
AUTOMATED 3D RECONSTRUCTION OF NEURONAL STRUCTURES

FROM SERIAL SECTIONS

A Thesis

by

BRENT P. BURTON

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial ful�llment of the requirements for the degree of

MASTER OF SCIENCE

August 1999

Major Subject: Computer Science

AUTOMATED 3D RECONSTRUCTION OF NEURONAL STRUCTURES

FROM SERIAL SECTIONS

A Thesis

by

BRENT P. BURTON

Approved as to style and content by:

Bruce H. McCormick
(Chair of Committee)

Nancy M. Amato
(Member)

Donald H. House
(Member)

Wei Zhao
(Head of Department)

August 1999

iii

ABSTRACT

Automated 3D Reconstruction of Neuronal Structures from Serial Sections. (August 1999)

Brent P. Burton, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Bruce H. McCormick

A fast automated system for tracing neurons in parallel is described, adequate to

support a quantitative analysis of neuron morphology. The system described here automates

digitized neuron feature extraction and reconstruction, thereby replacing current largely

manual techniques for tracing individual neurons.

Serial sections of brain tissue are created by physical sectioning. Sections are pro-

cessed during scanning to determine regions of interest (ROIs) and to quickly cull unneces-

sary image data. An aggressive data culling and compression scheme reduces the original

volumetric data into a ROI-based image collection that makes temporary secondary storage

feasible. Neighboring ROIs are then matched from successive sections for segment and �ber

tracing. Reconstructed segments created from these matches are disambiguated, resulting

in an abbreviated structural description of the tissue's neurons and �ber tracts.

iv

ACKNOWLEDGMENTS

I thank Dr. Bruce H. McCormick for his ideas, patience, and unending help on this

work. I am also grateful to my wife Michele for her constant support and help, and to my

parents for their encouragement throughout. Thanks for standing behind me.

Software development for this project was made simpler by several freely-available

software packages. Thanks to Linus Torvalds for the Linux operating system, Brian Paul

for his MesaGL library, Jef Poskanzer for releasing the NetPBM raster image library, and

the Free Software Foundation for their GNU compilers, libraries, and tools.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

