
420-500: Programming Assignment 2

Read every page very carefully before you begin.

1. Implement seven search algorithms to solve 8-puzzle: dfs,

bfs, dls, ids, greedy best-first

(hence-forth ‘‘greedy’’), a-star,

ida-star.

2. Test and compare time and space complexity for all cases.

3. Test and compare the effect of different heuristic functions (for the

informed search algorithms).

This project is inspired by: http://www.cs.utexas.edu/users/novak/asg-8p.html.

1

Program 2: 8-Puzzle with Search

• Input: a board configuration

’(1 3 4 8 6 2 7 0 5)

• Output: sequence of moves

’(UP RIGHT UP LEFT DOWN)

• Search methods to be implemented (use the exact function

interface ):

dfs, bfs, dls, ids, greedy, a-star,

ida-star.

• Use h1 (number of tiles out-of-place), and h2 (sum of manhattan

distance) for those requiring heuristics (make the functions to take

the function as an argument).

• This is an individual project.

2

Program 2: Required Material

Use the exact filename as shown below (in bold).

• Program code (eight.lsp): put it in a single text file.

– Ample indentation and documentation is required.

• Documentation (README): user manual plus results/analysis.

• Inputs and outputs (include in README; truncate output for

search sessions that produce too much output):

– Easy: ’(1 3 4 8 6 2 7 0 5)

– Medium: ’(2 8 1 0 4 3 7 6 5)

– Hard: ’( 5 6 7 4 0 8 3 2 1)

3

Program 2: Required Material (Cont’d)

Continued from the previous page

• For each run, report the time taken and the number of nodes

visited. Except for IDA∗, report the maximum length of the

node list (or recursion depth) during the execution of the

search.

• Compare the time and space complexity (from above) of various

search methods using the Easy, Medium, and Hard case

examples.

• For each method, comment on the strengths and weaknesses.

• Some search methods may fail to produce an answer. Analyze

why it failed and report your findings.

4



Program 2: Function interface

• See

http://courses.cs.tamu.edu/choe/08fall/420/src/eight-interface.lsp

• Exactly follow the interfaces and function names.

5

Program 2 Tips (1)

Timing execution: use (time (your-function-to-run))

to get the execution time.

* (time (car ’(x x)))

real time : 0.000 secs

run time : 0.000 secs

X

*

6

Program 2 Tips (2)

Checking for duplicate states

(defun dupe (state node-list)

(dolist (node node-list nil)

(if (equal state (first node))

(return-from dupe T))))

(You may use a state-list to save space, rather than a node-list, or

better yet, use somekind of hash function.)

7

Program 2: Node Representation

1 3 4

8 6 2

7 5

A node in the search tree has the following data structure:

’((1 3 4 8 6 2 7 0 5);blank is stored as 0

h ;heuristic function value

depth ;depth from the root

path)) ;list of moves from

; the start

8



Program 2: Sorting

’((1 3 4 8 6 2 7 0 5);blank is stored as 0

h ;heuristic function value

depth ;depth from the root

path)) ;list of moves from

; the start

Sorting a node list, e.g. according to the heuristic:

(sort <node-list>

#’(lambda (x y) (< (second x) (second y)) )

)

lambda : read define-anonymous function

#’something = (function something)

cf. ’something = (quote something)

9

Sorting: Alternatives

(defun sort-node-list (node-list)

(sort node-list

#’(lambda (x y) (< (second x) (second y)) )))

; the above is equivalent to :

(defun sort-node-list (node-list)

(sort node-list

(function (lambda (x y) (< (second x) (second y)) ))))

; the above is equivalent to :

(defun compare-h ( x y )

(< (second x) (second y)))

(defun sort-node-list (node-list)

(sort node-list #’compare-h))

10

Lambda Expression

lambda expression can basically replace any occurrences of
function names, i.e. it works like an anonymous function:

(defun mysqr (x) (* x x))

(mysqr ’11)

; the above is the same as

((lambda (x) (* x x)) ’11)

; some more examples

(defun myop (x op)

(eval (list op (first x) (second x))))

(myop ’(2 3) ’*)

(myop ’(2 3) ’(lambda (x y) (* x y)))

11

Sorting: Example

(setq test-node-list

’((list1 10 0 0) (list2 87 0 0)

(list 100 0 0) (list 5 1 0 0))

)

(defun sort-node-list (node-list)

(sort node-list

#’(lambda (x y) (< (second x) (second y)) )

)

)

(sort-node-list test-node-list)

* You can use any combination of values to sort, and do ascending or

descending sorts by changing the lambda function.

12



Program 2: Utility Routines

Source is available on the course web page:

http://courses.cs.tamu.edu/choe/08fall/420/src/eight-util.lsp

• (apply-op <operator> <node>): return new node

after applying operator on current node

• (print-tile <state>): prints out the board

• (print-answer <state> <path>): prints boards

after each move in the path, starting from the state.

• (while <cond> <expr1> <expr2> ...): while

loop macro.

See http://courses.cs.tamu.edu/choe/08fall/420/src/eight-util.txt for

example runs.

13

Program 2: DFS working code

See http://courses.cs.tamu.edu/choe/08fall/420/src/dfs.lsp for a

functioning DFS code.

You can either use the recursive version (dfs) or iterative version

(dfs-iter) as the base. The iterative version is more

memory-efficient.

Program 2: Other tips

For this assigment, it is highly recommended that you compile and run

your program. See ROB, “Lisp: compiling”.

14

Program 2: Grading Criteria

• analysis, program comments, readability: 15%

• dfs, bfs, dls, and ids: 10% each

• greedy, a-star, and ida-star: 15% each

15

Program 2: Submission

• Turnin using CSNET turnin page.

• See the course web page for details.

• Standard late penalty applies: 1 day late 80%, 2 days late 60%,

etc.

• Only send plain ASCII text files. Do not send MS-Word

documents or other formatted text.

16


