
Overview

� More uninformed search: depth-limited, iterative deepening,

bidirectional search

� Avoiding repeated state

� Constraint satisfaction search

� Informed search: domain knowldege to evaluation function

1

Seminar Credits

2% Extra credit (upto 4 talks, i.e. a total of 8%) for attending the

selected (I will announce which one’s eligible) seminars and submitting:

1. one paragraph summary of the talk (don’t copy the abstract -

focus on the part that was the most interesting to you)

2. pros and cons of the approach (one paragraph)

3. your idea on how to solve the problem (one paragraph)

4. send it to choe@tamu.edu via email.

* If you find any other talk at TAMU that is related to AI of intelligence,

ask me if you can earn the extra credit by attending the talk.

2

Distinguished Lecturer

� Dr. Kimon Valavanis

� Evolutionary Algorithm Based Off-line/On-line Path Planner for

UAV Navigation

� 4:10pm, Today (1/30/02)

� HRBB Room 124

3

Depth Limited Search (DLS): Limited Depth DFS

���

HHH

k1

�� @@
k2

�� @@
k3

k4 k5 k6 k7

� node visit order for each depth limit l:

1 (l = 1); 1 2 3 (l = 2); 1 2 3 4 5 6 7 (l = 3);

� queuing function: enqueue at front (i.e. stack push)

� push the depth of the node as well :

(<depth><node>)

4



DLS: Expand Order

���

HHH

k1

�� @@
k2

�� @@
k3

k4 k5 k6 k7

Evolution of the queue (bold =expanded and then added):

(<depth>,<node>) ); Depth limit = 3

1. [(d1,1)] : initial state

2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3

3. [(d3,4)][(d3,5)] [(d2,3)] : pop 2 and push 4 and 5

4. [(d3,5)][(d2,3)] : pop 4, cannot expand it further

5. [(d2,3)] : pop 5, cannot expand it further

6. [(d3,6)][(d3,7)] : pop 3, and push 6, 7

... 5

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:

� complete: if l � d

� time: bl nodes expanded (worst case)

� space: bl (same as DFS, where l = m (m: max depth of tree in

DFS)

� good if solution is within the limited depth.

� non-optimal (same problem as in DFS).

6

Iterative Deepening Search: DLS by Increasing Limit

���

HHH

m1

�� @@
m2

�� @@
m3

�� AA
m4

�� AA
m5

�� AA
m6

�� AA
m7

m8 m9 m10 m11 m12 m13 m14 m15

� node visit order:

1 ; 1 2 3; 1 2 3 4 5 6 7; 1 2 3 4 5 8 9 10 11 6 7 12 13 14 15; ...

� revisits already explored nodes at successive depth limit

� queuing function: enqueue at front (i.e. stack push)

� push the depth of the node as well : (<depth><node>)
7

IDS: Expand Order

���

HHH

k1

�� @@
k2

�� @@
k3

k4 k5 k6 k7

Basically the same as DLS: Evolution of the queue (bold =expanded

and then added): (<depth>,<node>) ); e.g. Depth limit = 3

1. [(d1,1)] : initial state

2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3

3. [(d3,4)][(d3,5)] [(d2,3)] : pop 2 and push 4 and 5

4. [(d3,5)][(d2,3)] : pop 4, cannot expand it further

5. [(d2,3)] : pop 5, cannot expand it further

6. [(d3,6)][(d3,7)] : pop 3, and push 6, 7

... 8



IDS: Evaluation

branching factor b, depth of solution d:

� complete: cf. DLS, which is conditionally complete

� time: bd nodes expanded (worst case)

� space: bd (cf. DFS and DLS)

� optimal! : unlike DFS or DLS

� good when search space is huge and the depth of the solution is

not known (*)

9

Bidirectional Search (BDS)

GoalStart

� Search from both initial state and goal to reduce search depth.

� O(bd=2) of BDS vs. O(bd) of BFS.

10

BDS: Considerations

GoalStart

1. how to back trace from the goal?

2. successors and precedecessors: are operations reversible?

3. are goals explicit?: need to know the goal to begin with

4. check overlap in two branches

5. BFS? DFS? which strategy to use? Same or different?

11

BDS Example: 8-Puzzle

5 4

6 1 8

7 3 2

!

