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ABSTRACT 

 

Finite Element Decomposition of the Human Neocortex. 

(May 1998) 

Seeling Chow, B.S., Texas A&M University 

Chair Advisory Committee:  Dr. Bruce H. McCormick 

 

The finite element decomposition of the human neocortex provides a structural 

information framework for the visualization and spatial organization of the neocortex at 

progressive levels of detail.  The decomposition satisfies neuroanatomical consistency, a 

set of constraints defined by neuroanatomists' needs, the anatomical structure of the 

brain, and the positioning of neurons inside the neocortical tissue.  The finite elements 

provide the boundaries for numerical grid generators to establish boundary-conforming 

local coordinate systems for the systematic study and visualization of cortical neuron 

populations.  The decomposition method is implemented with a newly developed set of 

object-oriented software tools. 



iv 

 

 

 

 

 

 

 

To my parents 



v 

ACKNOWLEDGEMENTS 

 

I would like to thank Dr. Bruce McCormick for his invaluable guidance, inestimable 

insight, and encouragement.  His vision provided the basis for many of the ideas in this 

thesis.  I thank Dr. Nancy Amato for her moral support and personal advice throughout 

my graduate course work.  Also, I thank Dr. Donald House for introducing me to the 

wonderful possibilities of computer graphical visualization and Dr. Ian Russell for his 

expertise and excitement for neuroanatomy.  I extend my gratitude to Leonardo Borges 

for his supportive friendship and the memorable times at the laboratory.  I thank my 

peers Michael Stembera, Brent Burton, Burchan Bayazit, and Michael Nichols for the 

good times in graduate school.  I thank Suzanne for her compassion and persistence 

throughout the development of this thesis.  Finally, I thank my family for always being 

there. 



vi 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................iii 

ACKNOWLEDGEMENTS ................................................................................................ v 

TABLE OF CONTENTS ...................................................................................................vi 

LIST OF FIGURES..........................................................................................................viii 

CHAPTER  

I INTRODUCTION................................................................................................... 1 

A. Structural Information Frameworks ............................................................ 2 
B. Finite Element Mesh as Structural Information Framework....................... 5 
C. Objectives .................................................................................................... 7 

 
II 3D SURFACE RECONSTRUCTION .................................................................. 10 

A. Introduction ............................................................................................... 10 
B. The Reconstruction Process ...................................................................... 11 
C. Reconstruction Based on Delaunay Triangulation .................................... 12 

 
III FEATURE EXTRACTION................................................................................... 20 

A. Introduction ............................................................................................... 20 
B. Principal Curvatures .................................................................................. 21 
C. Shape Metrics from Principal Curvatures ................................................. 26 
D. Topological and Geometric Features......................................................... 30 

 
IV B-SPLINE TENSOR PATCHES .......................................................................... 34 

A. Introduction ............................................................................................... 34 
B. B-spline Tensor Product ............................................................................ 35 
C. Smoothing Criterion .................................................................................. 37 
D. Smooth Surface Fitting over a Rectangular Domain................................. 39 
E. Blending B-spline Tensor Product Patches ............................................... 42 

 



vii 

   Page 
 
V OVERVIEW OF NEOCORTICAL FINITE ELEMENT DECOMPOSITION ...45 

A. Introduction to Finite Element Mesh Generation...................................... 45 
B. The Neocortical Finite Element Decomposition Problem......................... 46 
C. Methodology for Neocortical Finite Element Decomposition .................. 52 
D. Decomposition into Macro Elements ........................................................ 55 

 
VI METHODOLOGY................................................................................................ 59 

A. Anatomical Division into Major Gyri ....................................................... 59 
B. Decomposition of Gyral Folds into Macro Elements................................ 60 
C. Reparameterization of Macro Elements .................................................... 62 
D. Construction of Hexahedral Macro Elements ........................................... 68 
E. Division into Hexahedral Finite Elements ................................................ 71 

 
VII OBJECT-ORIENTED SOFTWARE TOOLS....................................................... 72 

A. Introduction ............................................................................................... 72 
B. Brief Descriptions of Software Tools........................................................ 72 
C. Application of Software Tools to the Human Neocortex.......................... 74 

 
VIII RESULTS.............................................................................................................. 77 

A. Contour Extraction .................................................................................... 77 
B. Solid Model Reconstruction of the Right Hemisphere ............................. 80 
C. Extraction of Middle Temporal Gyrus ...................................................... 86 
D. Macro Element Decomposition................................................................. 87 
E. Feature Extraction for Reparameterization ............................................... 87 
F. Finite Element Decomposition.................................................................. 94 

 
IX SUMMARY AND FUTURE WORK................................................................. 101 

A. Summary ................................................................................................. 101 
B. Future Work ............................................................................................ 101 

 
REFERENCES................................................................................................................ 105 
 
VITA ............................................................................................................................... 110 



viii 

LIST OF FIGURES 

 

 

FIGURE Page 

1 Reconstruction stages ..............................................................................................11 

2 Voronoi diagram and Delaunay triangulation .........................................................13 

3 IVS and EVS of two contours .................................................................................15 

4 Nearest neighbor to circumcenter............................................................................16 

5 Three types of tetrahedra in 3D Delaunay triangulation .........................................17 

6 Non-solid connections .............................................................................................17 

7 Inserting internal points...........................................................................................18 

8 Finding normal curvature for curve Ci ....................................................................22 

9 Construction of a bivariate polynomial ...................................................................26 

10 Unfolding a vertex and its incident angles ..............................................................28 

11 Four types of topological regions ............................................................................31 

12 Smoothing function Fg,h(p)......................................................................................41 

13 Blending Surface .....................................................................................................43 

14 Neurons implanted inside a neocortical finite element ...........................................47 

15 Grid generated local coordinate system within a neocortical 
finite element...........................................................................................................47 

16 Representation of a finite element...........................................................................48 

17 Three types of dividing boundaries for neuroanatomical 
consistency ..............................................................................................................51 

18 Mapping a template onto the object domain ...........................................................53 



ix 

FIGURE Page 

19 Hierarchical division of the human brain into its anatomical 
parts .........................................................................................................................54 

20 Decomposition of a major gyrus into macro elements............................................56 

21 Different gyral shapes and their lines of symmetry.................................................57 

22 Mapping gyral line of symmetry at different levels of detail..................................58 

23 Sectional view in human brain atlas........................................................................60 

24 Relationships between iso-parametric curves and principal 
curvature directions .................................................................................................63 

25 Reparameterizing macro elements for finite element 
decomposition .........................................................................................................69 

26 Propagation of reference template to tensor product 
parameter space .......................................................................................................70 

27 Extracted contours for the exterior and interior surfaces of the 
human neocortex .....................................................................................................78 

28 Ten contours for the exterior neocortical surface of the right 
hemisphere cross-sectioned through the coronal plane at 
0.7mm thickness......................................................................................................79 

29 Sagittal view of the reconstructed exterior neocortical surface 
of the right hemisphere............................................................................................81 

30 Sagittal view of the reconstructed interior neocortical surface 
of the right hemisphere............................................................................................82 

31 Angular view of the reconstructed neocortex of the right 
hemisphere ..............................................................................................................83 

32 Front view of the reconstructed neocortex cut through the 
coronal plane at 38mm from the back .....................................................................84 

33 Front, top, bottom, left, and right views of the reconstructed 
neocortex cut through the coronal plane at 38mm from the 
back .........................................................................................................................85 

 



x 

FIGURE Page 

34 Middle Temporal Gyrus extracted from the Delaunay 
triangulation of the neocortex of the right hemisphere ...........................................86 

35 Determining the gyral line of symmetry for the exterior 
surface of the Middle Temporal Gyrus ...................................................................88 

36 Determining the gyral line of symmetry for the interior 
surface of the Middle Temporal Gyrus ...................................................................89 

37 Exterior surface of the Middle Temporal Gyrus decomposed 
into six quadrilateral macro elements......................................................................90 

38 Interior surface of the Middle Temporal Gyrus decomposed 
into six quadrilateral macro elements......................................................................91 

39 Feature extraction for reparameterization ...............................................................92 

40 Shape index color mapped onto the surface of a gyrus ...........................................93 

41 Constructing hexahedral finite elements .................................................................95 

42 Neuroanatomically consistent finite elements for a segment 
of the Middle Temporal Gyrus................................................................................96 

43 Neuroanatomically consistent finite elements for a segment 
of the Middle Temporal Gyrus (bottom view) ........................................................97 

44 Neuroanatomically consistent finite elements for the Middle 
Temporal Gyrus (side view)....................................................................................98 

45 Neuroanatomically consistent finite elements for the Middle 
Temporal Gyrus (bottom view)...............................................................................99 

46 Neuroanatomically consistent finite elements for the Middle 
Temporal Gyrus (front view) ................................................................................100 

 



  1 

CHAPTER I 
 

INTRODUCTION 

 

Neuroscience research has precipitated a rising influx of visual information in need 

of an organizing framework.  A vast repository of information is accumulating from the 

various contributing fields, e.g. computational neuroscience, visualization-based 

neuroanatomy, and functional imaging.  Biomedical imaging techniques, such as MRI 

and brain cryosectioning, are pouring forth a plethora of anatomical data, while 

researchers in brain mapping are making significant advances in collecting functional-

structural data using fMRI.  This agglomeration of valuable information lacks an 

organizing framework by which to manage, visualize, analyze, model, and distribute the 

information at both global and local levels of detail.  Researchers in structural 

informatics term this organizational void as the need for a structural information 

framework [11].  Their definition encompasses a spatial-structural model for the 

brain along with other media sources, such as journal literature, experimental findings, 

and conceptual models.  We concern ourselves with the core of the structural 

information framework: a spatial organizational framework for the human brain. 

Finite element mesh generation, a technique long practiced in fluid mechanics and 

computational physics and an emerging discipline in computer aided geometric design 

(CAGD), decomposes a spatial object into manageable sub-components.  The 

parcellation, in conjunction with supporting data structures, establishes a spatial database 

Journal model is IEEE Transactions on Visualization and Computer Graphics. 
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useful for the management, analysis, and visualization of functional-structural 

information.  The resultant scaffolding alleviates the limitations and combines the 

advantages of current visualization and organizational techniques in computational 

neuroscience.  The finite element mesh functions as a structural information framework, 

offering the benefits of 3D modeling and information visualization.  Further, the finite 

elements provide the scaffolding for a virtual reality environment where neuron 

populations can be graphically modeled, producing a three-dimensional neuron 

arboretum [4].   The 3D finite element mesh serves as the underlying framework behind 

the exploratory and navigational system proposed in Exploring the Brain Forest [12].  

This hierarchical environment coordinates the graphical modeling and structural 

information management at both the tissue and cellular levels. 

A. Structural Information Frameworks 

Brain mapping is motivating the integration of 3D visualization with structural-

functional data in order to build a ubiquitous structural information framework.  

Currently, the major contributing research projects include the Human Brain Project 

(http://www.nimh.nih.gov/research/hbp.htm), the Voxel Man (http://users.ox.ac.uk/ 

~uzdl0037/voxman.html), the Visible Human (http://wardens.tamu.edu/images/ 

vishum.html), the Digital Anatomist (http://www7.biostr.washington.edu/slideshows/ 

Quickview/title.html), and Human Brain Mapping (http://www.journals.wiley.com/ 

wilcat-bin/ops/ID1/1065-9471/prod).  The prevailing frameworks utilize both 2D and 3D 

imaging techniques, each with its advantages and inherent limitations. Two emerging 

structural information frameworks are flat maps and brain atlases. 
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The goal of flat mapping is synonymous to the mapmaker's problem, which is to find 

a flat representation of a curved surface.  With the aid of computer graphical modeling, 

researchers have developed semi-automatic methods for unfolding the convoluted 

cortical tissue into a flat (or ellipsoid) 2D map [53], [13], [18]. These techniques involve 

the flattening of a polyhedral surface representation to an ellipsoidal or planar graph by 

optimizing a distance metric that seeks to minimize distortion. Their efforts have 

produced flat maps for the primary visual cortical area, labeled V1, of a macaque 

monkey; the entire right hemisphere of layer 4 of the neocortex of a macaque monkey; 

and the exterior cortical layer of a human brain.  Flat maps ease visualization of the 

convoluted tissue in many ways; they provide a gobal overview, simplify navigational 

complexity, and preserve topological relationships along the surface representation.  The 

reduction of spatial complexity from 3D to 2D facilitates the organization and mapping 

of functional information to the cortical surface [17].  However, flat maps pose inherent 

limitations common to procedures that restrict complex 3D structures to 2D images.  

