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Main Research Question

The question of visual understanding:

• How can we understand what we see?

• What is the basis of visual understanding in the

brain?

• How can we build autonomous mechanisms with

visual understanding?
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Approach

• Get inspiration from biology: how does the brain

achieve visual understanding?

• Investigate the nature of visual understanding: Need

to ask fundamental questions.
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Visual Understanding in the Brain

Visual understanding depends on the pattern of activity

in the brain:

1. How can scientists understand the pattern?

2. How does the brain itself make sense of its own

activity?
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Scientist vs. the Brain

I f
S

fI
S

(a) External observer (b) Internal observer

• External observer (e.g., a neuroscientist) can figure

out how S relates to I (transformation f : I → S).

• Internal observer cannot: But the brain does this all

the time, so this does not seem right!
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Example: The Visual Cortex

f: I    S

I
S

f

V1 Response to Input Gabor-like RFs

• With access to both I and S, Hubel and Wiesel

(1959) figured out f : I → S in V1 (oriented

Gabor-like receptive fields Jones and Palmer 1987).

• But even before that, and with access to only S,

humans had no problem perceiving orientation.
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Theories of RF Formation

Hoyer and Hyvärinen (2000)

Well-developed understanding on how RFs form:

• Olshausen and Field (1997): Sparse coding; Barlow (1994):

Redundancy reduction; Bell and Sejnowski (1997): Information

maximization; Miikkulainen et al. (2005): Self-organization

through Hebbian learning.

However, how is the resulting code to be used remains a question.
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A Metaphor of the Problem

• Imagine sitting in a room, looking at blinking lights, without

knowledge of the sensors nor the RFs.

• The lights may be due to any other sensory modality (as in

vision-audition rewiring Sur et al. 1999).

• Similar to the Chinese Room (Searle 1980): Problem of

“Symbol Grounding” (Harnad 1990).
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The Sensory Organ Can (Possibly)

Give Us a Clue

• It could have been caused by a visual input.
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But, Equally Likely Is ...

• It could have been caused by an auditory input.

• Sur et al., Rewiring cortex, Journal of Physiology,

41:33–43, 1999
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Possible Solution: Through Action

• A major problem in the metaphor is the

passiveness of the whole situation.

• Adding action can help solve the problem.

• But why and how?
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Experimental Evidence

Held and Hein (1963)

• Active animal developed normal vision.

• Passive animal did not.

• Suggests the importance of action in vision.
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Experimental Evidence

Bach y Rita (1972; 1983)

• Vibrotactile array linked to a

video camera.

• Passive viewing results in

tactile sensation.

• Moving the camera results

in a vision-like sensation.

• Sensation as related to

voluntary/intentional

action may be the key!
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Theoretical Insights

• Philipona et al. (2003) showed that properties of

ambient space (such as the dimensionality) can be

inferred based on internal sensory input alone.

• The key concept is about the compensability

between ego-motion and the change in the

environmental input conveyed to exteroceptors.
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Approach: A Sensorimotor Agent
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Choe and Bhamidipati (2003)

• A simple visuomotor agent.

• How can it learn about the visual world?

• What should be the objective (or goal) of learning?
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Action for Internal Invariance
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(a) Sensorimotor Agent (b) Sensory Invariance during Motion

• Agent can move its visual field.

• Movement in a certain direction (diagonal) causes

the sensory array to stay invariant over time.

• Property of such a movement exactly reflects the

property of the input I .
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Outline of Experimental Methods

• Input preparation.

• Orientation response calculation.

• Learning algorithm and policy generation.
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Methods: Input Preparation
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• Convolve with Difference-of-Gaussian (DoG) filter

(15× 15).

• Then, sample a 31× 31 region.
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Methods: Orientation Response

• Find the vectorized dot product of the 31× 31 input
I and the n Gabor filters Gi (i = 1..n,
θ = b(i− 1)π/nc):

ri =
∑
x,y

Gi(x, y)I(x, y).