I INTRODUCTION . 1

II OBJECTIVES . 3

A Parallel Tracing and Reconstruction of Dendritic Processes and Fibers . . 3

B Data Compression for Maximal Scan Rate 4

C Automating the Three-dimensional Reconstruction 4

III BACKGROUND . 6

IV MODELS OF THE DATA SET . 8

A Requirements of Simulated Data . 8

B Neuron Slicing with the Nslice Tool . 9

C The Datagen Tool . 10

vi

V DATA ACQUISITION . 14

A Tissue Staining . 14

B Tissue Sectioning . 15

C Digital Scanning . 15

D Data Transfer . 16

E Preliminary Filtering . 16

VI DATA RECONSTRUCTION . 18

A Overview of Reconstruction . 18

B The Recon System . 18

VII SECTION SEGMENTATION . 22

A Feature Detection and Isolation . 22

B Creation and Storage of ROIs . 24

C Data Compression . 26

VIII SEGMENT TRACING . 29

A Minimal Distance Selection . 29

B Intersecting Contour Selection . 29

C Path Prediction . 30

D Improvements to Prediction . 31

E E�ciency Concerns . 33

F Section Skipping . 34

IX STRUCTURAL REPRESENTATION OF NEURONS AND FIBERS 36

vii

X JUNCTION AND BEND DETECTION . 38

A Junction Classi�cation . 38

B Models of Dendritic Bifurcation . 41

XI RESULTS . 45

A Reconstruction of Simulated Data . 45

B Overview of Visualization Procedure . 50

XII CONCLUSIONS . 52

A Parallel Tracing and Reconstruction of Dendritic Processes and Fibers . . 52

B Data Compression for Maximal Scan Rate 52

C Automating the Three-dimensional Reconstruction 53

D Future Work . 53

REFERENCES . 55

VITA . 60

viii

LIST OF TABLES

TABLE Page

1 Object De�nitions Used by the Recon System 19

2 E�ective Compression Ratios for 200 Segments 28

3 Projected Width of Segments with Respect to Segment Angle 32

4 Number of Sections to Skip Given Segment Diameter D and Angle . . . 35

5 Results of the Braid Test for Intersection and Predictive Algorithms . . . 47

6 Braid Compression Ratios for 100 Sections at 1024 x 1024 47

7 Helix Compression Ratios for 100 Sections at 1024 x 1024 48

ix

LIST OF FIGURES

FIGURE Page

1 Sections 12, 15, 18, and 21 produced by Nslicer from a sample neuron. 11

2 Overview of data acquisition. 14

3 Overview of data reconstruction. 18

4 A 12-segment section image and its left-edge image. 23

5 Elliptical contour of a neuronal segment. 24

6 ABB creation as the min-max box of a contour. 25

7 OBB creation as an oriented min-max box of a contour. 26

8 The feature's contour, ABB, and OBB. 27

9 Minimal distance selects pair A-C over A-B. 31

10 Ambiguous plane-segment intersections. 33

11 Representation of a bifurcation. 39

12 Representation of a join. 40

13 Representation of a bend. 41

14 Dendritic bifurcation with \daughter" and \parent" diameters. 41

15 Plot of Fill Ratio vs. �. 43

16 Asymptotic growth of an apical dendrite w.r.t. cortical surface. 44

17 Fiber sectional area is proportional to angle �. 44

18 Two 3-D views of the braid structure. 46

19 Helix data set with 10 segments. 48

20 Execution times w.r.t. the number of segments 49

x

21 The skeleton-skin visualization technique with axes. 51

1

CHAPTER I

INTRODUCTION

Since the late 1960's, neuroscientists have investigated various techniques for neuron

reconstruction. Understanding neuron morphology requires measureable data or, at the

least, an adequate visual model. Such models were not easily created and early repre-

sentations were artists' renderings, solid wax models, and �lm-mounted animations. The

growth of digital computing saw camera-lucida techniques combined with the computer's

random-access storage to record detailed neuron morphology. All of these techniques en-

hanced visual understanding of neuron structure but they were neither convenient nor fast.

For instance, solid wax models took months to create.

The three-dimensional (3-D) reconstruction of neurons has remained largely manual,

despite the rapid advancement of computer technology. Current techniques for tracing

neurons and mapping their mutual connections are too slow to support an adequate quanti-

tative analysis of brain morphology at the cellular and tissue levels. On a per-neuron basis,

locating and staining requires several minutes while manual tracing may require several

days (40 hours), even with computer assistance [1].

Automating the tracing procedure would enable the construction of large databases

of traced neurons, providing support for improved models of neuron morphology. However,

each scanned block of stained neural tissue creates an enormous volumetric data set. Ef-

�cient ways of representing, managing and processing this data are crucial to automating

Journal model is IEEE Transactions on Visualization and Computer Graphics.

2

neuron tracing. One method attempts this by reducing planar contour information into a

triangulation, which is extended to create matches in adjacent slices [2]. For large data sets,

comparing each section in this manner is unnecessary.

This thesis presents the development of an automated neuron tracing system. Chap-

ters II and III introduce the project. Chapter IV covers the data set types used during

system development, while Chapters V through VII discuss the preparatory steps of the

data analysis prior to reconstruction. The reconstruction process is detailed in Chapters

VIII through X, and �nally results and conclusions follow in Chapters XI and XII, respec-

tively.

3

CHAPTER II

OBJECTIVES

A complete automated reconstruction system consists of two major components: (1)

the data acquisition subsystem (mostly hardware), and (2) the data reconstruction subsys-

tem (software)12.

The objectives of the 3-D reconstruction system are:

1. Parallel tracing and reconstruction of dendritic processes and �bers.

2. Data compression for maximal scan rate.

3. L-System representation of neurons and �bers.

4. Automating the three-dimensional reconstruction.

A Parallel Tracing and Reconstruction of Dendritic Processes and Fibers

Serially scanned at the limit of optical resolution (250nm), cortical tissue can create

large volumetric data sets representing the tissue. The reconstruction system is expected

to operate on volumetric data digitized at 150nm to 1000nm per pixel. For example, a

section of rat brain sampled at the limit of optical resolution requires 3.2GB. To compress

the size of these data sets, each section must be �ltered and segmented, saving a concise

structural representation of all tissue features. After image segmentation, the structural

1The Scienti�c Visualization Laboratory does not presently have the equipment to im-
plement a full reconstruction system; hence the research described here emphasizes the data
reconstruction subsystem.

2Scienti�c Visualization Laboratory is in the Department of Computer Science, Texas
A&M University, College Station, TX 77843-3112.

4

representations are processed sequentially, following dendritic processes and �ber tracts in

parallel from section to section.