Their surface-based approach discards the spatial structure among the layers within the 

neocortex; furthermore, pressing the folded surface introduces additional distortion and 

loss of spatial-structural information.  The loss of spatial dimension can be partially 

compensated with the color mapping of shape metrics onto the planar surface, but such 

attempts complicates the mapping of functional information and ignores the benefits of 

3D imaging of the brain as a volume. 

Brain atlases overcome the limitations of flat maps by preserving the 3D 

representation of the human brain.   Much of their development stems from surgical 
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planning [59], [25], [35], teaching [60], modeling, and anatomical studies [19].  A brain 

atlas is comprised of either a collection of carefully labeled serial cross sections or a 3D 

reconstructed computer graphical model. 

To produce sectional brain atlases, neuroanatomists have traditionally hand-drawn or 

systematically photographed sections of the brain, manually extracting highly detailed 

structures.  Automatic labeling schemes applied to digitized drawings, such as forward 

transforms [38], show promise for the use of sectional atlases as an organizing 

framework, but the restricted 2D sectional viewing shares the limitations of flat maps for 

visualization purposes.  Researchers in functional imaging have extended sectional 

viewing to the "corner cube environment," which simultaneously displays the coronal, 

sagittal, and horizontal sections on the inner walls of a cube [52].  The superimposed 

plots of brain activation data onto the voxels of the cube provide only the location of the 

activation, leaving out the spatial structural information.  In sum, sectional viewing 

affords only restricted spatial relationships between functional and structural 

information. 

A more comprehensive and ambitious approach to brain atlas generation is the 

reconstruction of serial cross sections into a 3D graphical model.  Such 3D brain atlases 

adopt two types of representation: voxel-based and surface-based.  A voxel is the three-

dimensional equivalent of a pixel, and the construction of voxel-based atlases involves 

the segmentation of a voxel dataset, the collection of digitized serial cross sections, into 

anatomical sub-structures.  Segmentation techniques often employ a priori knowledge, 

human interaction, and statistical methods, such as Bayesian probability, to categorize 
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the voxels into appropriate anatomical parts.  Researchers working on the Visible 

Human project and the Voxel Man project have constructed 3D human brain atlases 

utilizing these volume classification schemes [36].  The alternative approach is to 

represent the anatomical structures as explicit surfaces.  Most of the existent surface-

based atlases model the brain with polyhedral surfaces constructed using serial surface 

reconstruction or conversion algorithms applied to the voxel datasets, e.g. the wrapper 

algorithm [27] or the marching cubes algorithm [43].  Whether voxel-based or surface-

based, 3D brain atlases retain the spatial structural information, but they lack the global 

overview and navigational simplicity flat maps provide. Maneuvering around the 3D 

atlases demands a framework and an interface that provides more than just rotation, 

translation, and labeling; effective navigation and visualization necessitates an 

organizing framework currently lacking in these atlases. 

B. Finite Element Mesh as Structural Information Framework 

The exploratory environment in Exploring the Brain Forest [12] utilizes a structural 

information framework that overcomes the limitations of brain atlases and flat maps.  

Further, it facilitates experimental studies, structural and functional modeling, 

simulations, and numerical analyses at progressive levels of detail: from the global 

anatomy of the brain to segments of neocortical tissue embedded with 3D graphical 

neurons.  This structural information framework, based on a finite element (FE) mesh 

generated from the human neocortex, provides the necessary hierarchical spatial 

information management and 3D visualization system. 
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The neocortical finite element decomposition first partitions the brain into its four 

anatomical lobes; at the next finer level of detail, the lobes are divided into their major 

anatomical gyri.  Next, the gryi are decomposed into macro elements and then each 

macro element into finite elements.  At the finest level of detail, numerical grid 

generation within the wedge-shaped finite elements establishes a boundary-conforming, 

three-dimensional local coordinate system.  Then, each neuron in a neuron morphology 

data repository, whether a traced biological neuron or a synthetically generated neuron, 

can be assigned to the FE which contains its soma. The cerebral cortex, so modeled, can 

be viewed as a giant �chest of drawers� where a �drawer� (any selected FE or cluster of 

neighboring FEs) can be �opened� as a file and its population of neurons visualized.  

These FEs therefore define a file structure isomorphic to the neocortex as modeled and 

visualized at both cellular and tissue levels. 

To build a neocortical finite element mesh, we developed and implemented a method 

to decompose the neocortex into an unstructured grid of hexahedral finite elements; as a 

result, the 3D mesh is a solid model of the neocortex, rather than just a surface model.  

The decomposition is based on anatomical structures, such as sulci and gyri, the 

traditional landmarks for anatomical registration and functional imaging. The parametric 

boundaries of each hexahedral FE, defined by six surface patches, furnish the necessary 

constraints to numerically generate 3D grids within the FE [4].  As described in 

Exploring the Brain Forest, the finite element decomposition of the neocortex in 

conjunction with grid generation provides a 3D visualization environment and an 

information management system. 
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C. Objectives 

 The five objectives of this research are listed below: 

1. 3D reconstruction of the neocortex 

2. Feature extraction from the boundary representation model 

3. Neuroanatomically-consistent finite element decomposition 

4. Grid generation for the finite element model 

5. Development of supplemental object-oriented software tools 

C.1. 3D Reconstruction of the Neocortex 

The first objective is to reconstruct a solid model of the human neocortex from cross-

sectional slices of a post mortem human brain.  The dataset for the reconstruction 

consists of 271 x 512 x 512 images of a 76-year-old normal female human cadaver brain 

cryosectioned through the coronal plane [61].  Contours of the neocortex are manually 

traced using a third party application (Elastic Reality from Avid Technologies, Inc.). 

Then, a Delaunay-based surface reconstruction algorithm generates triangulated surfaces 

for both the exterior and interior sides of the neocortical tissue.  Thus, the inner and 

outer surfaces jointly define the shell of the neocortex, producing a solid model called a 

Boundary Representation (B-rep) in the field of Computer Aided Geometric Design 

(CAGD). 

C.2. Feature Extraction from the Boundary Representation Model 

The second objective is to extract geometric and topological features from the B-rep 

model.  First, principal curvature values, defined loosely as the curvature of a point on a 
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surface, and their corresponding directional vectors are computed.  Second, shape 

metrics, such as intrinsic curvature and shape index, are derived from the principal 

curvature information.  Third, features, e.g. topological regions and extremal points, are 

extracted using various search algorithms and filters. 

C.3. Finite Element Decomposition 

The third objective is to decompose the neocortical solid model into hexahedral 

finite elements satisfying neuroanatomical consistency, a set of constraints defined by 

neuroanatomists' needs, the anatomical structure of the brain, and the positioning of 

neurons inside the neocortical tissue.  The decomposition follows the mapped template 

approach, requiring a coarse level partitioning into macro elements, or mapped 

templates, and then the decomposition of finite elements within each macro element.  

This approach is widely used in commercial CAGD software and provides a finite 

element mesh closest to a rectangular grid.  In addition to the boundaries of the solid 

model, the finite element mesh conforms to the three boundaries suggested by 

neuroanatomical consistency: major sulcal boundaries, gyral lines of symmetry, and 

gyral ribs.  

C.4. Grid Generation for the Finite Element Model 

The fourth objective is to establish local curvilinear coordinate systems within the 

finite elements of the solid model using numerical grid generators.  Batte [4] has applied 

3D ITTM grid generators and several 3D variational grid generators [37] to parametric 

solid models of neocortical tissue segments.  The finite element decomposition provides 
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the necessary boundary constraints for numerical grid generation inside the volume 

defined by the six surfaces of a hexahedral finite element. 

C.5. Object-Oriented Software for Finite Element Decomposition 

The fifth objective is to develop object-oriented software tools compatible with 

common graphical formats and adaptable to future research.  The development of these 

tools is based on a class library derived from the Visualization Tool Kit v1.3 (vtk) [56].  

Our classes of geometric objects are directly compatible with the suite of software tools 

included in vtk.    
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CHAPTER II 
 

3D SURFACE RECONSTRUCTION 

A. Introduction 

Reconstructing a three-dimensional (3D) surface from a set of planar contours is a 

common obstacle in biomedical imaging.  Various imaging techniques in clinical 

medicine, such as computed axial tomography (CAT), positron emission tomography 

(PET), magnetic resonance imaging (MRI), and cryosectioning, provide a series of 2D 

planar cross-sections.  Motivated by the need for more interpretative visualization and 

functional analysis, building 3D surface models through serial reconstruction has 

received much attention in biomedical research [3], [8], [50].  Surface reconstruction 

techniques include volume rendering, iso-surface algorithms, parametric surface fitting, 

triangulation, and multiaxial triangulation, which optimizes triangulation by examining 

sections taken through different cutting planes.   Different methods offer their own 

benefits and drawbacks ranging from robustness and computational requirements to 

eloquence, aesthetic quality, compression, and representational value.  For example, as 

discussed in Chapter V, parametric representations offer boundary constraints for grid 

generation.  Users should select the reconstruction technique that best suits their needs. 

One particular surface reconstruction technique, based on the Delaunay triangulation, 

offers speed, robustness, and convenience.  It combines the approaches of surface fitting 

and voxel reconstruction techniques to produce a triangular mesh representation of the 

3D surface model.   
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B. The Reconstruction Process 

The surface reconstruction process consists of five stages.  They are contour 

extraction and the four stages of reconstruction [45]: correspondence problem, tiling, 

branching, and surface fitting.  First, contours must be extracted from the planar cross 

sections, and, preparatory for triangulation, the contours are represented as simple 

polygons with uniform orientations, i.e. counter-clockwise or clockwise.  Second, the 

correspondence problem involves the determination of the coarse topology of the final 

surface (see Figure 1).  When there are multiple contours in a section, contours must be 

organized into groups representing individual objects.  Third, the tiling problem involves 

the generation of a mesh that optimizes the topological adjacency relationships between 

points on pairs of contours from adjacent sections.  The optimization factor is subject to 

individual needs and preferences.  Common techniques involve volume maximization, 

surface area minimization, or edge length minimization.  Fourth, the branching problem 

Tiling 
Problem 

Branching 
Problem

Correspondence 
Problem 

Figure 1:  Reconstruction stages (based on [45]). 
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arises as a special case of the tiling problem when an object is represented by a different 

number of contours in adjacent sections.  Fifth, the surface-fitting problem involves 

fitting the "best" surface to the mesh generated by the solution to the tiling and 

branching problems. 

C.  Reconstruction Based on Delaunay Triangulation 

Surface reconstruction based on Delaunay triangulation has been investigated [9], 

[10], implemented [13], [18], and validation tested [25] for the serial reconstruction of 

the human brain with satisfactory quantitative and qualitative results.  This technique's 

speed, robustness, compatibility with common graphical formats, and availability as a 

public domain software tool are leveraging its popularity and credibility for applications 

requiring quick but accurate surface reconstruction. 

The reconstruction method exploits the properties of Delaunay triangulations and 

Voronoi skeletons to solve the four reconstruction sub-problems.  It produces a 

triangular tessellation of the surface that exhibits the contour containment property, 

which means the intersections between the reconstructed 3D mesh and the original 

cutting planes yield the original contours.  Contour containment is desirable in many 

instances, but it can create jagged or "shrink-wrapped" meshes, especially if the 

sampling interval along the cutting axis is significantly larger than the sampling interval 

along the cross sections.  Fitting patchwise tensor surfaces to the 3D tessellation, as 

discussed in Chapter IV, can alleviate such undesirable effects. 

Before describing the reconstruction algorithm, the definitions of Voronoi diagrams 

and Delaunay triangulations merit a brief discussion [5].   



  13 

Given a set of n sites P = {pi É=E2 | i = (1�n)}, the Voronoi diagram of P is the 

subdivision of the plane into n regions, one for each site in P, such that the region of site 

p É= P contains all points in the plane for which p is the closest site (see Figure 2).  The 

regions are called Voronoi cells; the boundaries of the regions are called Voronoi edges.  

