Neurmorphic Architectures

Kenneth Rice and Tarek Taha Clemson University

Historical Highlights

Analog VLSI

- Carver Mead and his students pioneered the development aVLSI technology for use in neural circuits
- They developed a silicon retina which electronically emulated the first 3 layers of the retina

Image from [3]

Artificial Neural Network Chips

- Early neuromorphic architectures were artificial neural network chips
- Examples:
 - ETANN : (1989) Entirely analog chip that was designed for feed forward artificial neural network operation.
 - Ni1000 : (1996) Significantly more powerful than ETANN, however has narrower functionality

SYNAPSE-1 System Architecture

SYNAPSE-1 is a modular system arranged as a 2D array of MA16s, weight memories, data units, and a control unit

Image from [6]

Modern Architectures: Custom Circuits

Neurogrid

- (2005) Neurogrid is a multi-chip system developed by Kwabena Boahen and his group at Stanford University [9]
 - Objective is to emulate neurons
 - Composed of a 4x4 array of Neurocores
 - Each Neurocore contains a 256x256 array of neuron circuits with up to 6,000 synapse connections

The FACETS Project

- (2005) Fast Analog
 Computing with Emergent
 Transient States (FACETS)
 - A project designed by an international collective of scientists and engineers funded by the European Union
 - Recently developed a chip containing 200,000 neuron circuits connected by 50 million synapses.

Image from [9]

Torres-Huitzil: FPGA Model

- Torres-Huitzil et. al (2005) designed an hardware architecture for a bio-inspired neural model for motion estimation.
 - Architecture has 3 basic components which perform spatial, temporal, and excitatory-inhibitory connectionist processing.
 - Observed approximately 100 x speedup over Pentium 4 processor implementation for 128x128 images

CMOL based design

Developed by Dan Hammerstrom

HTM on FPGAs

• Implemented on a Cray XD1

PEs on FPGA

Large Scale Simulations

- IBM:
 - Blue Brain Project: IBM & EPFL (Switzerland)
 - IBM Almaden Research Center
- Los Alamos National Lab
- Air Force Research Laboratory (Rome, NY)
- Academia:
 - Portland State University
 - Royal Institute of Technology (KTM, Sweden)

AFRL PS3 Cluster

For more information

- Visit Institute of Neuromorphic Engineering:
 - http://www.ine-web.org/

References

- [1] Neuromorphic, http://en.wikipedia.org/wiki/Neuromorphic>.
- [2] Hammerstrom, D. "A Survey of Bio-Inspired and Other Alternative Architectures," in Waser, Rainer (ed.) Nanotechnology. Volume 4: Information technology II. Weinheim: Wiley-VCH, pp. 251-282, 2006.
- [3] Carver Mead, http://en.wikipedia.org/wiki/Carver_Mead
- [4] Holler, M., et al. "An Electrically Trainable Artificial Neural Network (ETANN) with 10240 "Floating Gate" Synapses," International Joint Conference on Neural Networks, 1989.
- [5] Nestor, I., Ni1000 Recognition Accelerator Data Sheet, 1-7, 1996.
- [6] Ramacher, U. et al. "SYNAPSE-1: a high-speed general purpose parallel neurocomputer system, " IPPS (774-781). 1995.

References

- [7] R. Serrano-Gotarredona, T. et al. "A Neuromorphic Cortical Layer Microchip for Spike Based Event Processing Vision Systems," IEEE Trans. on Circuits and Systems, Part-I. Vol. 53, No. 12, pp. 2548-2566, December 2006.
- [8] Serrano-Gotarredona, R., et al. "AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems,", *Advances in Neural Information Processing Systems (NIPS)*, 18: 1217-1224, Dec, Y. Weiss and B. Schölkopf and J. Platt (Eds.), MIT Press, 2005
- [9] Brains in Silicon,http://www.stanford.edu/group/brainsinsilicon/index.html.
- [10] FACETS: Fast Analog Computing with Emergent Transient States, http://facets.kip.uni-heidelberg.de/index.html.
- [11] Graham-Rowe, D. "Building a Brain on a Silicon Chip," in Technology Review, March 25, 2009. [Online]. Available: http://www.technologyreview.com/computing/22339/page1/. [Accessed March 28, 2009].
- [12] C. Torres-Huitzil, et. al. "On-chip Visual Perception of Motion: A Bio-inspired Connectionist Model on FPGA, "Neural Networks Journal, 18(5-6):557-565, 2005.