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A Road to the Principles: Taking the
Brain’s Perspective

Agenda
Solving engineering problem(s) using principles in 
biology of brain (vision)
Summarize the panel's goals

Example
Considering Biology of Vision To Solve A 
Challenging Engineering Problem
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WHY?

Unprecedented growth in complexity forUnprecedented growth in complexity for 
sensor systems due to --

increased computer processing capabilities
new understanding of low-level sensor phenomenology
improved signal processing and information fusion 
algorithms 
expanded communication infrastructure

Biological organisms routinely accomplish --
diffi lt i d d i i ki t k i h li tidifficult sensing and decision-making tasks in a holistic 
manner
implying efficient underlying mechanisms to process 
i f ti
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information



WHAT?WHAT?

The inspiration is biological vision thatThe inspiration is biological vision that ...
consists of highly coordinated distributed 

hierarchical modular functional units  
performs vast and complex sensory and motor 

activities; and 
for the most part, is accurate and fast enough o t e ost pa t, s accu ate a d ast e oug

to accomplish required functions.

Our Objective is to investigate ‘just’ twoOur Objective is to investigate just  two 
such computational vision functions …

distortion invariance
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HOW? 
DISTORTION INVARINACE IN BIOLOGY

’ lBrain’s Sensory Recognition Functionalities: 
Hundreds of tasks. Some examples -

Shape color depth orientation scale rotationShape, color, depth, orientation, scale, rotation, 
spatial and temporal dynamics

Refinement/re-focusing
C i tiCommunication among sensory organs

The interest in biology is for:
Distortions such as rotation scale translationDistortions such as rotation, scale, translation, 

illumination, aspect, pose, clutter- invariance ……
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HOW?
ATTENTION IN BIOLOGY

The attention mechanism: 
an integral part of biological information processing 
systemssystems 
may provide a reliable tool for selective information 
processing

The interest in biology is for:
allocation of computational resources in terms of 
where, what, and how to sense and process 
information

Guided by attention for effective learning
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Guided by attention for effective learning



HOW?
LEARNING IN BIOLOGY

Three types of learning exist in the biological 
vision system: 
Unsupervised learning in cerebral cortex; 
Supervised learning in cerebellum; 
Reinforcement learning in the basal ganglia. 

All learning in the brain forms a rapid parallel g p p
forward recognition. 
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AN ENGINEERING CARTOONAN ENGINEERING CARTOON
A notional model of Attention driven Invariance 

and Reinforcement learning (I&RL)
Working 

Learning 
h i Reinforceme
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AttentionMotor 

memory 

Short-term interactions

Bounded features

Top-down flow of 
attention

Feature 
extraction
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nt learning

memoryAttentionmechanism

Bottom-up flow of 
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Attention 
focus

information

Observed/me-
asured data

World model
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HOW? 
In Engineering
We propose a biologically inspired vision model for p p g y p
Automatic Target Recognition (ATR) with I&RL

The ATR is implemented in Adaptive Critic Design (ACD) 
frameworkframework. 

Such ATR implementation can be viewed as an adaptive 
optimal control of dynamic stochastic systems

C f f fACD provides a good infrastructure for approximation of the 
dynamic programming

Two learning algorithms are implemented: g g
Heuristic Dynamic Programming (HDP) and Dual Heuristic 
dynamic Programming (DHP). 
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HDP-BAESED ATR

HDP is one type of Adaptive Critic 
Design (ACD).Design (ACD). 
Three major components in HDP:

Action networkAction network
Critic network
ATR plantATR plant.
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NETWORK STRUCTURE OF HDP

Figure 2: Schematic diagram for HDP design
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Figure 2: Schematic diagram for HDP design



DHP-BASED ATR

Major three components in DHP:Major three components in DHP:
Action network
C iti t kCritic network
ATR plant

Two back-propagation (BP) to compute:
MSJ: model state JacobianMSJ: model state Jacobian
MCJ: model control Jacobian
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NETWORK STRUCTURE OF DHP
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Figure 4: Schematic diagram for DHP design
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Figure 4: Schematic diagram for DHP design



SIMULATION EXPERIMENT

HDP-ATR and DHP-ATR are 
compared statisticallyp y

For 5 different image transformations with 
synthetic distortions of a monkey face y y
image
For face authentication using out-of-plane 
rotation of 2-D face data in UMIST 
database.
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MULTI-RESOLUTION
An imitation of attention-driven pattern p
recognition in human cognitive process.  
The multi-resolution image bank is constructed 

i D b hi ’ l l 4 l tusing Daubechie’s level 4 wavelet. 