A Delaunay triangulation is the straight-line-dual of the Voronoi diagram, i.e. 

connecting line segments between sites lying in adjacent Voronoi cells produces the 

Delaunay triangulation.  It exhibits many desirable properties pertinent to reconstruction:  

• The number of triangles in the Delaunay triangulation is at most 2n - 5, where n 

is the number of vertices in the triangulation. 

• Its close relationship to Voronoi diagrams allows fast point location. 

• The Delaunay triangulation maximizes the minimum angles over all 

triangulations. 

Sites

Voronoi 
Cell 

Voronoi 
Edge 

Delaunay
Edge 

Figure 2:  Voronoi diagram (dotted lines) and Delaunay triangulation (filled lines). 
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• Several algorithms are available to efficiently compute the Delaunay 

triangulation [29], [39]. 

Hence, the Delaunay triangulation generates an efficient representation of the cross 

sections, affords an angle-maximal surface tessellation, and has a worst case time 

complexity of O(n2) with an expected time that increases linearly. 

A detailed explanation of a reconstruction algorithm based on Delaunay triangulation 

is provided in [10], [25].  It is summarized as follows: 

1. Compute the 2D Delaunay triangulation of the vertices for each cross section. 

2. Construct the Voronoi skeletons. 

3. For each pair of adjacent cross sections do 

3.1. Extend the two 2D triangulations to one 3D Delaunay triangulation. 

3.2. Remove external tetrahedra and non-solid connections. 

Step 1 of the algorithm is relatively straightforward given the numerous techniques 

available for rapidly computing 2D Delaunay triangulations [5].  After determining the 

Delaunay triangulation for a cross section, the method categorizes the Delaunay triangles 

into internal and external triangles, depending on whether the triangles lie inside or 

outside the contour.  Then, step 2 of the algorithm constructs internal and external 

Voronoi skeletons (IVS and EVS) for each group respectively.  An IVS for a contour 

consists of all the edges dual to an internal Delaunay edge, i.e. an edge shared by two 

adjacent internal Delaunay triangles.  By adaptively inserting points on the closed 

polygon, the IVS converges to the medial axis as the number of points approaches 

infinity.  The medial axis of a polygon is the locus of points with equal distance to at 
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least two contour points; this feature is further discussed in [54].  An EVS for a cross 

section is similar to the IVS, except edges are determined for adjacent external Delaunay 

triangles (see Figure 3).  In a sense, the EVS provides the partitioning of the contours 

within a cross section.  The Voronoi skeletons play a crucial role in the 3D 

reconstruction. 

Step 3 reduces surface reconstruction to computing a solid slice composed of 

tetrahedra between each pair of adjacent cross sections.  The procedure is synonymous 

to sculpting a piece of hardwood.  First, the contours mold a solid block without internal 

details.  Then, a chiseling process eliminates unwanted pieces, exposing the more 

intricate form. 

The solid block is, in fact, the 3D Delaunay triangulation of the vertices in a pair of 

cross sections.  It consists of three types of tetrahedra T1, T2, and T12 constructed through 

a nearest-neighbor approach based on the circumcenter of a triangle.  Given a pair of 

adjacent 2D triangulated cross section P1 and P2, for each triangle t É= P1, the algorithm 

EVS 

IVS 

Figure 3: IVS and EVS of two contours (based on [10]). 
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connects t to the vertex v É= P2 which lies closest to the circumcenter of t; the procedure 

yields the set of tetrahedra T1 (see Figure 4).  Similarly, the converse is performed for all 

triangles t É= P2 and vertices v É= P1 to obtain the set of tetrahedra T2.   The third type of 

tetrahedra T12, which are those with one edge in P1 and another in P2, is constructed by 

finding the intersection of edges between the Voronoi diagram of P1 with the Voronoi 

diagram of P2 projected onto the plane of P1 (see Figure 5).  The solid slice is now in a 

crude form of the final reconstruction as a 3D Delaunay triangulation D. 

The next procedure in Step 3 "chisels away" the non-solid connections and external 

tetrahedra from D to refine the volume defined by the contours.  Non-solid connections 

are tetrahedra that are only connected along an edge or at a single point to one of the two 

planes (see Figure 6); a search through the set of external tetrahedra easily identifies and 

purges them.  Eliminating external tetrahedra relies on the IVS and EVS previously 

defined.  For most cases, simply removing the vertices from D which lie on the external 

P2 

P1 

v 

t 

circumcenter of t 

Figure 4:  Nearest neighbor to circumcenter. 
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Voronoi skeletons of P1 and P2 determined in Step 2 of the algorithm; however, for 

complex cross sections, e.g. two sections where multiple branching occurs, internal 

points must be inserted to produce realistic results (see Figure 7).  An orthogonal 

T1  
 

P2 

P1 

P2 

T2  
 

P1 

T12  
 

P2 

P1 

Figure 5:6 Three types of tetraherals in 3D Delaunay triangulation. 

                                Figure 6:5 Non-solid connections (following [10]). 



  18 

projection of the EVS of P1 onto P2 (or the converse, depending on the branching 

direction) provides the internal vertices and an efficient nearest neighbor approach.  

Because the IVS is a converging approximation to the medial axis, this heuristic step 

uses the skeleton to guide the level of detail sufficient for the projection.  We suggest the 

reader reference [25] for a thorough discussion of the geometric intricacies of step 3.   

The resultant set of tetrahedra defines a volume reconstruction of the contours.  

Extracting the exposed faces, those that are not adjacent to any other face, from the set 

of tetrahedra gives the surface reconstruction.  The time complexity of the reconstruction 

algorithm is in the worst case O(n2), where n is the number of vertices of all the 

contours, but it has an expected running time that increases linearly. 

 The reconstruction algorithm applies the Voronoi skeletons and the 2D 

triangulations to solve the four reconstruction sub-problems: correspondence, tiling, 

branching, and surface fitting.  First of all, the approach resolves the correspondence and 

tiling problem simultaneously for each pair of adjacent cross sections.  The 3D Delaunay 

triangulation corresponds contours belonging to the same object and give a nearest 

a b 

Figure 7:  Inserting internal points (following [10]): (a) solution without
internal vertices, (b) solution with internal vertex. 
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neighbor approach for optimizing topological adjacency.  Second, the EVS projection 

and insertion of internal vertices, as described above, resolve the branching problem.  

Finally, the extracted surface from the volume reconstruction provides the solution to the 

surface-fitting problem.  The technique offers the "best" surface as an angle-optimal 

triangular mesh exhibiting the contour containment property.  Although the algorithm is 

relatively robust, special cases can yield undesirable results, e.g. a non-manifold 

triangulation or an artificial branching.  One suggestion for reducing the complexity is to 

solve the correspondence independently and then reconstruct each object separately.  

Overall, the technique based on Delaunay triangulation offers a fast, robust, and 

convenient reconstruction algorithm. 
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CHAPTER III 
 

FEATURE EXTRACTION 

A. Introduction 

A feature is a region in a dataset that is of interest for its interpretation; feature 

extraction is the extrication of these regions for further analysis and visualization.  

Feature extraction has been investigated and utilized to solve a variety of problems, such 

as shape matching [47], image registration [59], solid modeling [46], edge detection [2], 

and data visualization [62].  In most of its applications, feature extraction provides a 

compact representation of the relevant information embedded in the dataset. 

Researchers define different types of features for their specific applications; hence, 

they range from such simple definitions as intensity values of a 2D image to more 

complex constructs such as mathematical transformations.  When the dataset is a 2D or 

3D image, Guan categorizes features into global/local and point/curve/surface 

classifications [26].  Global features require calculations based on the whole image while 

local features are derived from a limited area in the image.  Point features include tie 

points, anchor points, and extremal points; curve features include corner edges and ridge 

lines; surface features include curvature and surface representation graphs.   

The next three sections discuss the definition of principal curvatures and the 

estimation of curvature values for polygonal meshes; some derived shape metrics; and 

the features computed from principal curvature and directions. 
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B. Principal Curvatures 

The principal curvatures for a point on a 2D manifold in Euclidean space are 

properties fundamental to the differential geometry of parametric surfaces [14], [22]; 

consequently, the estimation of principal curvatures for triangulated surfaces rests on 

these definitions.  The estimating schemes rely on local approximations, employing 

constructs such as the angle deficit [1], the Hessian matrix [28], and the osculating 

paraboloid [31].  We discuss Hamann's technique, which locally fits a group of points to 

an osculating paraboloid and computes the principal curvatures by solving a bivariate 

polynomial.  

For a point p0 on a regular parametric two-dimensional surface S in real three-

dimensional space �P, there exists a minimal normal curvature â min and maximal normal 

curvature â max called the principal curvatures.  Principal curvature is explained as 

follows.   

Let n0 denote the unit surface normal vector at a point p0 Ï  S.  The set of osculating 

planes is the set of planes through p0 and containing n0.  The normal sections C are the 

curves at the intersection of the osculating planes with the surface S.  Let Ci be one of 

those normal sections, t be the tangent vector of Ci p0, and t¿ be the differentiation of t 

with respect to the arc length of Ci.  The normal curvature â i of Ci at p0 is given by the 

following: 

 

 

0  nt ′=iâ



  22 

The minimal and maximal normal curvatures of all the curves in the set C are then 

 

and the principal curvature directions are tmin, the tangent vector of Ci at p0 with â i = â min, 

and tmax, the tangent vector of Cj at p0 with â j = â max. 

If S is a twice differentiable parametric surface, the principal curvatures and 

directions at p0 are the eigenvalues and the associated eigenvectors of a 2 “ 2 matrix A 

defined by the product of the curvature tensor W and the inverse of the first fundamental 

matrix V.  For a surface parameterized in the variables u and v, A is defined by the 

following: 

Figure 8:  Finding normal curvature for curve Ci. 

( ) , of curvature normal  theis |minmin CCiii ∈= âââ

( ) , of curvature normal  theis |maxmax CC jjj ∈= âââ
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However, if S is not a twice differentiable surface, such as a triangular mesh, there is 

no analytical solution to determine â min and â max; instead, an approximation to the 

principal curvatures must suffice.   

Most estimation schemes for piecewise linear meshes examine the local geometry of 

p0 and solve equations involving the second partial derivatives, which are closely linked 

to the definition of curvature.  One such approach, Hamann's technique [31], fits an 

osculating paraboloid to pi Ï  Q, where Q is the set of vertices for triangulated surface S, 

and its neighboring vertices.  The paraboloid contains pi as the origin and lies in a 

redefined coordinate system where the z-axis is parallel to the surface normal ni at pi.   

Choosing appropriate basis vectors for the x-axis and the y-axis for the paraboloid yields 

the bivariate function: 

 

such that the two principal curvatures at pi coincide with the coefficients a = â min and b = 

â max or vice versa. 
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Thus, the approximation algorithm must construct the osculating paraboloid and 

solve the bivariate function.  It accomplishes these tasks for each vertex pi of the 

triangulated surface S in the following steps: 

1. Determine the platelets yj, i.e. the neighboring vertices, associated with pi. 

2. Compute the plane P passing through pi and having ni as its normal. 

3. Define an orthonormal coordinate system in P with pi as its origin and two 

arbitrary unit vectors in P. 

4. Compute the distances dj of all platelets from the plane P. 

5. Project all platelet points onto the plane P and represent their projections with 

respect to the local coordinate system in P. 

6. Interpret the projections in P as abscissae values and the vertical distances of 

the original platelet from P as ordinate values. 

7. Construct a bivariate polynomial f approximating these ordinate values. 

8. Compute the principal curvatures of f's graph at pi. 

Vector algebra makes Steps 1 through 7 relatively straightforward.  Step 8, on the other 

hand, is a little more complex.  First, it requires a solution to the coefficients c2,0 , c1,1 

and c0,2 of the over-determined system of linear equations: 

 

The elements dj for j = 1�n, where n is the number of platelets, in vector d are the 

distances from the each platelet to the plane P calculated in step 4.  The elements of the 
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matrix U are defined as uj = dj ıııı b1 and vj = dj ıııı b2 for j = 1�n.  The vectors b1 and b2 are 

the basis vectors computed in step 3.  The difference vector dj is defined by the 

following (see Figure 9): 

  

 A least squares solution [51] to the normal equation 

 

provides the coefficients c2,0 , c1,1 and c0,2.  The final task in step 8 is to compute the real 

roots of the quadratic equation 

 

to obtain the estimates for the principal curvatures â min and â max.  Then, determining the 

principal curvature directions tmin and tmax requires the solution to the following linear 

equations: 

 P. onto projected point platelet  a is  where
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C. Shape Metrics from Principal Curvatures 

Shape metrics derived from the principal curvatures and their associated directions 

are commonly used to extract both geometric and topological features.  These derived 

metrics are continuous, providing insight to both local geometry and general topology.  

