CPSC 420-500 Homework \#1 (08 Fall) Due 10/02/08, 12:45pm (submit, in class)
 Handwritten or printed hardcopy must be submitted

1 Uninformed Search

Figure 1: Search Trees.
Consider the search tree in Figure 2. Assume that the exploration of the children of a particular node proceeds from the left to the right for all search methods in this section.

Question 1 (4 pts): If node 21 and 12 were the goals, (1) would depth-first search give an optimal solution? (2) Explain why.

Question 2 (4 pts): In which case does the time complexity in depth-first search equal that of breadth-first search? (multiple choice)

1. goal is 12
2. goal is 41
3. goal is 47 .
4. goal is 63 .

Question 3 (4 pts): In which case is the time complexity in depth-first search greater than that of breadthfirst search? (multiple choice)

1. goal is 12
2. goal is 41
3. goal is 47 .
4. goal is 63 .

Question 4 (4 pts): In which case is depth-limited search suboptimal? (Note: depth = number of moves from root to reach the current node; depth limit: do not expand any further if current depth $=$ depth limit). (multiple choice)

1. goals are 12 and 27 , and depth limit is 3 .
2. goals are 20 and 12 , and depth limit is 5 .
3. goals are 20 and 50 , and depth limit is 5 .
4. goals are 44 and 14 , and depth limit is 4 .

Question 5 (4 pts): Explain what limitation in breadth-first search is overcome by iterative deepening search.

2 Informed Search

Figure 2: Informed Search.

Question 6 ($\mathbf{1 2} \mathbf{~ p t s) : ~ M a n u a l l y ~ c o n d u c t ~ g r e e d y ~ b e s t - f i r s t ~ s e a r c h ~ o n ~ t h e ~ a b o v e ~ g r a p h , ~ w i t h ~ i n i t i a l ~ n o d e ~ a ~}$ and goal node \mathbf{k}. Actual cost from node to node are shown as edge labels. The heuristic function value for each node is shown on the right. Show:

1. Node list content at each step
2. Node visit order
3. Solution path
4. Cost of the final solution.

Note: Assume that you are not allowed to go back immediately to where you came from. For example, if you went from a to \mathbf{c} to \mathbf{f}, then you cannot expand \mathbf{f} into \mathbf{c}.
Question 7 (14 pts): (1) Repeat the problem right above with A* search. (2) In addition, show the $f(n)$ value for all nodes expanded. (3)Which one gives a shorter solution: Greedy best-first or A*? Note: Note that the same node can appear in the node list with a different $f(n)$ value, depending on the path taken.

Question 8 (4 pts): Why is IDA* more efficient in space than A*? Explain in terms of the particular exploration strategy.
Question 9 (4 pts): Why is a dominant heuristic better than a dominated heuristic?
Question 10 (8 pts): Explain why A* is optimal. Explain in terms of an arbitrary node n on the path to an optimal goal G_{1}, and a separate suboptimal goal G_{2}.

3 Game Playing

3.1 Minmax Search

Question 11 ($\mathbf{4} \mathbf{~ p t s) : ~ U s i n g ~ t h e ~ f o l l o w i n g ~ f i g u r e ~ 3 , ~ u s e ~ m i n m a x ~ s e a r c h ~ t o ~ a s s i g n ~ u t i l i t y ~ v a l u e s ~ f o r ~ e a c h ~}$ internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. Assume you explore the successors from left to right.

Figure 3: Game Tree. Solve using minmax search.

$3.2 \alpha-\beta$ pruning

Question 12 (10 pts): Using the following figure 4, use $\alpha-\beta$ pruning to (1) assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. (2) For each node, indicate the final α and β values. (Note that initial values at the root are $\alpha=-\infty, \beta=\infty$.) (3) For each cut that happens, draw a line to cross out that subtree.

Figure 4: Game Tree. Solve using $\alpha-\beta$ pruning. This tree is the same as figure 3 .

4 Propositional Logic

4.1 Normal forms

In all of the problems in this section, show each step of the derivation and indicate which axioms (or other rules) you used: For example, distributive law, by definition, etc.
Question 13 ($\mathbf{4} \mathbf{~ p t s) : ~ C o n v e r t ~} \neg(P \rightarrow \neg S) \vee(\neg(S \rightarrow(Q \rightarrow R)))$ into conjunctive normal form.
Question 14 (4 pts): Convert $\neg T \rightarrow(R \wedge(\neg(P \wedge Q) \rightarrow \neg S))$ into disjunctive normal form.
Question 15 (4 pts): Convert $(R \wedge S) \rightarrow(\neg(\neg P \vee T) \rightarrow \neg Q)$ into horn normal form. After that, show the equivalent expression with a single implication (\rightarrow) and some conjunctions (\wedge) where all literals are positive literals.

4.2 Theorem proving

Question 16 (12 pts): Given:

1. $A \vee \neg B$
2. $\neg A \vee C$
3. $C \rightarrow D$
4. $(C \wedge A \wedge D) \rightarrow E$
show that $B \rightarrow E$ is a logical consequence of the above using resolution.
Hint: first, transform the problem into a set of clauses, and the follow the resolution steps.
