
Overview

• Distributed representation for natural language and analogy.

• Pentti Kanerva. Dual role of analogy in the design of a cognitive

computer. In K. Holyoak, D. Gentner, and B. Kokinov, editors,

Advances in Analogy Research: Integration of Theory and Data

from the Cognitive, Computational, and Neural Sciences, pages

164-170. 1998.

• Pentti Kanerva. Large patterns make great symbols: An example

of learning from example. NIPS*98 workshop, 1998.

1

Kanerva’s Perspective

• Human intelligence and language are fundamentally analogical

and figurative.

• Danger in relying too much on the computer metaphor.

• Growth of human mind is largely due to analogical perceiving

and thinking.

• Imitation is a more advanced form of learning.

• Possibility of the coevolution of analogy and language.

• We must put figurative meaning and analogy at the center, to

design a new kind of “cognitive” computer.

2

Kanerva’s Perspective: Continued

• Description vs. explanation: formalisms are good for describing,

but may not be good enough to explain complex things like

human thought.

• The main focus is on patterns generated by sensory input and

new patterns that are derived.

• “Human mind conquers the unknown by making analogies to that

which is known, it understands the new in terms of the old. In so

doing, it creates rich networks of mental connections and

becomes robust.”

3

Binary Spatter-Code (Kanerva 1998)

101100010101101010101000· · · 1011010

• Space of Representation: large N -dimensional vectors (where

N is very large, 1, 000 < N < 10, 000). The vectors can

represent:

1. variables (role),

2. values (filler),

3. composed structures, and

4. mapping between structures,

all in the same space.

• Item Memory and Clean-up Memory: Vectors resulting from

manipulations are not exact, and a lookup table of valid/known

vectors is needed to correct errors introduced during the

manipulations.
4

Binding and Unbinding

Operators:

• Binding: Basically a bit-wise XOR function.

x⊗ a, where

xi ⊗ ai, for all i = 1..N,

where x and a are vectors and the meaning of the operation is

the variable assignment x = a.

• Unbinding: Retrieve either the role or the filler.

x⊗ (x⊗ a) = a (retrieved the filler)

a⊗ (x⊗ a) = x (retrieved the role)

5

Binding/Unbinding Example

• Role and filler vectors:

x = 1111011011

a = 0110111001

• Binding

x⊗ a = 1001100010

• Unbinding

a⊗ (x⊗ a) = 1111011011

You can use matlab to try this:

x = [1 1 1 1 0 1 1 0 1 1]

a = [0 1 1 0 1 1 1 0 0 1]

xor(x,a)

xor(a,xor(x,a))
6

Merging

• Merging: superimposing, also known as bundling or chunking

through normalized sum:

〈G + H〉,

where each resulting bit is determined by a bit-wise majority

rule for each bit position with ties broken randomly (i.e., when

the number of 0s and 1s are the same).

• Example: the relation r(A, B), represented as r1 = A and

r2 = B:

R = 〈r + r1⊗A + r2⊗B〉,

where r is the name of the relation, r1 the first role, r2 the

second role, and A and B the fillers.

7

Property of Merging

Property of the merging operator:

• the resulting vector is similar to all constituent vectors.

• Example: given 10,000-dimensional random vectors x, y, z, and

r, we can calculate

m = 〈x + y + z〉,

the correlation coefficients of the resulting vector and the

constituents are around 0.5:

corr(x,m) = 0.50, corr(y,m) = 0.48, corr(z,m) = 0.51.

while for another random vector r not merged in m,

corr(r,m) = 0.01.

8

Example of Merging

x = 1101010110

y = 0000101110

z = 1100010100

x + y + z = 2201121320

〈x + y + z〉 = 1100010110

For example, in Matlab or Octave, try:

x = (sign(rand(1,10000)-0.5*ones(1,10000))+ones(1,10000))/2;

y = (sign(rand(1,10000)-0.5*ones(1,10000))+ones(1,10000))/2;

m = (sign((x+y)-1.5*ones(1,10000))+ones(1,10000))/2

and calculate corrcoef(x,m), etc.