The predominant metrics are the following: 

• Gaussian (intrinsic) curvature 

• Mean curvature 

• Curvedness 

• Shape Index 

• Extremality 

 

ni

b1

b2

yj
P 

pi
yj

pdj

dj 

          Figure 9:  Construction of the bivariate polynomial (following [31]). 
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Gaussian curvature (or intrinsic curvature) K is the product of the principal 

curvatures; its equation is formulated below. 

 

Gaussian curvature is an intrinsic geometric property; it stays the same no matter how a 

surface is bent, as long as it is not distorted, neither stretched nor compressed.  The 

Gaussian curvature measures how "curved" the surface is at pi.  Very curved regions 

yield high positive K >> 0 while flat regions yield K ]  0.  Saddle regions yield negative 

K < 0.  In essence, the Gaussian curvature is a continuous metric for the curvature of the 

surface. 

Researchers have proposed the angle deficit as an alternative measurement of 

curvature for triangulated surfaces.  The angle deficit ï for a vertex p with incident 

angles Äi for i = 1�n, where n is the number of triangles incident to p, is defined by the 

equation: 

 

Conceptually, the angle deficit is the angle of the aperture after unfolding and flattening 

the vertex and its incident triangles (see Figure 10).  Another name for the angle deficit 

ï is the total Gaussian curvature, which is not the same as the intrinsic curvature but 

gives a close interpretation.  Methods for actually computing the Guassian curvature 

involve computing ï for all the vertices of a given region [1]. 

( ) ∑−= iβπω 2p

maxmin ââ=K



  28 

Another common shape metric is the mean curvature H, defined as the average of the 

principal curvatures: 

 

 

The mean curvature tells how inwardly or outwardly a surface region folds.  It attains 

positive values for concave regions, negative values for convex regions, and near zero 

values for flat regions or saddle regions where the principal curvatures cancel each other 

out. 

Curvedness and shape index are not as widely used as intrinsic and mean curvature, 

but their heightened acuity and predictable range of values make them good alternatives.  

Curvedness R is defined by the following equation: 
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               Figure 10:  Unfolding a vertex and its incident triangles. 
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As the name suggests, R measures how curved a region is.  Flat regions yield R ]  0 

while highly curved regions yield large values R.  Curvedness is similar to intrinsic 

curvature, except it is nonnegative and uninfluenced by the topological region type.  

Shape index S is defined by the equation: 

 

The shape index is a generalized measure of concavity and convexity with a range of S = 

[-1,1].  It describes the local shape at the surface point pi independent of the scale of the 

surface.  A convex surface point with equal principal curvatures has a shape index of 1.  

A concave surface point with equal principal curvatures has a shape index of -1.  A 

saddle point with principal curvatures of equal magnitude and opposite sign has a shape 

index of 0.  A "ridge-like" surface point has a shape index of about 0.5 while a "valley-

like" surface point has a shape index of about -0.5. 

Extremality, as defined in [59], is the directional derivative of the principal 

curvatures â min and â max in the corresponding principal directions tmin and tmax.  The two 

extremality functions emin and emax characterizes the extremality at surface point pi; their 

formal definitions are the following: 
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Methods based on the extremality functions can extract features such as extremal points 

and ridge lines. 

D. Topological and Geometric Features 

Feature extraction usually focuses on regions of sharp local change or on an object's 

global structure.  We discuss the extraction of two commonly desired features in 

Computer Aided Graphical Design (CAGD) and biomedical imaging: topological 

regions and extremal points.  These features directly correspond to gyri and sulci, 

neuroanatomical structures that characterize the convolutions of the neocortex.  As 

further discussed in Chapter V, our neocortical finite element decomposition rests on the 

identification of these features. 

 Topological regions are classified into four types: depressions, protrusions, saddles, 

and plains.  The principal curvatures' sign values [â min, â max] indicate the type of local 

topological region in which a point pi on the surface lies. 

 

   Table 1: Curvature sign values for the four types of topological regions. 

 [â min, â max] Topological Region 

[+,+] or [+,0] Concave surface region (local depression) 

[-,-] or [0,-] Convex surface region (local protrusion) 

[+,-] or [-,+] Saddle surface region (local saddle) 

[0,0] Flat surface region (local plain) 
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Applications in CAGD use these features for rule-based or graph-based object 

descriptions [57].  They transform the boundary representation of objects, known as B-

rep graphs, into topological graphs, such as the Attributed Face Adjacency Graph 

(AFAG) and the Curvature Region Representation (CR-Rep).  Building from local 

protrusions and depressions as the primitive nodes, rule-based logic applied to the 

feature graphs compares object structures and establishes a system for constructing new 

designs. 

pi 

ni 

pi 

Convex Surface Region [-,-] 

ni 

Concave Surface Region [+,+] 

pi 

ni 

Saddle Surface Region [-,+] Flat Surface Region [0,0] 

pi 

ni 

                   Figure 11:  Four types of topological regions. 
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  The extraction of topological regions is relatively straightforward for a discrete 

representation of a surface.  The extrication procedure directly filters the vertices with 

the appropriate sign values and examines adjacency conditions to obtain the set of 

desired topological regions.  For a continuously defined surface, one can either sample 

the surface to produce a discrete set of vertices or utilize the more robust, but complex, 

method of symbolic operators described in [21]. 

Extremal points are local extrema of the maximum curvature in the maximum 

curvature direction.  To extract these extrema, one must calculate the derivative of the 

curvature â max in the direction of tmax and locate those points where the directional 

derivative is zero.  In other words, extremal points are points on the surface where the 

extremality function  

 

Monga and Benayoun [59] devised a filtering technique for extracting extremal points 

for a 3D volume image composed of voxels.  They locally calculate partial derivatives 

and utilize recursive filters to identify zero-crossings on an implicit hypersurface whose 

parameters are the three physical coordinates of the image.  To our knowledge, their 

method has not been extended to either parameterized or polygonal surfaces. 

We devised a local search method that approximates the directional derivative emax to 

locate extremal points for polygonal surfaces.  As described in [48], a global search over 

an entire surface with n sampled points would require at least a O(n2) running time.  We 

reduce this time complexity by first decomposing the surface into local depressions and 

. e 0maxmax max
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protrusions.  This partitioning is practical because the boundaries of these topological 

regions lie on the flattest portion of the surface, where extremal points are nonexistent. 

The approximation for emax and the local search is given below. 

The derivative of the curvature â max for a point pi on a surface with the principal 

curvature direction tmax is 

 

To approximate the derivative, we let â max(pi + ä tmax ) = â max(pi
¿ ), where pi

¿ is a point on 

the surface closest to the vector pi + ä tmax.  For a surface with n sampled points, a 

closest distance search for pi
¿ in the neighborhood of pi is accurate and fast if n is 

relatively small.  The partitioning into depressions and protrusions reduces n to the 

number of vertices on the local region and, thus, improves the time complexity.   

Then, a local search for vertices where emax approximates zero identifies the extremal 

points.  Although our approximation technique is not as robust as the one proposed in 

[59], it is a much simpler and faster algorithm for polygonal surfaces.  For the worst 

case, i.e. if there is only one topological region on the surface, our algorithm is still 

O(n2); however, for m topological regions with equal number of vertices in each one, the 

time complexity reduces by a factor of 1/m.  Further, the partitioned regions 

automatically categorize the extremal points into crest points and valley points.  Crest 

points are extrema lying on protrusions, while valley points are those lying on 

depressions.  This classification is particularly important for neocortical surfaces, since 

crest and valley points correspond to sharp gyral and sulcal folding.  

. 
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CHAPTER IV 
 

B-SPLINE TENSOR PATCHES 

A. Introduction 

Polygonal surface reconstruction methods, including the Delaunay triangulation 

technique described in Chapter II, can easily overcome many aspects of surface 

reconstruction, namely the tiling and the branching problems, but they share two major 

limitations. First, these techniques can only generate a C0 continuous (piecewise linear) 

surface represented as a connected set of polygons.  Second, the resultant polygonal 

mesh requires expensive storage space and computation time for graphical rendering, 

especially if interactive navigation is employed.  To mitigate space and time complexity, 

mesh decimation algorithms reduce the number of vertices and edges, but they do so at 

the cost of geometric detail.  Further, numerical grid generation, either on the surface or 

within the B-rep solid model of the human neocortex, requires a parametric 

representation of the surfaces (see Chapter V).  Approximation functions, such as B-

Splines, allow direct expressions of the necessary boundary constraints for grid 

generation, produce a smoother geometric model, and offer a parsimonious 

representation with mathematical functions, rather than an explicit mesh. 

Given a dataset for a surface embedded in space, the objective is to determine a 

smooth and at least C1 continuous approximation function that "optimally" fits the data 

points.  B-spline tensor products accomplish this task by mapping a rectangular domain 

to 3D Euclidean space, optimized by the least squares error between the dataset and the 
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generated surface.  For a smoothing spline, the optimality of the fit is determined by a 

compromise between the minimization of least square error and a relaxation (or 

smoothness) term.  For simple cases, such as those resembling a cylinder, surface fitting 

with one tensor product yields desirable results; however, the convoluted surface of the 

human neocortex requires a covering by a network of tensor product patches.  Various 

approaches are available to decompose a surface into a network of patches for surface 

fitting on a rectangular domain [34], [33], [44], [20].  For the most part, they divide the 

surface into simpler patches for local fitting based on geometric features, such as ridge 

lines and corners, or topological features, such as critical points.  Either the network of 

patches is already C1 continuous at incident edges, or they are sown together with a 

blending function to ensure C1 continuity at incident edges between patches.   

As applied to the human neocortex, we first decompose the tissue into its major gyri 

along major sulcal lines and then further divide the cortical folds into patches where 

geometric complexity necessitates it.  Our mapped template approach is related to the 

finite element decomposition technique and is further discussed in Chapter V. 

B. B-spline Tensor Product 

Spline functions have many applications in numerical analysis and computer aided 

geometric design (CAGD).  They have proven especially effective in interpolation, data 

fitting, data smoothing, and geometric modeling.  A spline is a continuous 

approximation function for a set of data points R in ����n, where n is the dimension of the 

points.  Though splines can be extended to arbitrarily high dimensions, geometric 

modeling is mainly concerned with datasets in 3D Euclidean space ����3.  Tensor product 
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splines, a simple type of bivariate (parameterized in two variables) spline, is a natural 

parametric representation of a surface.  A B-spline tensor product is a tensor spline that 

utilizes the B-spline basis functions as the interpolating polynomials. 

 The tensor spline s(u,v) of degree k in the u direction and degree l in the v direction 

over a rectangular domain D = [a,b] “ [c,d], where a ¡ u ¡ b and c ¡ v ¡ d, for the knot 

vector ääää in the u direction and the knot vector ãããã in the v direction, where 

 

is given by the following equation [16]: 

  

The polynomial functions Ni,k+1(u) of degree k and Mj,l+1(v) of degree l are called the B-

spline basis functions, and they are defined as the following: 

 

The tensor spline s(u,v) exhibits many desirable qualities; one of which, useful for 

feature extraction, is that all its partial derivatives for 0 ¡ q < k and 0 ¡ p < l are 
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continuous on R.  The partial derivatives can be directly computed with the following 

recurrence relation: 

 

Thus, the B-spline tensor product yields a Cmin(k,l) - 1 continuous surface shaped by the 

coefficients ci,j and the knot vectors ääää and ãããã. 

C. Smoothing Criterion 

The technical criterion for the "smoothness" or "fairness" of a surface has taken 

various forms depending on the desired end results, whether it is a reflectively smooth 

surface or a surface with a predefined continuity.  Nonetheless, most smoothing criteria 

involve the principal curvatures or the differentiability of a surface. 

