420-500: Programming Assighment 2

Read every page very carefully before you begin.

1.

Implement seven search algorithms to solve 8-puzzle: dfs,
bfs, dls, ids, greedy, a-star, ida-star.

Test and compare time and space complexity for all cases.

Test and compare the effect of different heuristic functions (for the

informed search algorithms).

This project is inspired by: http://www.cs.utexas.edu/users/novak/asg-8p.html.

Program 2: Required Material

Use the exact filename as shown below (in bold).

Program code (eight.Isp): put it in a single text file.
— Ample indentation and documentation is required.

Documentation (README): user manual plus results/analysis.
Inputs and outputs (include in README; truncate output for
search sessions that produce too much output):

— Easy: " (1 3 48 6 2 7 05)

— Medium:’ (2 8 1 0 4 3 7 6 5)

- Hard:” (56 7408 3 21)

Program 2: 8-Puzzle with Search

Input: a board configuration
(1 348¢6 2 7005)

Output: sequence of moves
" (UP RIGHT UP LEFT DOWN)

Search methods to be implemented (use the exact function
interface):
dfs, bfs, dls, ids, greedy, a-star,

ida-star.

Use h1 (number of tiles out-of-place), and h2 (sum of manhattan
distance) for those requiring heuristics (make the functions to take
the function as an argument).

This is an individual project.

Program 2: Required Material (Cont’d)

Continued from the previous page

e For each run, report the time taken, the number of nodes

visited. Except for IDA*, report the maximum length of the
node list (or recursion depth) during the execution of the

search.

Compare the time and space complexity (from above) of various
search methods using the Easy, Medium, and Hard case

examples.
For each method, comment on the strengths and weaknesses.

Some search methods may fail to produce an answer. Analyze
why it failed and report your findings.

Program 2: Function interface
® See
http://courses.cs.tamu.edu/choe/07fall/420/src/eight-interface.lsp

e Exactly follow the interfaces and function names.

Program 2 Tips (2)

Checking for duplicate states

(defun dupe (state node-1list)
(dolist (node node-list nil)
(if (equal state (first node))
(return—-from dupe T))))

(You may use a state-list to save space, rather than a node-list, or
better yet, use somekind of hash function.)

Program 2 Tips (1)

Timing execution: use (time (your—-function-to-run))
to get the execution time.

* (time (car ' (x x)))

real time : 0.000 secs
run time : 0.000 secs
X
*

6

Program 2: State Representation

1 3 | 4
8 | 6| 2
7 5

A node in the search tree has the following structure:

"((1 348 6 2 70 5);blank is stored as O

h ;heuristic function value
depth ;depth from the root
path)) ;1ist of moves from

; the start

Program 2: Sorting

"((1 348 6 2 70 5);blank is stored as 0

h ;heuristic function value
depth ;depth from the root
path)) ;1list of moves from

; the start
Sorting a node list, e.g. according to the heuristic:

(sort <node—-list>
#’ (lambda (x y) (< (second x) (second y)))
)

lambda : read define-anonymous function
#’ something = (function something)
cf. " something = (quote something)

Lambda Expression

lambda expression can basically replace any occurrences of
function names, i.e. it works like an anonymous function:

(defun mysqr (x) (* x X))
(mysgr ’"11)

; the above is the same as
((lambda (x) (* x x)) ’'11)

; some more examples
(defun myop (x op)
(eval (list op (first x) (second x))))

(myop 7 (2 3) ')

(myop ' (2 3) ' (lambda (x y) (x x Vy)))

11

Sorting: Alternatives

(defun sort-node-list (node-1list)
(sort node—-list
#’ (lambda (x y) (< (second x) (second y)))))

; the above is equivalent to
(defun sort-node-list (node-1list)
(sort node-list

(function (lambda (x y) (< (second x) (second y))

; the above is equivalent to
(defun compare-h (x vy)
(< (second x) (second vy)))

(defun sort-node-list (node-1list)
(sort node-list #’compare-h))

10

Sorting: Example

(setq test-node-list
" ((listl 10 0 0) (list2 87 0 0)
(list 100 0 0) (list 5 1 0 0))

(defun sort-node-list (node-list)
(sort node-list
#’ (lambda (x y) (< (second x) (second Vy))

(sort-node-list test-node-list)

* You can use any combination of values to sort, and do ascending or
descending sorts by changing the lambda function.

12

)

)))

Program 2: Utility Routines

Source is available on the course web page:
http://courses.cs.tamu.edu/choe/07fall/420/src/eight-util.Isp

® (apply-op <operator> <node>): return new node
after applying operator on current node

e (print-tile <state>): prints out the board

® (print-answer <state> <path>): prints boards
after each move in the path, starting from the state.

e (while <cond> <exprl> <expr2> ...):while
loop macro.

See http://courses.cs.tamu.edu/choe/07fall/420/src/eight-util.txt for
example runs.

13

Program 2: Grading Criteria

e analysis, program comments, readability: 15%
e dfs, bfs, dls, and ids: 10% each

® greety, a-star, and ida-star: 15% each

15

Program 2: DFS working code

See http://courses.cs.tamu.edu/choe/07fall/420/src/dfs.Isp for a
functioning DFS code.

Program 2: Other tips

For this assigment, it is highly recommended that you compile and run
your program. See ROB, “Lisp: compiling”.

14

Program 2: Submission

Turnin using CSNET turnin page.

See the course web page for details.

No late submission will be allowed.

Only send plain ASCII text files. Do not send MS-Word
documents or other formatted text.

16

