
625-600: Programming Assignment 1

Read every page very carefully before you begin.

1. Implement deriv to support:

addition, subtraction, unary minus, multiplication, and division.

→ HINT: use slide02 page 44 as a skeleton.

2. Implement simplification routines splus etc. for all operators and

integrate it into derivplus, etc.

→ HINT: Integrate code in slide02 page 45 into code in page 44. (Code

available on course web page, under the src/ directory.)

3. Write a simple function deriv-eval to assign a numerical value to the

variable and get a single number corresponding to the resulting derivative:

(deriv-eval ’(+ (* x x) (- 2 x)) ’x 20)

* You can either use recursion or some other neat lisp tricks to achieve this.

1

Programming Assignment 1: other conditions

1. Use only one variable (say X). Other symbols should be treated

as constants (e.g. Y, Z, ...).

2. All operators should be binary operators:

i.e. expressions like (+ 1 2 3 4 5) do not need to be

supported. Only those in the form of (+ 1 2) are expected to

be used.

3. The only exception is the unary minus operator (- 10), which

only has one argument.

4. You must check for division by zero and print an error message in

case such an event occurs.

2

Programming Assignment 1: Example Inputs and

Outputs

1. (deriv ’(* (+ x 4) (+ x 5)) ’x)

-> (+ (+ X 4) (+ X 5)))

2. (deriv ’(/ (+ x 1) x) ’x)

-> (/ (- X (+ X 1)) (* X X))

3. (deriv-eval ’(* (+ x 4) (+ x 5)) ’x 10)

-> 29

4. (deriv-eval ’(/ (+ x 1) x) ’x 5)

-> -1/25

3

Programming Assignment 1: Required Material

Use the exact filename as shown below (in bold).

• Program code (deriv.lsp): put it in a single text file.

– Ample indentation and documentation is required.

• Documentation (README): user manual (how to load and

execute).

• Sample inputs and outputs (include in README)

– 5 non-trivial examples, each containing a combination of more

than 5 arithmetic operators. Provide examples for both deriv

and deriv-eval.

• Grading criteria:

– README, test cases, comments, readability: 10%

– deriv : 50%

– simplification: 40% 4



Programming Assignment 1: Important Grading

Information

• Since the deriv functions call the simplification functions, if the

simplification routine is broken, regardless of the deriv functions

being correct, your call will result in an error. If this happens, both

deriv and simplification will be graded as malfunctioning.

• If you got deriv functions to work, but if simplification is not

working, take out the simplification code from your deriv functions

so that at least your deriv functions work.

5

Programming Assignment 1: Submission

• Use the csnet turnin form (http://csnet.cs.tamu.edu).

• Due : see course web page for the due date.

• Late policy: No late submission is allowed. Submit whatever you

have by then.

• Only include plain text ASCII files. Do not include MS-Word

documents or other formatted text. Your assignment will not

be graded in such a case.

6

Academic Policy

• This is an individual assignment. No collaboration is allowed.

• Any suspected academic policy violations will be promptly

reported to the Aggie Honor System Office

(http://www.tamu.edu/aggiehonor/).

• For discussions regarding the assignemnt, frequently check out

the read-only bulletin board on the course web page, since

most of the Q-and-A’s will be uploaded there.

7