The standard fairness criterion in engineering is given by the following functional 

[49]: 

 

It measures the strain energy of flexure and torsion in a thin rectangular elastic plate with 

small deflection.  Minimizing Ü  is analogous to minimizing the curvedness (see Chapter 

III), thus producing a "least curved and twisted" surface.  Farin and others have extended 

the functional Ü  to a local twist estimator h(s(u,v)) for tensor splines [23]: 
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where H is the mean curvature and nu,v is the normal of the surface.  Solving for h = 0, in 

effect, minimizes the flexure and torsion energy for a small local region on s(u,v).  

Technical definitions for "smoothness" based on principal curvatures, such as the two 

described above, are predominantly used for fairing already constructed surfaces. 

On the other hand, definitions involving continuity constraints are often employed 

during the construction process, whether it is parametric or variational.  These 

smoothing criteria seek to minimize the following functional [16]:    

 

where y(c)(x) is the cth derivative of the function y(x) and c is the desired degree of 

continuity.  The functional Ü  measures the "non-smoothness" of y(x), i.e. the more 

wiggly the function, the larger the value Ü .  For tensor splines, the function y(x) is simply 

the B-spline basis functions Mi,k+1(u) and Nj,l+1(v); the functionals ÜM in the u direction 

and Ü N in the v direction are computed separately and simultaneously.  Computational 

methods redefine Ü  in its discrete form: 
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The metric dr, the difference between the cth derivatives from the left and right 

directions, measures the discontinuity jumps between neighboring points.  Dierckx's 

algorithm for smooth surface fitting, as described in the next section, utilizes this 

discrete form of Ü  to compromise smoothness with the closeness of fit.  Others, such as 

[30], have extended the functional Ü  to a variational calculus approach for surface fitting 

to a set of scattered sample points. 

D. Smooth Surface Fitting over a Rectangular Domain 

B-spline tensor products are often used in CAGD to model a surface defined by the 

sample data points R either as a scattered dataset or as a grid in parameter space defined 

by a rectangle, a cylinder, a sphere, or another simple geometric construct.  Surface 

fitting over a grid can be interpreted as mapping a simple geometric object, such as a 

cylinder, into the surface defined over R.  We restrict our discussion to surface fitting 

over a rectangular grid because of its simplicity and popularity, but, most important of 

all, the rectangular mesh maps easily to one of the six faces of a hexahedral finite 

element.  For a thorough discussion of surface fitting using B-splines, refer to [16]. 

Given sample data points Rq,r in ����3 defined over a rectangular grid with points 

(uq,vr), where q = 1�n and r = 1�m, the surface fitting problem is to find a B-spline 

tensor approximation s(u,v) minimizing an optimality constraint.  In particular, a 

smoothing B-spline tensor sp(u,v) compromises the closeness of fit with smoothness for 

an optimal approximation.  The bias between the two constraints is controlled by a 

smoothing parameter p.  As pÃ 0, the approximation function sp tends toward a weighted 
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least squares polynomial (smoothest fit ); on the other hand, as pÃ√ , sp tends toward the 

natural interpolating spline (closest fit). 

Fitting the surface defined by Rq,r requires the determination of the B-spline 

coefficients ci,j, the knot vectors ääää and ãããã, and the smoothing parameter p which satisfies 

the solution to the smoothing function F(p) = S, where S is the target error for the 

following least squares equation: 

 

Dierckx has implemented an iterative method for determining the parameters ci,j, ääää, ãããã, 

and p given a target error value S [16].  The bivariate smoothing spline function s0(u,v) is 

solved by computing the least squares solution for the B-spline coefficients ci,j to the 

following equations 
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to obtain the weighted least-squares polynomial.  If F(0) ¡ S, the solution is s0(u,v) and 

the algorithm ceases.  For most cases, F(0) > S, and a convergent method inserts g knots 

into ääää and h knots into ãããã until Fg,h(p) is found such that Fg,h(√ ) ¡ S Y F(0).  The final 

step involves applying the method of Newton to determine the smoothing parameter p* 

such that Fg,h(p*) = S (see Figure 12).  The resultant bivariate smoothing spline sp*(u,v) 

is the smooth B-spline tensor product representation of the surface domain with square 

error S to the sample data points Rq,r parameterized by the points (uq, vr) lying on a 

rectangular domain. 

 

F(0) 

F1,1(√ ) 

F2,2(√ ) 

Fn-k-1, m-l-1(√ ) 

S 

p

           Figure 12:  Smoothing function Fg,h(p) (following [16]). 
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Because the least square error threshold S is an absolute term without regards for 

either the distribution or the physical dimensions of the sample data, choosing the same 

S value for two different data sets can yield two surfaces with dramatically varying 

smoothness.  To exercise more control over the smoothness of sp(u,v) for arbitrary 

datasets, we define the smoothing factor S´ relative to the approximate surface area AR of 

Rq,r as the following: 

   

For S´ ¡ 0.01, the B-spline tensor product resembles the natural interpolating spline (the 

least smooth approximation), and for S´ —  100, the tensor product resembles the 

weighted least squares polynomial (the smoothest approximation). 

E. Blending B-spline Tensor Product Patches 

Surface modeling of convoluted free-form surfaces, e.g. the exterior surface of the 

human neocortex, requires a collection of surface patches, each capturing the geometry 

for simpler local regions.  The continuity of each tensor patch can be controlled with the 

degree of the basis functions.  However, if the patches are constructed separately, 

nothing guarantees the continuity between the edges of the patches.  Adjacent patch 

boundaries may not even meet, much less differentiable at incident edges.   
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A covering of patches is termed GCn continuous if it is n times differentiable on both 

the patches and the boundaries between them.  The objective of most CAGD 

applications, and our surface modeling of the neocortex, aims to construct a GC1 

continuous covering. Because cubic B-spline tensor products already guarantee C2 

continuity on individual patches, the remaining task is to enforce C1 continuity across 

patch boundaries.  To achieve GC1, a blending surface smoothly connects the patch 

boundaries, "stitching" the patch network together. 

A blending surface is one that smoothly connects two given surfaces along two 

possibly arbitrary curves, one on each surface, called rail curves (see Figure 13).  

Provided the tangent vectors of the rail curves, a cubic Hermite blend between the points 

on the rail curves affords a C1 blending surface and C1 continuity across the rail curves.  

A technique for constructing cubic Hermite blending surfaces is given in [24].   

S1 

S2 

B 

Rail 
Curves

                     Figure 13:  Blending surface 
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Let S1(u1,v1) and S2(u2,v2) be the base surfaces to blend and c1(t) and c2(t) be the rail 

curves in the parameter space of S1 and S2, where ci(t) = (ui(t), vi(t)), i = 1, 2.  The two 

rail curves C1(t) and C2(t) on the base surfaces are then  

 

Also, let T1(t) and T2(t) be the tangent vectors on S1 and S2 along the two rail curves.  

The blending surface B(s,t) of S1(u1,v1) and S2(u2,v2) is then given by the cubic Hermite 

blending: 

 

Choosing the boundary curves of the patches as the rail curves, which are precisely the 

iso-u and iso-v curves at u = 0, u = 1, v = 0, and v = 1, a GC1 surface is constructed from 

a network of B-spline tensor patches. 
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CHAPTER V 
 

OVERVIEW OF NEOCORTICAL FINITE ELEMENT 
DECOMPOSITION 

A. Introduction to Finite Element Mesh Generation 

Finite element mesh generation is the process of decomposing a geometric object 

into simpler finite elements (FE's), usually defined as triangles or quadrilaterals in two-

dimensional geometry, and tetrahedrons and hexahedrons in three-dimensional 

geometry.  Various engineering disciplines and CAGD have made significant advances 

in FE mesh generation for surfaces (2D manifolds in 3D space), but the problem 

extended to volume FE's still remains an imposing and laborious task [55].  Most current 

methods only take into account the local geometry of the object, without consideration 

for other predefined constraints. Predominant automated techniques include the 

advancing front method [41], [42], plastering [6], paving [7], [15], and the point-based 

approach [40].  These methods iteratively lay down subsets of finite elements until the 

entire mesh is generated.  At each iteration and at the conclusion of mesh construction, 

they apply topological and geometric operators to further optimize the mesh.  A related 

problem in texture mapping is to map a structured grid onto the surface of a 3D object 

[44].  This research has predicated interactive techniques that partition the surface into 

regions under feature-based constraints.  In short, laying a mesh on an arbitrary free-

form geometric object continues to be an area of prolific research.  All methods differ in 
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their definition of optimality, but a quality desired by almost all applications is the 

generated mesh that closely resembles a structured grid. 

Finite element mesh generation provides a framework for the spatial management, 

analysis, and visualization of complex geometric objects.  Applied to the human 

neocortex, the decomposition of the cortical shells into hexahedral finite elements 

provides a structural information framework for the human brain and scaffolding for the 

implantation of oriented neurons.  The neocortical finite elements should satisfy 

neuroanatomical consistency, a set of constraints based on the features of the cortical 

tissue, in addition to the traditional constraints of FE meshes.  Before describing the 

mapped template method used in this thesis, neuroanatomical consistency and the 

neocortical finite element decomposition problem are formulated below. 

B. The Neocortical Finite Element Decomposition Problem 

The objective is to generate a 3D finite element mesh over the human neocortex that 

provides the following: 

(1) A structural information framework for the human neocortex 

(2) Finite elements for the 3D graphical mapping of neurons 

(3) Finite elements of simple geometry 

Formulating the constraints for the generation of this FE mesh requires the consideration 

for (1) the shape and size of each FE, (2) the representation of an individual FE, (3) the 

arrangement of the FE's on the mesh, and (4) the organizational complexity of the mesh.  

We first discuss the four constraints, and then we redefine the neocortical finite element 

decomposition problem in more formal terms.  
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Batte [4] has successfully mapped 3D wire frame models of neurons into wedge-like 

finite elements of the neocortex (see Figure 14).  Because the neuron mapping relies on 

       Figure 14:15Neurons implanted inside a neocortical finite element [4]. 

Figure 15:14Grid generated local coordinate system within a ncocortical finite
element [4]. 
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numerical grid generation within each element to establish a local coordinate system (see 

Figure 15), the FE's are required to be parametric representations of relatively well-

formed hexahedrons.  Linking the exterior and interior surfaces, the iso-uv curves follow 

the pyramidal cell axes, the mean direction of growth for pyramidal cells inside the 

cerebral cortex.  For this purpose, each FE represents a segment of cortical tissue defined 

by twelve edges and eight corner points, defining a "deformed brick" parameterized in 

three variables u, v, and w (see Figure 16).  The FE consists of one face on the exterior 

cortical surface, another on the interior cortical surface, and four faces connecting the 

edges of the first two.  The iso-uw and iso-vw curves parameterize exterior (interior) 

surface geometry of the FE.  Cubic Bezier curve representation of the iso-parametric 

                       Figure 16:  Representation of a finite element. 
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curves confines the geometric complexity of the FE's and ensures the reliability and 

tractability of the numerical grid generator.  Batte calls his constraints for cortical finite 

elements biological consistency, which constrains the shape, size, and representation of 

individual FE's.  As mentioned above, one must also consider the layout of the elements 

within the mesh and the organizational complexity of the mesh.   We propose an 

arrangement following the natural symmetries of the neocortical tissue in conjuction 

with Batte's biological consistency, formulating a set of constraints termed 

neuroanatomical consistency.  Additionally, our hierarchical organization scheme, based 

on anatomical structure, reduces the complexity of the mesh. 

When classical neuroanatomists cut the neocortex into blocks, they strove to produce 

sections of tissue which had a natural curvilinear axis of symmetry.  Consecutive 

sections of tissue block would then look as alike as possible.  In other words, the 

geometric morphing, or diffeomorphism, between the consecutive tissue sections cut 

perpendicular to this axis of symmetry is ideally very smooth and form-preserving.  

Neuroanatomists partition the human cerebral cortex into four lobes: frontal, parietal, 

temporal, and occipital.  They further divide each lobe into eight to fifteen major gyri 

bounded by major sulci.  Then, each major gyrus is ideally sliced perpendicular to the 

medial axis of the gyrus to produce consecutive bands of tissue.  To generate an 

accessible and meaningful finite element mesh, the decomposition should follow the 

anatomical hierarchical organization and partition elements along the traditional 

neuroanatomical dividing boundaries. 



  50 

The finite element mesh should therefore conform to three types of neuroanatomical 

boundaries.  First, deep sulcal folds that partition the neocortex into major anatomical 

gyri intuitively establish curvilinear dividing boundaries for sets of finite elements.  