5 4 8

6 1

7 3 2

! ... 

1 2 3

8 4

7 6 5

 

1 2 3

8 4

7 6 5

� Is it a good strategy?

� What about Chess? Would it be a good strategy?

� What kind of domains may be suitable for BDS?

12



Avoiding Repeated States

C

D

B

A

D D D D

C C

B

D D D D

C C

B

A

Repeated states can be devastating in search problems.

� Common cases: problems with reversible operators! search

space becomes infinite

� One approach: find a spanning tree of the graph

13

Avoiding Repeated States: Strategies

5 4

6 1 8

7 3 2

!

5 4 8

6 1

7 3 2

!

5 4

6 1 8

7 3 2

!

5 4 8

6 1

7 3 2

...

� Do not return to the node’s parent

� Avoid cycles in the path (this is a huge theoretical problem in its

own right)

� Do not generate states that you generated before: use a hash

table to make checks efficient

How to avoid storing every state? Would using a short signature (or a

checksum) of the full state description help?

14

Constraint Satisfaction Search

Constraint Satisfaction Problem (CSP):

� state: values of a set of variables

� goal : test if a set of constraints are met

� operators : set values of variables

� general search can be used, but specialized solvers for CSP work

better

15

Constraints
� Unary, binary, and higher order constraints: how many variables

should simultaneously meet the constraint

� Absolute constraints vs. preference constraints

� Variables are defined in a certaindomain , which determines the

possible set of values, either discrete or continuous.

This is part of a much more complex problem called constrained

optimization problems in operations research consisting of cost

function (either minimize or maximize) and several constraints.

Problems can be linear, nonlinear, convex, nonconvex, etc.

Straight-forward solutions exist for a limited subclass of these (for

example, for linear programming problems can be solved by the

simplex method).
16



CSP: continued

� CSPs include NP-complete problems such as 3-SAT, thus finding

the solutions can require exponential time.

� However, constraints can help narrow down the possible options,

therefore reducing the branching factor. This is because in CSP,

the goal can be decomposed into several constraints, rather than

being a whole solution.

� Strategies: backtracking (back up when constraint is violated),

forward checking (do not expand further if look-ahead returns a

constraint violation). Forward checking is often faster and simple

to implement.

17

Informed Search (Chapter 4)

From domain knowledge, obtain an evaluation function .

� best-first search: order nodes according to the evaluation function

value

� greedy search: minimize estimated cost for reaching the goal –

fast, but incomplete and non-optimal.

� A�: minimize f(n) = g(n) + h(n), where g(n) is the

current path cost from start to n, and h(n) is the estimated cost

from n to goal.

18

When Greedy Search Fails

Q
N

K

N

NN

K

KK

� Remove minimum number of pieces so that no piece is attacked

� Greedy strategies: most attacked, most attacking, or sum of both,

etc.

Is there any other greedy strategy?

19

Greedy Solutions

K K

KK

N

N

K

K

Most attacking or most attacked.

� 5 pieces removed, 4 pieces remaining.

20



Actual Optimal Solution

Q

K K

KK

� 4 pieces removed (minumum!), 5 pieces remaining.

By looking at special cases, we can find the rule that applies to a

certain case, but that may not apply to every case.

21

Adjusting the Operators

Allowing different kinds of operators can help:

� In the previous example, the only operation allowed was to

remove a piece. What if we allow re-adding a piece?

� If re-adding is allowed, solutions can be found where one Q can

be added where there are four Ks.

� Is there a greedy estimate function for this case?

22

Key Points

� DLS, IDS, BDS search order, expansions, and queueing

� DLS, IDS, BDS evaluation

� DLS, IDS, BDS: suitable domains

� Repeated states: why removing them is important

� Constraint Satisfaction Search: what kind of domains? why

important?

� Best-first, greedy, and A� search. How they differ.

� Why greedy search can fail?

23

Next Time (and Beyond)
� More informed search: Chapter 4

� A�

� Heuristics

� Memory bounded search: Iterative deepening A�

� Hill-climbing

� Simulated annealing

24