Figure 5: Multi-resolution image bank
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HDP f MULTI RESOLUTIONHDP for MULTI-RESOLUTION
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Figure 6: HDP learning of multi-resolution ATR



DHP f MULTI RESOLUTIONDHP for MULTI-RESOLUTION

Resolution level vs Iteration Critic error vs Iteration
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Figure 7: DHP learning of multi-resolution ATR



COMPARISON OF HDP d DHPCOMPARISON OF HDP and DHP
Table 1: Comparison of different transformations

Algorithm Transformation

One trial Three trials

i lAlgorithm Transformation Succes
s rate

Average 
steps

Success rate Average trials Average 
steps

Multi-Resolution 84% 6.14 89% 1.01 6.42

180° rotation 84% 11 96 93% 1 29 13 78

HDP

180 rotation 84% 11.96 93% 1.29 13.78

Translation 79% 6.41 97% 1.22 7.15

Scale 87% 5.97 99% 1.16 6.75

O l i 83% 6 20 97% 1 27 7 73Occlusion 83% 6.20 97% 1.27 7.73

AVERAGE 83% 7.34 95% 1.19 8.37

Multi-resolution 55% 6.04 96% 1.80 6.28

180° i 57% 11 30 88% 2 10 11 48

DHP

180° rotation 57% 11.30 88% 2.10 11.48

Translation 64% 6.07 80% 2.06 6.55

Scale 56% 5.82 76% 2.18 6.34
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Occlusion 48% 5.71 88% 2.15 6.74

AVERAGE 56% 6.99 86% 2.06 7.48



FACE AUTHENTICATIONFACE AUTHENTICATION

We evaluate the HDP and DHP learning using 2 DWe evaluate the HDP and DHP learning using 2-D
face data from the UMIST database.
Each image sequence used captures the 90° out-of-g q p
plane rotation for the 20 subjects in the face
database.

Figure 20: Image sequence for subject ‘1a’ in UMIST database
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FACE AUTHENTICATION DISCUSSION

S tSuccess rate:
Overall HDP across all subjects are higher;
DHP achieves 100% success rate more
often for individual subjects.

A trade-off between robustness in general 
and accuracy in particular.and accuracy in particular.
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CONCLUSIONCONCLUSION

Implementation of a plausible (and effective) bio-
inspired ATR engineering model for 

Both bottom-up and top down vision processingBoth bottom up and top down vision processing
Seamless integration of I&RL 

DHP based ATR outperforms that of HDP inDHP-based ATR outperforms that of HDP in 
specific cases, but is not as robust as HDP as far as 
success rate is concerned.
C i f HDP d DHP d t tComparison of HDP and DHP demonstrates a 
trade-off in design of learning algorithms.
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O fOutline of panel discussion
Do you think there is a single dominantDo you think there is a single dominant 
functional/operational principles of brain function and 
biological intelligence? Why?
What is (are) your favorite principle(s) of brainWhat is (are) your favorite principle(s) of brain 
function/biological intelligence, and why do you think so?
If you think our current ideas are lacking in any way, what 
kind of breakthroughs would be needed, in which fields?kind of breakthroughs would be needed, in which fields?

thoeretical/conceptual breakthrough (conceptual framework, etc.
mathematical breakthrough (new mathematical formalism)
experimental breakthrough (experimental methodology)p g ( p gy)
technological breakthrough (new imaging method, new  ways to 
measure activity, new ways to stimulate, etc.)
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