These dividing borders are called major sulcal boundaries.  Second, the line of 

symmetry along the center of the top of a gyrus, splitting it into ventral and dorsal 

slopes, provides another partitioning constraint for the elements.  These lines are called 

gyral lines of symmetry.  Third, neuroanatomists cut perpendicular to the medial axis of 

a gyrus to extract tissue segments resembling ribs.  These guiding cutting planes are 

called gyral ribs.  Thus, the notion of neuroanatomical consistency incorporates the 

three types of dividing boundaries (see Figure 17). 

We now pose the following mesh generation problem as the neocortical finite 

element decomposition problem: 
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Figure 17:  Three dividing boundary types of neuroanatomical consistency. 

Major Sulcal Boundary 

Gyral Rib 

Gyral Line of Symmetry 
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Neuroanatomical consistency can be summarized as the following: 

• The hexahedral finite elements are parameterized in variables u, v, and w. 

• One face of the hexahedron lies on the exterior cortical surface; another lies on the 

interior cortical surface; and these faces are iso-w surfaces. The six cortical layers are 

also iso-w surfaces, when this data is available. 

• Iso-uv curves define the principal axes of growth for pyramidal cells within the finite 

element. 

• The geometry of individual finite elements is sufficiently simple for tricubic 

numerical grid generators. 

• The finite elements do not cross three dividing boundaries: major sulcal boundaries, 

gyral lines of symmetry, and gyral ribs. 

C. Methodology for Neocortical Finite Element Decomposition 

The decomposition process follows a technique called the mapped template 

approach [32], which involves mapping mesh templates, a rectangular mesh in 

parametric space, onto the object domain (see Figure 18).  The mesh templates are also 

called macro elements (ME's).  Although this approach is not automatic, requiring an 

analyst to decompose the geometry into ME's that map well into parametric space, it is 

very popular in commercial meshing packages for three primary reasons [7]: 

• Mesh contours closely follow the contours of the boundary. 

• Rotating or translating a given geometry does not change the resulting mesh 

topology. 
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• Mesh templates produce the fewest irregular nodes, which are interior mesh 

nodes with more or less than four elements connected to them.  In essence, the 

FE mesh closely resembles a structured grid. 

It is the most robust and reliable, perhaps the only currently viable, method for a 

neocortical FE mesh satisfying neuroanatomical consistency. 

Neuroanatomy hierarchically partitions the neocortex into lobes and then each lobe 

into major gyri (see Figure 19).  To establish an intuitive structural organization scheme, 

the finite elements should follow this hierarchical subdivision, i.e. a FE belongs to a 

major gyrus, which, in turn, belongs to a lobe.  One can then navigate around the FE 

mesh either by random access through anatomical structures or by sequential access 

Figure 18:  Mapping a template onto the object domain. 

Template 

Mapping 

Macro 

Finite Element
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through adjacency.  This method for building the structural information framework is 

discussed in Chapter VI. 

 The multi-resolution decomposition process is summarized below: 

(1) Divide the neocortex into major anatomical gyri (bounded by major sulcal 

boundaries). 

(2) Decompose exterior and interior gyral folds into macro elements (along gyral 

lines of symmetry and bounded by sectional curves at sharp bends in the medial 

axis). 

(3) Reparameterize the macro elements (in conformity with gyral ribs). 

(4) Correspond exterior and interior quadrilateral macro elements to construct a 

hexahedral macro element.   

 
Brain 

Frontal 
Lobe 

Occipital 
Lobe 

Temporal 
Lobe 

Parietal 
Lobe 

Inferior 
Temporal 

Gyrus 

Middle 
Temporal

Gyrus 

Superior
Temporal

Gyrus 
. . . . . . 

Figure 19:  Hierarchical division of the human brain into its anatomical parts. 
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(5) Divide the hexahedral macro elements into hexahedral finite elements (in 

conformity with the exterior/interior surface meshes). 

The five steps are discussed in Chapter VI.  

D. Decomposition into Macro Elements 

The most important and most difficult aspect of mapped template mesh generation is 

decomposing the geometric object into templates that map well to a unit square; hence, 

one must decompose surfaces of the cortical shell into quadrilateral templates.  In 

addition, neuroanatomical consistency requires the templates, or macro elements, to 

conform with two of the three dividing boundaries: major sulcal boundaries and gyral 

lines of symmetry.  The third type of boundary, gyral ribs, lies within the macro 

elements, and is resolved using variational grid generation, as described in Chapter VI.  

Because the decomposition into macro elements is such a critical step for generating 

proper finite elements, we discuss a strategy for the decomposition below. 

Major sulcal boundaries are rather prominent features identifiable with the 

consultation of a sectional brain atlas, so extracting the major gyri is straightforward 

with the aid of an analyst.  Our interactive technique allows the slicing of a reconstructed 

model of the neocortex along the coronal plane at varying thickness (~0.70 mm 

resolution) to match similar views of sectional brain atlases.  The analyst classifies a 

tissue cross section into its major gyri by highlighting them on the computer screen with 

a mouse-driven interface.  The implementation of this technique is described in     

Chapter VI. 
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  The next step is to decompose each major gyrus into macro elements along gyral 

lines of symmetry and sectional curves where the medial axis of the gyrus bends sharply.  

Although the sectional curves are not a constraint for neuroanatomical consistency, it is 

a natural way to partition a meandering gyrus into more manageable pieces.  Most 

importantly, cutting along sharp bends help produce well-formed quadrilateral templates 

(see Figure 20). 

Currently, we are not aware of a geometric feature that directly correlates to the gyral 

line of symmetry.  Ridge lines coincide with the line of symmetry for a sharply bent 

gyrus with a relatively straight medial axis, but for a gyrus with a flat top or a twisting 

medial axis, ridge lines and the gyral line of symmetry do not necessarily coincide (see 

Figure 21).  Absent a formal criterion for its identification, we adopt a fast multi-

resolution interactive approach that provides geometric representations of a gyrus at 

Macro Elements 

Sectional Curve at 
Sharp Bend of Medial 

Axis 

Gyral Line of 
Symmetry 

            Figure 20:  Decomposition of a major gyrus into macro elements. 
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varying degrees of detail, from a high-level cylindrical representation to a representation 

reflecting the "dimples" and "bumps" on the gyrus.  Because the bi-symmetry of the 

gyrus is evident at a high level representation, the gyral line of symmetry is identified in 

a very smooth representation and then mapped back to the actual (higher resolution) 

gyral surface (see Figure 22). 

 

Sharply Bent Gyrus 

Gyrus with Flat Top 
Gyrus with Meandering 

Medial Axis 

Ridge Line 

Gyral Line of 
Symmetry 

               Figure 21:  Different gyral shapes and their lines of symmetry. 
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High-level Representation of 
Gyral Surface 

Actual Geometry of 
Gyral Surface 

Gyral Line of Symmetry 

     Figure 22:  Mapping gyral line of symmetry at different levels of detail. 
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CHAPTER VI 

 

METHODOLOGY 

A. Anatomical Division into Major Gyri 

Gyri are traced through consecutive planar sectional views of a reconstructed model 

of the human neocortex via an interactive environment.  A sectional anatomical brain 

atlas guides the identification of the major gyri.  By aligning the cutting plane and 

matching the position of the cut between the software tool and the sectional atlas, an 

analyst can classify and mark the gyri accordingly with a mouse-driven tracing interface.  

This extraction procedure is performed simultaneously for both the exterior and interior 

surfaces of the neocortex. 

For our implementation, Duvernoy's The Human Brain: Surface, Three-Dimensional 

Sectional Anatomy and MRI, providing cross sectional views of the human brain cut 

along the coronal plane at 2 mm increments, served as the sectional atlas (see Figure 23).  

The neocortex is represented as a B-rep solid model reconstructed from the contour 

dataset using NUAGES, a software tool for Delaunay-based reconstruction.  Slicing the 

B-rep model along the coronal plane at 2mm increments produces similar views found in 

the atlas and, thus, allows the matching and identification of the major gyri (see Figure 

33 in Chapter VII).  We also traced gyri on the original contours themselves; for our 

system, this alternative proved to be more efficient, reducing user time by a factor of 

four.  
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B. Decomposition of Gyral Folds into Macro Elements 

As discussed in Chapter V, the macro elements are divided along the gyral lines of 

symmetry and sectional curves at sharp bends of the medial axis of the gyrus.  We adopt 

a fast, multi-resolution, interactive approach to identify the gyral line of symmetry. 

Sectional curves at sharp changes in the medial axis are determined by visual inspection 

       Figure 23:  Sectional view in a human brain atlas. 
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and marked interactively.  This procedure applies to both the exterior and interior gyral 

surfaces. 

A multi-resolution approach, controlled by the smoothness of fit, is employed to 

locate the dividing boundaries of the macro elements. The resolution of detail is 

controlled by the smoothing factor S´ defined in chapter IV.  For the smooth 

representation, S´ ]  100, and for the detailed representation, S´ ]  0.01.   

First, a very smooth tensor spline is fitted to the gyrus to obtain a high-level 

geometric representation that closely resembles a half-tube running along the primary 

direction of the medial axis.  This smooth approximation filters the noise from small 

local variations, dimples and bumps on the surface, to access the global geometry of the 

gyrus.  Second, an analyst then interactively marks the line of symmetry by identifying 

the curve that splits the half-tube into two nearly symmetric slopes.  Third, the curve 

from the smooth approximation is mapped to a non-smooth tensor spline fitted to the 

gyrus.  The curve now coincides with the gyral line of symmetry of the actual geometry 

of the gyrus.  The robustness of the multi-resolution technique requires that the 

parameter space warps relatively uniformly from the smooth fit to the close fit.  Dividing 

the gyrus at sectional curves where the medial axis sharply turns meets this condition. 

After the macro element decomposition, we map a unit square in parameter space to 

each quadrilateral macro element using the surface fitting algorithms discussed in [16].  

The exterior and interior surfaces of the gyrus are now represented as B-spline surface 

patches.  The decomposition, thus far, has placed no constraints on the parameterization 

of the macro element. 
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C. Reparameterization of Macro Elements 

Because a regular grid over a macro element (mapped template) defines finite 

element boundaries, they must coincide with gyral ribs to ensure the third type of 

boundary conformity.  Unlike the gyral line of symmetry, gyral ribs have a direct 

correlation to the gyral surface geometry; they run parallel to the principal curvature 

directions.  Hence, the next step is to reparameterize the macro element such that the 

tangents of the iso-parametric curves coincide with the principal curvature directions of 

the gyral surface (see Figure 24).   

To reparameterize the macro elements, we define a new functional based on the 

alignment functional in [37] and employ variational grid generation.  Provided the 

parameter space ññññ of the B-spline tensor patch and the gyral surface x(ññññ), variational grid 

generation gives a mapping from a new parameter space r to ññññ such that coordinate lines 

in r coincide with the gyral ribs.  Our reparameterization technique is described below, 

following a summary of the fundamental definitions in grid generation and a brief 

introduction to variational grid generation. 
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C.1. Notation and Definitions for Grid Generation 

Because grid generation involves numerous variables and mathematical constructs, 

the standard notation and fundamental definitions for grid generation merits a 

discussion.  The notation given below follows the one in [37], except we term their 

logical space as parameter space for consistency throughout this thesis. 

