
CPSC 420-500: Program 3, Perceptron and
Backpropagation

Yoonsuck Choe
Department of Computer Science

Texas A&M University

November 2, 2007

1 Overview

You will implement perceptron learning from scratch (see section 3 for details), and
train it on AND, OR, and XOR functions. Then, you will take an existing backprop-
agation code (see section 4), train it and test it under different conditions and report
your findings. The same three boolean functions will be used for the backpropagation
learning. For further details on perceptrons and backpropagation, see the lecture slides
and also Hertz et al. (1991). Specific submission instruction will be given in section 5
and section 6.

2 Language and OS

You may use either C/C++, Java, Matlab (or Octave), or Lisp. The resulting code
should be able to compile and run on the departmental unix hosts (unix.cs.tamu.edu,
compute.cs.tamu.edu, interactive.cs.tamu.edu). You may use a different language with
a permission from the instructor, in which case you will be asked to do a demo in front
of the TA.

To compile your programs other than Lisp (which you already know), see the following
instructions.

• C program file: perceptron.c
to compile: cc -o perceptron perceptron.c -lm
to execute: ./perceptron

• C++ program file: perceptron.C
to compile: c++ -o perceptron perceptron.C -lm

1

to execute: ./perceptron

• Java program file: perceptron.java
to compile: javac perceptron.java
to execute: java perceptron

The full paths for the compilers are (on compute.cs.tamu.edu):

• /usr/local/SUNWspro/bin/cc

• /usr/local/bin/g++

• /usr/local/java/j2se/bin/java

• /usr/local/java/j2se/bin/javac

3 Perceptron

Perceptron activation is defined as:

Output = step

(
2∑

i=0

W [i] ∗ INP [i]

)
, (1)

where step(X) = 1 if X ≥ 0 and step(X) = 0 if X < 0 (see figure 1).

W[2]W[1]W[0]

−1 X Y

f(X,Y)

INP[0] INP[1] INP[2]

Figure 1: Perceptron. The input INP [0] is the bias unit, fixed to −1, and has an associated
weight W [0], which is the threshold. The two inputs X and Y are given and the output f(X, Y)
will be calculating (or attempting to calculate) a boolean function, one of OR, AND, or XOR.

Implement a perceptron with two input units (three, including the bias unit that has a
fixed input value -1) and one output unit. Your program should take three inputs from
the keyboard (i.e. standard input):

1. maximum number of epochs to run (integer),

2. learning rate parameter α value (double),

2

3. function selection string (“and”, “or”, and “xor”).

For example, a typical run would go like this ($ is the unix prompt):

$./perceptron
10000 0.0001 and

where in the first line you run your program, and in the second line you type in the
parameters. A pseudo code for perceptron learning is as follows:

1. Initialize weights to random numbers between 0.0 and 1.0.

2. Initialize epoch count to 0.

3. while sum of (target− output)2 for all input patterns is not 0 do:

• for each input-target pattern

(a) present input and calculate output
(b) calculate the error = target− output

(c) update the weights W [i]
• endfor

• increment epoch count

• if (epoch count > max epochs), break from while loop

4. Print out the output for the inputs (0,0), (0,1), (1,0), and (1,1).

4 Backpropagation

For backpropagation, you will download the following file (make it one line):

http://faculty.cs.tamu.edu/choe/
src/backprop-1.6.tar.gz

and run it under different conditions. First, you need to unzip and untar it by running
the following:

$ tar xzvf backprop-1.6.tar.gz
$ cd backprop

then read the README file to learn how to compile and run it.

Running the bp program (which is generated by compiling) will give you a huge dump
on the screen. To selectively view the data you’re more interested in, use the grep
command. For example, to view the progression of error:

3

$./bp conf/xor.conf | grep ERR

and to view the actual output values for the inputs:

$./bp conf/xor.conf | grep OUT

5 Assignment

This section will detail what you actually have to do and have to submit. All projects
should be turned in using the csnet turnin.

5.1 Perceptron

Implement perceptron learning algorithm as detailed in section 3, and with the program
conduct the following experiments, and submit the required material, along with the
code and the README file as usual.

Experiments:

1. Test AND, OR, and XOR for learning rates α = 0.001, and 0.0001. For each
Boolean function, run the experiment with different initial random weights (use
the random number generator function to do this) three times. Discard all runs
that ended in 1 epoch (you will see several of these: why would they occur?).
The total number of trial will thus be 18. Set the max epoch to 10000 for all
trials.

2. For each trial, report the following in the README file:

(a) initial weights, and show the plot of the decision boundary (the straight line
defined by the weights).

(b) final weights, and show the plot of the decision boundary.

(c) number of epochs taken to complete training if successful (let us call this
n), and

(d) for each epoch, the sum of squared error for all four input patterns.

3. Answer these questions in the README file:

(a) How dependent is n on the initial weights?

(b) Do you think perceptron will be able to learn the boolean function f(X, Y) =
¬(X ∨ Y)? What do you think is the role of the sign of the weights in this
case? Think about the geometric interpretation in that case.

4

Table 1: Boolean Function f(X, Y) = ¬(X ∨ Y).
X Y ¬(X ∨ Y)
0 0 1
0 1 0
1 0 0
1 1 0

5.2 Backpropagation

With the provided code, conduct experiments on AND, OR, and XOR. Note that in
the bp.cc code, learning rate α is a named eta, just in case you want to take a look
inside the code.

Experiments:

1. Test AND, OR, and XOR for learning rates α = 0.01, 0.001, and 0.0001, and
plot the sum of squared error for each trial (a total of 9 trials). A total of 3 set
of plots (for AND, OR, and XOR), with each set containing 3 curves (for three
α’s) is required. Save the plots in image files and name them b1-plot0.jpg,
b1-plot1.jpg,

2. With learning rate α = 0.001, test AND, OR, and XOR, with 1, 2, 3, and 4
hidden units, Plot the sum of squared error for each trial. A total of 3 set of plots
(for AND, OR, and XOR), with each set containing 4 curves (for four different
number of hidden units) is required. Save the plots in image files and name them
b2-plot0.jpg, b2-plot1.jpg,

3. For all trials above, count the number of epochs until the end is reached, and
measure the time taken using the timex unix command:

timex ./bp conf/xor.conf

Report the number of epochs and time spent for each trial in the README file.
How many number of hidden units was the best in your opinion and why?

6 Submission Details

The due date is 12/7/2006, 11:59pm. Grading criteria will be similar to the previous
programming assignments. You must submit the following:

• source code,

• compiled executable binary,

5

• README file containing material detailed in section 5, and

• plots (image files; include a list of image files and a brief description of each in
the README file).

Only electronic submission through CSNET will be accepted.

References
Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural

Computation. Reading, MA: Addison-Wesley.

6

	Overview
	Language and OS
	Perceptron
	Backpropagation
	Assignment
	Perceptron
	Backpropagation

	Submission Details

