
Overview

� formal �� � pruning algorithm

� �� � pruning properties

� games with an element of chance

� state-of-the-art game playing with AI

� more complex games

� project #1: full description

- core routines for 8-puzzle

1
�� � Pruning: Initialization

Along the path from the beginning to the current state :

� �: best MAX value

� initialize to�1

� �: best MIN value

� initialize to1

2

�� � Pruning Algorithm: Max-Value
MIN

MAX

MIN
1 3 5

3
5

3

discard

function Max-Value (state, game, �, �) return minmax(state)

�: best MAX on path to state ; �: best MIN on path to state

if Cutoff(state) then return Eval(state)

for each s in Successor(state) do

� � Max(�, Min-Value(s,game,�,�))

� if � � � then return � /* CUT!! */

end

return �

3

�� � Pruning Algorithm: Min-Value

4 6 2

4

MAX

MIN

MAX

2

4

discard

function Min-Value (state, game, �, �) return minmax(state)

�: best MAX on path to state ; �: best MIN on path to state

if Cutoff(state) then return Eval(state)

for each s in Successor(state) do

� � Min(�, Max-Value(s,game,�,�))

� if � � � then return � /* CUT!! */

end

return �

4

Ordering is Important for Good Pruning

4 6 2

4

MAX

MIN

MAX

2

4

discard
4 6

4

MAX

MIN

MAX

2

4

discard
5 10 2

� For MIN, sorting succesor’s utility in an increasing order is better

(shown above; left).

� For MAX, sorting in decreasing order is better.

5

�� � Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

� pruning does not affect final result

� good move ordering improves effectivenes of pruning

� with perfect ordering , time complexity = bm=2

! doubles depth of search

! can easily reach 8-ply in chess

� bm=2 = (
p
b)m, thus b = 35 in chess reduces to

b =
p
35 � 6 !!!

* this slide is a copy from the last lecture

6

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

� chance nodes need to be included in the minimax tree

� try to make a move that maximizes the expected value !

expectimax

� expected value of random variable X :

E(X) =
X

x

xP (x)

� expectimax

expectimax(C) =
X

i

P (di)maxs2S(C;di)(utility(s))

7

Game Tree With Chance Element

MAX

dice

MIN

dice

MAX

� chance element forms a new ply (e.g. dice, shown above)

8

Design Considerations for Probabilistic Games

� the value of evaluation function, not just the scale matters now!

(think of what expected value is)

� time complexity: bmnm, where n is the number of distinct dice

rolls

� pruning can be done if we are careful

9

State of the Art in Gaming With AI

� Chess: IBM’s Deep Blue beat Garry Kasparov (1997)

� Backgammon: Tesauro’s Neural Network! top three (1992)

� Othello: smaller search space! superhuman performance

� Checkers: Samuel’s Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

10

Hard Games

The game of Go, popular in East Asia:

� 19� 19 = 361 grid: branching factor is huge!

� search methods inevitably fail: need more structured rules

� the bet is high: $2,000,000 prize

11

Project 1: Due 3/22 Midnight

Solving eight-puzzle with various search methods:

� Input: a board configuration

’(1 3 4 8 6 2 7 0 5)

� Output: sequence of moves

’(UP RIGHT UP LEFT DOWN)

� Search methods to be used:

Depth-First, Bounded Depth-First, Iterative Deepening,

Breadth-First, Heuristic search with h1 (tiles out-of-place), and

h2 (sum of manhattan distance)

� This is an individual project .

12

Project 1: Required Material

Use the exact filename as shown below (in bold).

� Program code (eight.lsp): put it in a single text file.

– Ample indentation and documentation is required.

� Documentation (README): user manual

� Inputs and outputs (include in README)

– Easy: ’(1 3 4 8 6 2 7 0 5)

– Medium: ’(2 8 1 0 4 3 7 6 5)

– Hard: ’(5 6 7 4 0 8 3 2 1)

– Include 5 examples of your own

13

Project 1: Required Material (Cont’d)

Continued from the previous page

� For each run, report the time taken, and the number of nodes

expanded . Compare the various search methods using the Easy,

Medium, and Hard case examples. Explain why you think certain

methods work better than others.

� Some search methods may fail to produce an answer. Analyse

why it failed and report your findings.

� 10% Extra Credit for implementing IDA�: this may not be hard!

14

Project 1 Tips (1)

Timing execution: use (get-internal-run-time) to get

current time.

(defun loopit (x)

(dotimes (i x res)

(progn

(setq res (+ i 1))

(print (get-internal-run-time))

)

)

)

15

Project 1 Tips (2)

Checking for duplicate states

(defun dupe (state node-list)

(dolist (node node-list nil)

(if (equal state (first node))

(return-from dupe T))))

A general expand function:

(defvar *expand-func*) ; name of expand function

(defun expand (node)

(funcall *expand-func* node))

16

Project 1: State Representation

1 3 4

8 6 2

7 5

A node in the search tree has the following structure:

’((1 3 4 8 6 2 7 0 5);blank is stored as 0

h ;heuristic function value

depth ;depth from the root

path)) ;list of moves from

; the start

17

Project 1: Utility Routines

Source will be available on the course web page:

� (apply-op <operator> <node>) : return new node

after applying operator on current node

� (print-tile <state>) : prints out the board

� (print-answer <state> <path>) : prints boards

after each move in the path, starting from the state.

18

Project 1: Submission

� Send as email to the TA (attached text files):

ltapia@tamu.edu ,

and also CC: choe@tamu.edu

� Submission deadline is 3/22/02 Friday midnight (23:59:59).

� Late policy: initial penalty -25%, and additional -25% per week

thereafter.

� If more than half have problems meeting the deadline, I will

consider an extension.

� Only send plain ASCII text files. Do not send MS-Word

documents or other formatted text.

19

Key Points
� formal �� � pruning algorithm: know how to apply pruning

� �� � pruning properties: complexity

� games with an element of chance: what are the added elements?

how does the minmax tree get augmented?

20

Next Week: Logic

� Propositional Logic: Chapter 6, 6.3–6.6

Today: AI Seminar

Title: An Artificial Life Approach to Computational Aesthetics

Speaker: Gary R. Greenfield (U. of Richmond)

� 3-4pm Today, HRBB 302 (space is limited)

21