Tangents of iso-parametric curves 
coincide with principal curvature 

directions 

Tangents of iso-parametric curves not 
aligned with principal curvature directions

Figure 24:  Relationships between iso-parametric curves and principal curvature 
directions. 
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Grid generation gives a mapping, or transformation, from parameter space ññññ to  

physical space x.   The notation for the coordinates and vectors in the two spaces is the 

following: 

 

A transformation from ññññ to x is written as the following: 

 

The coordinate line tangents of the transformation are written as below 

 

The Jacobian matrix �, an important construct in grid generation, is defined 

 

The covariant metric tensor is defined 

 

The determinant g = det(� ). 
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C.2. Introduction to Planar Variational Grid Generation 

A variational grid generator iteratively minimizes a functional to establish the grid 

transformation.  A functional I[x] is defined as a function having a set of vectors of 

functions for its domain and real numbers for its range [63].  Functionals are formalized 

to preserve prescribed geometric properties of the grid.  Three common functionals are 

the length functional, the area functional, and the orthogonality functional [37].  A 

functional has the general form 

 

The length functional optimizes the length of grid line segments and has the form 

 

where Ñ(ññññ) and ó(ññññ) are the coordinate line weight functions.  The area functional 

optimizes the area of the grid cells and has the form 

 

where Ñ(ññññ) is the area weight function.  The orthogonality functional optimizes the 

orthogonality of angles between ñ and Ü  coordinate lines and has the form 
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Oftentimes, the desired grid may exhibit a compromise between these geometric 

constraints, requiring the weighted combination functional 

 

For our finite element method, we utilize a fourth functional called the alignment 

functional, which seeks to align the grid coordinate lines along two alignment vector 

fields v1(x) and v2(x).  In essence, the objective is to generate a grid where v1(x) öö xñ and 

v2(x) öö xÜ . Biorthogonality establishes that the covariant tangent vectors xñ and xÜ  are 

orthogonal, respectively, to the contravariant normal vectors Ô x Ü  and Ô x ñ, providing the 

following conditions: 

 v1(x) öö xñ    ˘    v1(x) ı Ô x Ü  = 0   

 v2(x) öö xÜ     ˘    v2(x) ı Ô x ñ = 0.   

When the dot product of the contravariant normal vector and the alignment vector equals 

zero, the covariant tangent vector is aligned with the alignment vector.  Thus, the 

functional has the form 

 

As described in the next section, prescribing the principal curvature directional vector 

fields to v1(x) and v2(x) aligns the grid coordinate lines to the gyral ribs. 
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C.3. Variational Grid Generation for Reparameterization 

The parameter space ññññ = (ñ, Ü ), 0 ¡ ñ, Ü  ¡ 1 for a tensor patch in physical space              

x = (x, y, z) often generates undesirable iso-parametric curves on the gyral surface in the 

physical domain; this problem can be seen as a skewed density distribution of parameter 

space.  For example, mapping a uniformly sampled structured grid in ññññ to x can yield a 

very disproportionate mesh.  The parameter space must be redistributed, or 

reparameterized, with a new parameter space r = (r, s) to attain uniformly spaced meshes 

in x for uniformly spaced meshes in r.  Desirable characteristics for the mapping from 

parameter space to physical space extend beyond uniform length or area.  For 

neocortical decomposition, gyral rib boundary constraints require that the tangents of 

iso-parametric curves coincide with principal curvature directions. 

Determining the reparameterization, or transformation, from r to x is, indeed, a 

planar grid generation problem.  The mapping from the new parameter space r to 

physical space x is now defined by two transformations: one from r to ññññ via the grid 

mapping and the second from ññññ to x via the tensor patch parameterization, which 

remains unchanged throughout the process.  A regular grid in r now corresponds to finite 

element boundaries on the gyral surface in physical space (see Figure 25). 

This application of variational grid generation requires two formulations: (1) a 

reference template and (2) a functional guiding the variational grid generation.  First, the 

macro element is trimmed from the gyral surface with a four-sided template, called a 

reference template, to produce a trimmed surface.  A reference template is a 

quadrilateral that provides the boundary conditions necessary for grid generation.  A 
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trimmed surface is a subset of another surface cut along specified boundaries, in this 

case, the reference template.   To apply grid generation on a macro element, the 

reference template is simply its four edges ei.  Next, the template in x is mapped back to 

parameter space ññññ through a backward mapping (see Figure 26).  A backward mapping 

for a B-spline tensor s(u,v) is performed through point inversion, the process of 

determining the parameters u* and v* for a point xi such that s(u*,v*) = xi.  The template 

is now a planar domain in ññññ defined by the four edges ei(ñ, Ü  ), i = 1,�,4.To meet the 

criteria for grid generation, they are then individually parameterized as e1(t1), e2(t2), 

e3(t3), and e4(t4), where ei(ti) = ei(ñ, Ü  ).   

For the second formulation required for variational grid generation, we propose the 

weighted combination functional with the addition of the alignment functional IN[x];  the 

aligning vector fields v1(x) and v2(x) equates to the set of principal curvature direction 

vectors over the gyral surface.  The weighted combination functional becomes 

 

The weight functions wL, wA, wO, and wN are determined through experimentation.  

Minimizing the Iw[x] will generate a well-formed grid transformation from new 

parameter space r to tensor product parameter space ññññ. 

D. Construction of Hexahedral Macro Elements 

 To construct a hexahedral macro element parameterized by u, v, and w, a mapping 

from the exterior to the interior quadrilateral macro elements provides the necessary 

third dimension.  In other words, given the iso-w surfaces for w = 0 and w = 1, we must  

[ ] .NNOOAALLw IwIwIwIwI +++=x
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now "fill in" the dimension parameterized by 0 < w < 1.  For neuroanatomical 

consistency, the iso-uv curves within the hexahedral macro element should coincide with 

the mean axes of growth for pyramidal cells inside the tissue segment.  Conceptually, a 

smooth morph from the interior surface to the exterior surface should trace out the mean 

axes of growth. 

Absent the structural data for pyramidal cells, we model the axes with line segments 

constructed by linearly interpolating between points on the exterior and interior surfaces 

that correspond in parameter space.  For example, the line segment connecting the points 

sexterior(0.5,0.5) and sinteior(0.5,0.5) would be a pyramidal cell growth axis.  As shown in 

[4], this linear interpolation is valid for axes stemming from ridge or valley lines on the 

neocortical tissue.  The development of a consistent model for the mean axes of growth 

requires further research and empirical or statistical data.   

ñ 

Ü

x 

y

z 

Reference 
Template 

Backward 
Mapping

Forward 
Mapping

Figure 26:  Propagation of reference template to tensor product parameter
space. 
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E. Division into Hexahedral Finite Elements  

The finite element is the volume bounded by six coordinate surfaces (two coordinate 

surfaces for each parameter u, v, and w) in the hexahedral finite element.  Iso-w planes 

are simply the exterior and interior neocortical surfaces at w = 0 and w = 1.  Varying the 

u and v coordinates, in effect, controls the shape and size of the generated finite 

elements.  For neuroanatomical consistency, the bounding u coordinates are the ith and  

(i + 2)th knots from the u knot vector of the tensor B-spline patch; likewise, the 

bounding v coordinates are determined in the same manner for the v knot vector.  Our 

empirical results suggest cutting the macro element at every second knot in both u and v 

directions; this slicing produced finite elements with edges no more geometrically 

complex then cubic Bezier curves.  The decomposed finite elements are, thus, 

guaranteed to be geometrically simple and relatively uniform in size.   
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CHAPTER VII 
 

OBJECT-ORIENTED SOFTWARE TOOLS 

A. Introduction 

We developed a suite of object-oriented software tools for the finite element 

decomposition of the human neocortex and the visualization of the results at each stage.  

The object classes developed in ANSI C++ are fully compatible with the Visualization 

Toolkit v1.3 (vtk), FITPACK, and NUAGES.  Further, the objects share file format with 

Elastic Reality (Avid Technology, Inc.). 

B. Brief Descriptions of Software Tools 

From our object classes, we developed six software tools.  They all furnish a mouse-

driven interactive visualization environment and are briefly described below: 

• B-spline Contourer.  The utility fits univariate smoothing B-splines to cross 

sections of polygonal contours.  Supporting features include intersection 

detection and correction, sectional viewing, reparametrization, and consolidation 

of contour segments into a single contour curve. 

• Contour Correspondence Tool.  The tool provides an interactive environment for 

the correspondence of contours into anatomical objects and facilitates the 

conversion of the contours to a dataset ready for surface fitting. It outputs data 

files ready for either Delaunay-based surface reconstruction or tensor surface 
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fitting.  Supporting features include landmarking, reparameterization, and 

viewing in parameter space. 

•  Mesh Viewer.  This utility provides an interactive environment for viewing 

reconstructed surface meshes and the computation of principal curvatures and 

directions.  Supporting features include the color mapping of shape metrics onto 

the mesh, interactive region extraction, and sectional viewing. 

•  Segment Extractor.  This tool provides an interactive environment for the rapid 

extraction of neocortical tissue segments by tracing them through the coronal 

cutting plane.  It outputs the tissue segments either as polygons or B-splines. 

• Tensor Surface Fitter.  This utility fits smoothing tensor B-splines to a set of 

consecutive planar contours and provides various plots for curvature information 

of the surface.  The user can interactively alter the sampling, parameterization, 

and smoothness of the fit. 

• Finite Element Decomposer.  This tool decomposes a tensor surface model into 

finite elements ready for grid generation. 

The suite of tools utilize two software libraries and work with two third-party 

applications to complete the process from contour extraction to finite element 

decomposition.  The four supporting software programs are described below. 

• Visualization Toolkit.  The vtk class library includes a comprehensive object 

model of geometric primitives and algorithms for both numerical computation 

and visualization [56].  The library extends to higher-level data structures and 

algorithms, e.g. tensors, hyperstreamlines, glyphs, marching cubes, and mesh 
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decimation.  In addition, vtk is compatible with numerous graphical formats.  

Our object classes are integrated with the vtk classes through containment and 

function compatibility.  The library is freely available (http://nswt.tuwien.ac.at/ 

htdocs/vtk/vtkData/HowToGetSoftware.html). 

• FITPACK.  The FORTRAN library provides functions for data fitting with 

smoothing B-splines in various domains and utilities for evaluating partial 

derivatives and integrals [16].  Part of the library is available as public domain 

software (http://netlib2.cs.utk.edu/fitpack/). 

• NUAGES.  The command-line driven program takes as input a set of planar 

sections consisting of non-intersecting closed polygons and reconstructs a 

tetrahedral solid or triangulated surface based on the Delaunay triangulation [25].  

The program outputs to numerous file formats, such as OBJ, IDX, and VRML 

1.0.  The program is available as public domain software (http://www.inria.fr/ 

prisme/personnel/geiger/nuages.html). 

• Elastic Reality.  The commercial software for 2D morphing offers a GUI 

interface for outlining curves on a set of 2D images.  The curves are represented 

in cubic Bezier splines and output as a convenient text file.  We primarily used 

the program for manual contour extraction. 

C. Application of Software Tools to the Human Neocortex 

Our methodology for the finite element decomposition of the human necortex 

produces a finite element model from a set of planar contours in five stages: (1) contour 
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extraction, (2) polygonal surface reconstruction, (3) decomposition into major gyri, (4) 

tensor patch fitting, and (5) finite element decomposition.  Below is an outline of how 

the software tools and the four third-party applications are applied at each stage. 

In the first stage, contours for the exterior and interior surface of the human necortex 

are manually traced using Elastic Reality.  For the work reported here only the right 

hemisphere of one human brain was traced.  The tracing supplied 271 planar contours, 

represented as segments of cubic Bezier splines, cut through the coronal plane.  B-spline 

Contourer consolidates the fragments of cubic Bezier splines belonging to the same 

closed contour and converts them into smoothing B-splines. 

In the second stage, Contour Correspondence Tool was used to interactively 

correspond contours belonging to the same anatomical parts.  The correspondence step is 

optional since Delaunay-based surface reconstruction provides its own solution to the 

correspondence problem.  Alternatively, Contour Correspondence Tool is useful for 

selecting a subset of planar sections for reconstruction, i.e. contours can be from the 

entire hemisphere or restricted to segments of neocortical tissue.  NUAGES rapidly 

reconstructs triangulated surfaces for the dataset of contours. 

In the third stage, Segment Extractor provides an interactive environment to rapidly 

extract the major gyri for a coarse anatomical decomposition of the neocortex.  It 

represents contours as either B-splines for tensor patch fitting or as closed polygons for 

Delaunay-based surface reconstruction. 

In the fourth stage, Tensor Surface Fitter fits B-spline tensor patches to the major 

gyri.  The user can interactively define the patches and vary the sampling rate and 
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smoothness to achieve a desirable fitting.  The program outputs a cover of the surface 

defined by the input data as a network of patches. 

