

Handwritten or printed hardcopy must be submitted to the TA Total: 130 pts

Yoonsuck Choe

October 29, 2007

1 First-Order Logic

Important: In this section, assume that w, x, y, z are variables; A, B, C, D are constants; and $f(\cdot), g(\cdot), h(\cdot)$ are functions; and $P(\cdot), Q(\cdot), R(\cdot)$ are predicates.

1.1 Standard Forms

To do automatic theorem proving in first-order logic, you need to go through three steps to convert your initial first-order logic expression into a standard form. These are:

- 1. Prenex normal form,
- 2. Conjunctive normal form, and
- 3. Skolemization.

Question 1 (12 pts): Convert to prenex normal form (4 points each):

- 1. $\forall x, \neg (\exists y, \neg P(x, y))$
- 2. $\neg \forall x \left(P(x) \lor \neg (\exists y, \neg Q(x, y)) \right)$
- 3. $\neg \forall x (\exists y, Q(x, y) \rightarrow \neg P(x))$

Question 2 (20 pts): Skolemize the expressions (4 points each):

- 1. $\exists x P(x)$
- 2. $\forall x \exists y P(x, y)$
- 3. $\exists x, \exists y, \forall z P(x, y) \land Q(y, z)$
- 4. $\forall x, \exists y, \exists P(x, y) \land Q(y, z)$
- 5. $\forall x, \forall y, \exists z P(x, y) \land Q(y, z)$

Question 3 (9 pts): Convert the following into a standard form:

$$\forall x, [\neg P(x) \to \neg(\exists y, Q(x, y))]$$

1.2 Substitution and Unification

Question 1 (9 pts): Apply the following substitutions to the expressions (3 point each);

- 1. Apply $\{x/f(A)\}$ to $P(x, y) \lor Q(x)$.
- 2. Apply $\{x/A, y/f(z)\}$ to $P(x, y) \lor Q(x)$.
- 3. Apply $\{y/x\}$ to $P(x, y) \lor Q(x)$.

Question 2 (16 pts): For each of the following, (1) find the unifier, and (2) show the unified expression. For example, given P(A) and P(x), the unifier would be $\{x/A\}$, and the unified expression P(A). If the pair of expressions is not unifiable, indicate so. (4 points each):

- 1. P(x, f(B)) and P(A, f(y))
- 2. P(x, f(A)) and P(y, y)
- 3. P(x, f(y), y) and P(A, f(g(w)), g(A))
- 4. P(A, f(y), y, A) and P(x, f(g(x)), g(B), w)

Question 3 (20 pts): Show that R(A) is a logical consequence of the following. Use resolution. Turn into a normal form as necessary.

- 1. $\forall x, \forall y, (\neg P(x) \rightarrow (Q(x, y) \lor R(y)))$
- 2. $\exists x, \neg P(x)$
- 3. $\forall w, \forall z, (\neg Q(w, z) \lor R(w))$

2 Uncertainty and Probabilistic Reasoning

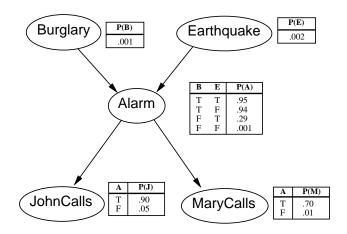


Figure 1: Belief Network. See problem 1.

Question 1 (10 pts): Given the Belief network as shown in figure 1, calculate the two joint probability values and answer the question. Note that in this section $P(\cdot)$ denotes the probability of the event. (5 points each):

- 1. $P(MaryCalls \land JohnCalls \land Alarm \land \neg Earthquake \land Burglary)$
- 2. $P(\neg MaryCalls \land \neg JohnCalls \land \neg Alarm \land \neg Earthquake \land Burglary)$

Question 2 (5 pts): Why do belief networks give a much more compact representation of the joint probability distribution, compared to a full joint probability table?

3 Learning

3.1 Decision Tree Learning

Consider the following set of examples where you are trying to make a decision whether to take a course or not.

Example#	Usefulness in life	Toughness	Fun	Decision (Take course?)
1	Stellar	Okay	Medium	Yes
2	Not bad	Very tough	High	Yes
3	Zero	Light	Medium	No
4	Not bad	Light	Low	No
5	Not bad	Light	High	Yes
6	Not bad	Very tough	Low	No
7	Zero	Okay	Medium	No
8	Stellar	Very tough	Low	Yes
9	Stellar	Okay	Medium	Yes
10	Zero	Light	High	No

Question 1 (12 pts): For each of the three attributes above, draw a decision tree rooted at that attribute with a **single depth**. See slide06, page 12, (*a*) and (*b*) which show some examples. (4 points each)

Question 2 (12 pts): Calculate the information gain for each of the three attributes. (4 points each)

Question 3 (5 pts): If you are supposed to choose from the three attributes for the first test in a decision tree construction, which one would you choose and why? **Do not** base your answer on your personal preference.