9

Distributivity

• Distributivity: binding and unbinding operators can be

distributed over the merging operator.

x⊗ 〈G + H + I〉 = 〈x⊗G + x⊗H + x⊗ I〉

* This property is key in the analysis of BSC.

10

Probing

Given a representation R for relation r(A, B), you want to find out

what the first role r1 is bound to.

R = 〈r + r1⊗A + r2⊗B〉

• Simple unbind R with r1:

A
′
= r1 ⊗ R = r1 ⊗ 〈r + r1 ⊗ A + r2 ⊗ B〉

A
′
= 〈r1⊗r+r1⊗(r1⊗A)+r1⊗(r2⊗B)〉, by distributivity

A
′
= 〈r1 ⊗ r + A + r1 ⊗ (r2 ⊗ B)〉, by unbinding,

thus, A′ is similar to A.

• Other similar vectors r1⊗ r and r1⊗ (r2⊗B) are not in the

cleanup memory and are treated as noise.

• Among all potential filler vectors, we can find which one is most

similar to A′.
11

Advanced Operations

• Multiple operations can be slapped together, e.g., multiple

substitutes.

• Mapping can be done in many different ways:

– mapping between things that share structures,

– mapping between things that share objects, etc.

• Holistic mapping and simple analogical retrieval.

12

Example

• Let F be the holistic representation of France, which is defined

as:

F = 〈ca⊗Pa + ge⊗WE + mo⊗ fr〉,

where ca=capital, Pa=Paris, ge=geographical location,

WE=Western Europe, mo=monetary unit, and fr=franc.

• We can probe it in many ways:

F⊗Pa = 〈ca + ge⊗WE⊗Pa + mo⊗ fr⊗Pa〉,

from which we can get:

F⊗Pa ≈ ca,

i.e., Paris of France is the capital.

13

Simple Analogy with Binary Spatter-Code

• Let S be the holistic representation of Sweden, defined as:

S = 〈ca⊗ St + ge⊗ Sc + mo⊗ kr〉,

where ca=capital, St=Stockholm, ge=geographical location,

Sc=Scandinavia, mo=monetary unit, and kr=krona.

• We can ask “what is the Paris of Sweden”?:

S⊗Pr,

which results in nothing meaningful.

• However, we can ask “what is the equivalent of Paris in France in

the case of Sweden?:

S⊗ (F⊗Pr) ≈ S⊗ ca ≈ St

14

Multiple Substitutions

• Multiple substitutions can be done at once:

M = 〈Pa⊗ St + WE⊗ Sc + fr⊗ kr〉

• Now, applying that to F:

F⊗M,

what would we expect?

• After multiple applications of distributivity and unbinding, we get:

≈ 〈ca⊗ St + ge⊗ Sc + mo⊗ kr〉,

which is ≈ S, i.e.,

F⊗M ≈ S.

15

Mapping of Relations

The power of BSC is that not only objects, but also relations can be

compared and manipulated using the same operators.

Example: Mother relation m(·, ·) and parent relation p(·, ·).

• Let the mapping between relations m(A, B) → p(A, B) be

represented as:

MAB = mAB⊗ pAB, where

mAB = 〈m + m1⊗A + m2⊗B〉, and

pAB = 〈p + p1⊗A + p2⊗B〉.

16

Mapping of Relations: Continued

• Given a single example m(A, B) → p(A, B), i.e., MAB,

can we apply that to a new instance m(U, V) (i.e., mUV) and

derive p(U, V)?

• It is the same as asking whether

W = mUV ⊗MAB

resembles p(U, V), i.e., pUV.

• Further, if you have merged multiple examples:

Mn = MAB + MCD + MEF + ...,

would it help? Obviously there’s a trade-off between accuracy on

the mappings included in Mn and those of novel mappings.

17

Discussion

• Can patterns representing structure be processed in the

thalamocortical loop?

• Can something like this be done in the cortex?

• How does BSC deal with ordering of terms?

• How do we decide when to use ⊗ and when to use 〈... + ...〉?

• How does meaning get attached to the random vectors, e.g.,

fillers, roles, relations, etc.?

• What is the appropriate size of the vectors? What are the pros

and cons of very large vectors?

18