In the fifth stage, Finite Element Decomposer takes as input surface patches for both 

the exterior and interior surface of the neocortex and decomposes the B-rep model into 

hexahedral finite elements ready for grid generation. 
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CHAPTER VIII 
 

RESULTS 

 

A. Contour Extraction 

The dataset for solid model reconstruction consists of 271 x 512 x 512 images of a 

76-year-old normal female human cadaver brain cryosectioned through the coronal plane 

[61].  Contours of the exterior and interior surfaces of the neocortex are manually traced 

using Elastic Reality, a third party application from Avid Technologies, Inc.    (see 

Figure 27). Tissue segmentation is performed manually with the guided expertise of a 

neuroanatomist.  Because of the precision and consistency of the cryosectioning 

technique, vertical spatial alignment of the consecutive images along the cutting axis 

automatically insures the registration of the contours between adjacent sections.  The 

contours are represented as smooth B-splines.  For the work reported here only the right 

hemisphere of one human brain was extracted.  Figure 28 shows a set of ten consecutive 

contours for the exterior neocortical surface extracted using this technique. 
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Figure 27:  Extracted contours for the exterior and interior surfaces of the human
neocortex. 
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Figure 28:  Ten contours for the exterior neocortical surface of the right hemisphere
cross-sectioned through the coronal plane at 0.7mm thickness. 
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B. Solid Model Reconstruction of the Right Hemisphere 

Surface reconstruction over the contour dataset produced a cortical shell defined by 

the exterior and interior surfaces of the neocortex.  The boundary representation (B-rep) 

model was constructed using NUAGES, a software utility for Delaunay-based surface 

reconstruction [25].  The B-spline contours were sampled using uniform arc-length 

parameterization to yield the set of closed polygons required by NUAGES.  Volume was 

minimized to give the "tightest" triangulation.   

Two triangulated meshes, representing the exterior and interior surfaces, defined the 

enclosed volume of the neocortex.  The outer surface consisted of 69K vertices and 

136K triangles; the inner surface consisted of 35K vertices and 77K triangles.  Figure 29 

and Figure 30 show the reconstructed exterior and interior surfaces with shape index 

color mapping to accentuate the convolutions. 

The software utility NUAGES also provided as output a tetrahedral representation of 

the neocortex.  Figure 31 shows an angular view of the tetrahedral reconstruction.  

Figure 32 shows cross-sectional view of the reconstructed neocortex.  Figure 33 

replicates the convenient views offered in Duvernoy's The Human Brain: Surface, 

Three-Dimensional Sectional Anatomy and MRI. 
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Figure 29:  Sagittal view of the reconstructed exterior neocortical surface of the right
hemisphere (color mapped to accentuate the deep convolutions). 
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Figure 30:  Sagittal view of the reconstructed interior neocortical surface of the right
hemisphere (color mapped to accentuate the deep convolutions). 
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     Figure 31:  Angular view of the reconstructed neocortex of the right hemisphere. 
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Figure 32:  Front view of the reconstructed neocortex cut through the coronal plane at
38mm from the back. 
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Figure 33:  Front, top, bottom, left, and right views of the reconstructed neocortex cut
through the coronal plane at 38mm from the back (layout following Duvernoy's The
Human Brain: Surface, Three-Dimensional Sectional Anatomy and MRI). 
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C. Extraction of Middle Temporal Gyrus 

Extraction of the Middle Temporal Gyrus from the solid model was performed using 

the interactive technique described in Chapter VI.  Figure 34 shows the extracted gyrus. 

 

 

Figure 34:  Middle Temporal Gyrus extracted from the Delaunay triangulation of the
neocortex of the right hemisphere. 
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D. Macro Element Decomposition 

Macro element decomposition for the mapped template approach was performed for 

the Middle Temporal Gyrus using the techniques described in Chapter VI.  The 

procedure resulted in six quadrilateral macro elements for the exterior surface and six 

corresponding quadrilateral macro elements for the interior surface.  By exploiting the 

contour containment property of Delaunay-based reconstruciton, contours were retrieved 

from the original dataset for B-spline surface fitting to avoid loss in detail.  The exterior 

and interior gyral surfaces were decomposed separately.  Figure 35 and Figure 36 outline 

the identification procedure for the gyral line of symmetry; Figure 37 and Figure 38 

show the six quadrilateral macro elements resulting from the decomposition.  The 

quadrilateral macro elements are represented as B-spline tensor patches. 

E. Feature Extraction for Reparameterization 

Feature information was extracted for the reparameterization technique described in 

Chapter VI.  Neither grid generation nor reparameterization was conducted for the work 

reported in this thesis; however, the developed software tools provide the necessary 

datasets needed for the reparameterization.  Figure 39 and Figure 40 show the feature 

information for a sample gyral surface.    
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( a ) 

( d ) 

( b ) 

( c ) 

Figure 35:  Determining the gyral line of symmetry for the exterior surface of the
Middle Temporal Gyrus: (a) original contours are retrieved via contour containment,
(b) a B-spline tensor is fit to the contours, (c) the line of symmetry is determined for a
smooth fit of the surface, and (d) the line of symmetry is mapped back to the surface
computed in step b. 
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( a ) 

( d ) 

( b ) 

( c ) 

Figure 36:  Determining gyral line of symmetry for the interior surface of the Middle
Temporal Gyrus: (a) original contours are retrieved via contour containment, (b) a B-
spline tensor is fit to the contours, (c) the line of symmetry is determined for a smooth 
fit of the surface, and (d) the line of symmetry is mapped back to the surface computed
in step b. 
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Figure 37:  Exterior surface of the Middle Temporal Gyrus decomposed into six
quadrilateral macro elements. 
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Figure 38:  Interior surface of the Middle Temporal Gyrus decomposed into six
quadrilateral macro elements. 
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( a ) 

( d ) 

( b ) 

( c ) 

Figure 39:  Feature extraction for reparameterization: (a) surface of a gyrus, (b) iso-
parametric lines of the surface, (c) maximum principal curvature directions of surface,
and (d) minimum principal curvature directions of surface. 
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Figure 40:  Shape index color mapped onto the surface of a gyrus (red indicates
negative values corresponding to depressions, and blue indicates positive values
corresponding to protrusions). 
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F. Finite Element Decomposition 

The Middle Temporal Gyrus was decomposed into hexahedral finite elements using 

the mapped template approach and the techniques described in Chapter VI.  Two 

corresponding quadrilateral macro elements from the exterior and interior surfaces 

define the top and bottom sides of a hexahedral macro element.  Lacking the data for 

mean axes of growth of pyramidal cells within the tissue segment, the other four sides 

are constructed using simple linear interpolation from the exterior macro element to the 

interior macro element.  As described in [4], this linear interpolation closely 

approximates the pyramidal cell growth axes at ridge and valley lines of the macro 

element.  Figure 41 outlines the decomposition of a macro element into finite elements.  

Figure 42 and Figure 43 show two views of the hexahedral finite elements for a tissue 

segment from the Middle Temporal Gyrus.  The segment actually consists of two 

hexahedral macro elements.  Figure 44, 45, and 46 show different views of the 

decomposed hexahedral finite elements for the Middle Temporal Gyrus. 
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( a ) 

( d ) 

( b ) 

( c ) 

Figure 41:  Constructing hexahedral finite elements: (a) two corresponding quadrilateral
macro elements from the exterior and interior surfaces, (b) quadrilateral finite elements
from macro element decomposition, (c) hexahedral finite elements constructed by linear
interpolation from outer to inner macro elements, and (d) bottom view of hexahedral finite
elements. 
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Figure 42:  Neuroanatomically consistent finite elements for a segment of the Middle
Temporal Gyrus. 
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Figure 43:  Neuroanatomically consistent finite elements for a segment of the Middle
Temporal Gyrus (bottom view). 
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Figure 44:  Neuroanatomically consistent finite elements for the Middle Temporal
Gyrus (side view). 
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Figure 45:  Neuroanatomically consistent finite elements for the Middle Temporal
Gyrus (bottom view). 
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Figure 46:  Neuroanatomically consistent finite elements for the Middle Temporal
Gyrus (front view). 
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CHAPTER VIII 
 

 SUMMARY AND FUTURE WORK 

A. Summary 

A method for the decomposition of the human neocortex into hexahedral finite 

elements is presented.   The technique adopts the mapped template approach and follows 

the constraints defined by neuroanatomical consistency.  The finite element model 

provides both the necessary boundary conditions for numerical grid generators and a 

structural information framework.  A new class library and a set of object-oriented 

software tools were developed to implement the decomposition method.  For the work 

reported in this thesis, the neocortex for the right hemisphere of a cadaver human brain 

was reconstructed; finite element decomposition was performed for the Middle 

Temporal Gyrus; and the feature information necessary for reparameterization were 

computed.       

B. Future Work 

Many steps in our neocortical finite element decomposition method can be expedited 

with automated techniques and can be extended when empirical data is available.  Below 

is a list of future improvements: 

1. Automate the contour extraction.  Even with the convenient tracing environment 

provided in Elastic Reality, manually tracing the contours of the neocortical 
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tissue requires significant user intervention.  For the work reported in this thesis, 

this step poses the biggest bottleneck of the decomposition process. 

2. Automate the extraction of major gyri.  The anatomical division of the 

neocortex into major gyri is the most important step of the mapped template 

approach.  Besides enforcing neuroanatomical consistency, the division ensures 

the creation of well-formed templates for tensor spline fitting.  The software tool 

developed for this thesis allows relatively fast and convenient extrication of 

major gyri; however, an automated technique would speed up the process and 

may lead to a better understanding of the brain's spatial structure.  This coarse-

level division remains a general challenge for the mapped template approach. 

3. Fully automate the identification of the gyral line of symmetry.  Our semi-

automatic multi-resolution method rapidly identifies the line of symmetry, but it 

still requires user intervention.  An automated technique would further expedite 

the decomposition.  Without a direct correlation between the geometric features 

of the gyral surface and the gyral line of symmetry, automatic detection of this 

dividing boundary remains an imposing obstacle. 

4. Automate the identification of sectional cutting curves.  As described in Chapter 

VI, cutting the gyrus at sharp bends of its medial axis help ensure well-formed 

macro elements (templates).  Automating the identification of sectional curves 

requires the automatic construction of the medial axis or medial manifold for a 

major gyrus.  Such an automated technique should exploit the close relationship 

between the medial axis and the Delaunay triangulation. 
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5. Represent the hexahedral finite elements as tricubic meshes.  As described in 

[4], 3D grid generation provides a local coordinate system within the finite 

element if its geometry is relatively simple.  Many robust grid generators are 

available to construct a grid for a volume bounded by curvilinear edges 

representable with cubic Bezier curves.  The hexahedral finite elements for the 

work reported in this thesis exhibit the required geometric simplicity, but they 

need to be fitted with tricubic interpolation to establish the boundary constraints 

necessary for grid generation. 

6. Reparameterize the macro elements.  The reparameterization, described in 

Chapter VI, to align coordinate lines of the finite element mesh with the 

tangents of the principal curvature directions of the gyral surface was not 

implemented for the work reported in this thesis.  The macro elements for the 

Middle Temporal Gyrus did not require reparameterization for the 

decomposition along gyral ribs.  However, other major gyri, especially those 

located in the parietal lobe, will require reparameterization for neuroanatomical 

consistency. 

7. Establish a data structure for the spatial management of the finite elements.  The 

hierarchical subdivision of the neocortex, from anatomical lobes to the finite 

elements, presents a natural framework for the spatial organization of the 

elements.  Before the finite element model can be integrated into a structural 

information framework, a data structure needs to be established to facilitate the 

indexing and organization of the elements. 
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8. Export the finite element model to an Internet compliant platform.  Besides 

spatial organization, one of the primary objectives of the structural information 

framework is to provide wide accessibility of the model through the Internet.  

To achieve wide distribution, one can either develop a client resident applet to 

view the B-spline representation of the solid model or export the model to a 

graphical format, such as VRML 2.0. 

9. Model the mean axes of growth of pyramidal cells inside the finite elements.  

When statistical data for the structure of pyramidal cells is available, the axes of 

growth can define the mapping from the interior gyral surface to the exterior 

gyral surface.  The iso-uv curves of the local coordinate system within each 

finite element would then coincide with the mean axes of growth of pyramidal 

cells inside the tissue segment. 

10. Embed graphical models of neurons into the finite elements.  When statistical 

data for neuron populations within the neocortex is available, stochastically 

generated neurons can be embedded inside the finite elements. 

11. Model the afferent and efferent fibers of the finite elements.  The finite element 

decomposition provides the framework for the modeling of the afferent and 

efferent fiber network of the neocortex.  The development of such a model 

requires presently absent empirical data and a connectivity model outside the 

scope of this thesis.  
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