• The above results in a response vector r, and the
orientation response s:

s = arg max
i=1..n

ri
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Orientation Response
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s = arg max
1≤θ≤n

rθ.
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Methods: Reinforcement Learning

(Reward)

• Immediate reward is measured as the dot product of

current and previous response vectors:

ρt+1 = rt · rt+1

• The task the agent is to learn a state-to-action

mapping so that it maximizes the reward ρ.
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Methods: Policy π
Suppose we know the probability P (a|s) (let us call this R(s, a)),

where stochastically generating action given the state s with this

probability maximizes the reward.

1. Given the current state st ∈ S, randomly pick action at ∈ A.

2. If at equals arg maxa∈A R(st, a),

(a) then perform action at,

(b) else perform action at with probability R(st, at).

3. Repeat steps 1 to 3 until exactly one action is performed.

In practice, momentum was added so that at+1 = at with a 30%

chance, and in step 2, if a random draw from [0..1] was less than

cR(st, at), then the action was accepted.
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Methods: Learning R(s, a)

• A simple update rule was used:

Rt+1(st, at) = Rt(st, at) + α ρt+1,

where α = 0.002 is the learning rate, and ρt+1 the

immediate reward.

• Rt+1(st, a) was then normalized by:

Rt+1(st, a) :=
Rt+1(st, a)∑

a′∈A
Rt+1(st, a′)

, for all a.
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Reward Probability Table
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• Reward probability R(s, a) can be tabulated.

• In an ideal case (world consists of straight lines only), we expect

to see two diagonal matrices (shaded gray, above).
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Results: Overview

1. Synthetic input and natural image input.

2. Learned R(s, a).

3. Error in R(s, a) and average reward ρ over time.

4. Distribution of reward ρ.

5. Gaze trajectory.
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Results: Learned R(s, a) for

Synthetic Input

(a) Initial (b) Final (c) Ideal

• Learned R(s, a) close to ideal.
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Results: Learned R(s, a) for Natural

Images

(a) Initial (b) Ideal

(c) Flowers (d) Ducks (e) Plant (f ) Oleander

• Learned R(s, a) close to ideal even for natural

image inputs.
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Results: Error in R and Average ρ
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• Left: Root-mean-squared error in R(s, a) compared

to the ideal case.

• Right: running average of immediate reward ρ:

µt = (1− α)rt + α µt−1, (µ1 = ρ1,

α = 0.999).
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Results: Error in R(s, a)
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Results: Average ρ
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Results: Distribution of ρ
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Synthetic Input

• Initially, two peaks: near negative min and positive

max ρ.

• Near the end, only one peak: near positive max ρ.
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Results: Distribution of ρ
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Results: Gaze Traj. for Synth. Input

(a) Initial (b) Final

• Gaze trajectory reflects orientation represented by

internal state.
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Results: Gaze Traj. for Nat. Input
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Results: Gaze Traj. for Nat. Input
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Results: Demo
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Work in Progress: Q-Learning
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(a) Initial (b) Learned

Trajectories from Q-Learning sessions (Choe and Smith 2006).
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Interpretation of the Results
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• Using invariance as the only criterion, particular

action pattern that has the same property as the

input that triggered the sensors was learned.

• Question: Can this approach be extended to

learning complex stimulus concepts?
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Learning About Complex Objects
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• For complex objects, a history of sensory activity may be needed

(i.e., some form of memory).

• Invariance can be detected in the spatiotemporal pattern of

sensor activity.
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Supporting Evidence?

Yarbus (1967)

• When we look at objects, our gaze wanders around.

• Could such an interaction be necessary for object

recognition?
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Advantage of Motor-Based Memory

(Habit, or Skill)
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(a) Sensor-based Representation (b) Motor-based Representation

• Sensor-based representations may be hard to learn

and inefficient.

• Motor-based approaches may generalize better.

