, a)

Learned RFs

Learned R(s, a)

• Seemingly unordered RFs and R(s, a) results.
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Reordering RFs
RFs

R(s,a)

RFs

R(s,a)Reorder

• The R(s, a) result looks bad because each row’s

corresponding RF orientation is not ordered.

• Reordering RF orientation reorders the rows in

R(s, a).
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Reordered RFs and R(s, a)

Reference RFs

Reordered final RFs

Reordered final R(s, a)

• However, reordering the RFs and their

corresponding R(s, a) rows shows the true

underlying structure! (Not perfect, but a good start!)
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Part II: Summary

• Action policy strongly influences RF properties, by

altering the input statistics.

• Certain action policies may give better RFs, faster.

• Receptive fields and action policy can learn

simultaneously, from scratch, thus allowing

encoding/decoding to evolve together.
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Part III: Shape Recognition

Misra and Choe (2007)
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Learning About Shapes
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• For complex objects, a history of sensory activity may be needed

(i.e., some form of memory).

• Invariance can be detected in the spatiotemporal pattern of

sensor activity.
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Motor System and Object

Recognition

Yarbus (1967)

• When we look at objects, our gaze wanders around.

• Could such an interaction be necessary for object

recognition?
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Advantage of Motor-Based Memory

(Habit, or Skill)
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• Sensor-based representations may be hard to learn

and inefficient.

• Motor-based approaches may generalize better.

• Comparison: Make both into a 900-D vector and

compare backpropagation learning performance.
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Class Separability
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• Comparison of PCA projection of 1,000 data points

in the visual and motor memory representations.

• Motor memory is clearly separable.
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Speed and Accuracy of Learning
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• Motor-based memory resulted in faster and more

accurate learning (10 trials).
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Part III: Summary

Motor-based representations of shape are

• More separable in the representational space,

• Faster to learn,

• Better at novel tasks (generalization), compared to

sensory representations.
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Related Works (Selected)

• Pierce and Kuipers (1997): Learning from raw sensor/actuators

(See related work on bootstrap learning).

• Miikkulainen et al. (2005): Visual cortical development and

function

• Ballard (1991): Animate vision

• Rizzolatti et al. (2001): Mirror neurons

• Salinas (2006): Sensory RF coding dictated by downstream

requirements.

• Sejnowski (2006): Importance of “projective fields”.
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Discussion

• Why is knowing ones own action any easier than

perceptual interpretation?: Knowledge of own

action may be more immediate than perception (cf.

Moore 1996, citing Bergson).

• What gives rise to voluntary, intentional action

and why is it special? (Freeman 1999; Kozma and

Freeman 2003; Taylor 1999).

• A different view of invariance: Not (only) something

to be detected in the environment (cf. Gibson 1950),

but something that we actively seek within.
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Discussion (Cont’d)

• Why not just analyze the input directly?: The raw

input is only available at the immediate sensory

surface.

• What about other sensory modalities (such as

touch, olfaction, or audition)?

• The learning scheme depends on structure in the

environment: If the environment didn’t have

structure, the agent can never learn.
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Discussion (Cont’d)

• Relation to mirror neurons (Rizzolatti et al. 2001)?

• Role of attention (e.g. Rensink et al. 1997; Taylor

1999)?: Attention may be needed when ambiguities

are present.

• Do motor primitives restrict the kind of sensory

property that can be learned? What kinds of motor

primitive do we have?

45 http://faculty.cs.tamu.edu/choe



Discussion (Cont’d)

• What about meaning other than sensorimotor-like,

such as reinforcement signals (Rolls 2001) or

“feeling” (Harnad 2001)?

• Grounding on perception alone may not be

sufficient: cf. Perceptual symbol system (Barsalou

et al. 2003).

• What to make of the segregation in the

dorsal–ventral pathway?

(Goodale and Milner 1992).
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Predictions

• Perceived orientation of a line can be altered by eye

movement in the direction of incompatible

orientation.

• Motor structures (cerebellum, basal ganglia) may be

intimately involved in semantics.

• Geometrical understanding may be limited by the

motor primitive repertoire.
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Conclusions

We must ask how the brain understands itself.

• Action is important for understanding/grounding.

• Simple criterion (state invariance) can help link

sensory coding with meaningful action.

• RFs can be developed along with grounding.

• Motor-based representations are more effective for

shape recognition.
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Credits

• Contributors: Kuncara A. Suksadadi, S. Kumar

Bhamidipati, Noah Smith, Stu Heinrich, Navendu

Misra, Huei-Fang Yang, Daniel C.-Y. Eng
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Other Projects at Texas A&M

• Knife-Edge Scanning Microscope (KESM) Project

• Flash-lag effect, delay compensation, and facilitating synapses

• Evolutionary precursor of agency: internal state predictability

• And more ...
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Knife-Edge Scanning Microscope Project

• Cut and image whole mouse brain at sub-micrometer resolution.

• Fully automated: one mouse brain imaged in less than 2 weeks.

• Resulting data: 2 to 20 TB per mouse brain.

• Analysis of the data is a major issue.
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FLE, Delay Compensation, & Facilitating Synapses

Lim and Choe (2008, 2005, 2006)

• Delay in the nervous system on the order of 100 ms.

• Flash-lag effects suggest a compensatory mechanism.

• Facilitating synapses may be the neural substrate.
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Evolutionary Precursor of Agency
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Kwon and Choe (2008)

• Agency > authorship > 100% predictability of own action.

• For this, internal state trajectory must be predictable.

• Same task performance but more predictable internal state

trajectory have an advantage when the task becomes more

difficult.
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