• Comparison: Make both into a 900-D vector and

compare backpropagation learning performance.
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Class Separability
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(a) Visual Memory (b) Motor Memory

• Comparison of PCA projection of 1,000 data points

in the visual and motor memory representations.

• Motor memory is clearly separable.
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Speed and Accuracy of Learning
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• Motor-based memory resulted in faster and more

accurate learning (10 trials).
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Summary

• Internal observer can learn about the properties of

the external environment – through action

maximizing invariance in neural activity.

• Such actions closely reflect the property of the

stimulus that triggered the sensory neuron to fire:

Meaning of the spike recovered (through action)!

• Main contribution: The invariance criterion for

autonomously learning the meaning of neural

states.
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Related Work (Selected)
• Piaget (1952): Sensorimotor period in child development

• Freeman (1999): Brain creates meaning through action and

choices. Also see Kozma and Freeman (2003) for a KIV model of

the emergence of goal-directed, intentional behavior.

• O’Regan and Noë (2001): Sensorimotor contingency theory

• Philipona et al. (2003): Inferring space through sensorimotor

interaction

• Rizzolatti et al. (2001): Mirror neurons

• Gibson (1950): Direct perception of invariance and affordance

• Harnad (1990): Symbol grounding on robotic capabilities.

• Taylor (1999): Corollary discharge and awareness of attention

movement prior to sensory awareness.
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Discussion

• Why is knowing ones own action any easier than

perceptual interpretation?: Knowledge of own

action may be more immediate than perception (cf.

Moore 1996, citing Bergson).

• What gives rise to voluntary, intentional action

and why is it special? (Freeman 1999; Kozma and

Freeman 2003; Taylor 1999).

• A different view of invariance: Not (only) something

to be detected in the environment (cf. Gibson 1950),

but something that we actively seek within.
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Discussion (Cont’d)

• Why not just analyze the input directly?: The raw

input is only available at the immediate sensory

surface.

• What about other sensory modalities (such as

touch, olfaction, or audition)?

• The learning scheme depends on structure in the

environment: If the environment didn’t have

structure, the agent can never learn.
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Discussion (Cont’d)

• Relation to mirror neurons (Rizzolatti et al. 2001)?

• Role of attention (e.g. Rensink et al. 1997; Taylor

1999)?: Attention may be needed when ambiguities

are present.

• Do motor primitives restrict the kind of sensory

property that can be learned? What kinds of motor

primitive do we have?
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Discussion (Cont’d)

• What about meaning other than sensorimotor-like,

such as reinforcement signals (Rolls 2001) or

“feeling” (Harnad 2001)?

• Grounding on perception alone may not be

sufficient: cf. Perceptual symbol system (Barsalou

et al. 2003).

• What to make of the segregation in the

dorsal–ventral pathway?

(Goodale and Milner 1992).
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Predictions

• Perceived orientation of a line can be altered by eye

movement in the direction of incompatible

orientation.

• Motor structures (cerebellum, basal ganglia) may be

intimately involved in semantics.

• Geometrical understanding may be limited by the

motor primitive repertoire.
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Future Work (and Work in Progress)

• Learning receptive field structure based on SIDA.

• Lateral inhibition in sensory array.

• Crossmodal association through sensory invariance.

• Extending to more complex concepts.
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Conclusions

• We must ask how the brain understands itself.

• Autonomous understanding of own internal state is

non-trivial without direct access to the stimulus.

• Action can help solve the conundrum.

• Action that maintains invariance in internal state can

recover meaning (the property of the stimulus).
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Why Do We Have a Brain?

Tree

(no Brain)

Tunicate

Free-floating

(w/ Brain)

Tunicate

Settled

(w/o Brain)

• Brain vs. no brain

Sources: http://homepages.inf.ed.ac.uk/jbednar/ and http://bill.srnr.arizona.edu/classes/182/Lecture-9.htm
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