B Data Compression for Maximal Scan Rate

The large volumetric data sets pose storage and access problems due to the amount

of data acquired. McCormick [3] describes a tissue scanner design with a maximum data

rate of 100Mpixel/s into the data acquisition computer. Data compression must be used

during acquisition to match the slow 5MB/s transfer rate of secondary storage. The required

e�ective compression ratio of at least 20:1 also reduces the storage requirements of archival

tertiary storage. Data compression, combined with the data reduction inherent with image

segmentation, can satisfy this transfer and storage requirement.

C Automating the Three-dimensional Reconstruction

Neuroscientists have identi�ed neuron reconstruction as a candidate for automation

[4, 5]. Past projects, some of which have been described as automated, are best considered

aids to the manual process, in which a human operator is required [6, 7].

Large scale neuron tracing is only possible when the process can be completed with

little or no human direction. Tissue scanning, image processing, and feature detection

have been automated in other projects [8, 9]. Availability of precision computer-controlled

3-D stages (developed for VLSI manufacturing), sectioning mills, high-resolution confocal

laser scanning microscopes, and CCD cameras ease the mechanical limitations associated

with interfacing hardware and software [9, 3]. Once traced, the �nal transformation of

the volumetric data set into its parametric representation as a forest of neurons and �bers

involves data smoothing and modeling, fully automatable processes.

5

The methods developed here extend to �ber tract tracing, but there is limited experi-

ence in automating that process. Fiber tracing, furthermore, may require some user input

to properly guide the search. Such assistance should later prove valuable in developing

heuristics to achieve fully automated tracing of �ber tracts.

6

CHAPTER III

BACKGROUND

In the past, various techniques have been applied to 3-D neuron reconstruction.

In 1972, Levinthal and Ware created neuron reconstructions and \y-throughs" by

aligning tissue slices and transferring them to 35mm �lm, creating an animation [10]. A

computer was used to manually trace the neuronal processes and store information at each

point. After this data collection, the computer generated 3-D stick models for analysis and

visualization. Surface modeling was not available as process contours were not recorded

from the sectioned tissue. In this work, the computer automated nothing, but served as a

data collection and presentation tool.

In 1974, Rakic et. al. used reconstruction techniques to analyze developing neuron

morphology in the fetal monkey (Macaque rhesus) [11]. Tissue was sectioned into 80nm

thick slices, and the electron microscope images were manually traced by technicians due

to the \considerable human judgement involved." Automated feature tracing was deemed

not worthwhile to implement. Visualization of the reconstructed cells was performed in 3-D

by drawing each contour line with depth-cueing (closer lines are thicker and farther lines

thin). Analysis of each contour included determining volume and surface area of the slice.

Neurolucida[TM] and past commercial systems rely on user interaction for feature

isolation. Neuron tracing, in this case, is aided by computer but not automated.

Reconstruction of 3-D structures solely by computer has been thoroughly investigated

using an isosurface approach, where the 3-D data set is analyzed to determine a surface

7

matching distinguishing criteria [12, 13]. Such surfaces are routinely generated from MRI

data, where the isosurface represents a given tissue density (bone, esh, etc). Lorensen and

Cline developed the marching cube algorithm for generating such surfaces, and their algo-

rithm has been implemented in many visualization systems [14, 15]. Isosurface generation

(reconstruction) has also been applied to neurons with good results [4]. However, in all of

the isosurface techniques, no underlying structure is extracted from the data, only an outer

surface representation.

Boissonnat and Geiger used planar Delauney triangulation to summarize a contour's

shape [2]. Then, by extending tetrahedra into the neighboring section, they create matches.

This method also only builds an isosurface and is dependent upon processing every slice

with a pairwise comparison. Their intention was to process volumetric data without having

to process all the data, and while the algorithm achieves this goal, it is not suitable for

extracting structural information.

On the biological side, staining techniques are improving, making the automated iden-

ti�cation of regions easier. Of note is the local staining technique of Gerfen and Sawchenko

[16]. Their PHA-L stain completely identi�es isolated neurons, with no leakage into nearby

passing �bers, and produces a high-contrast stain.

8

CHAPTER IV

MODELS OF THE DATA SET

To aid the development of reconstruction algorithms, simulated data is needed. Sim-

ulated data sets contain known geometry and reconstruction results can be accurately ver-

i�ed. Nslicer and Datagen are two custom tools written to create simulated data.

A Requirements of Simulated Data

While developing neuron tracing algorithms, \clean" data sets were needed to test the

reconstruction algorithms. The main bene�ts to using well-de�ned data are:

1. No image processing or pattern recognition tasks are required. Development e�ort

can be directed to the tracing and reconstruction algorithms proper, leaving image

processing as a separate problem. In the case of serial sections from transmission elec-

tron microscopy (TEM), image �ltration and \closed-object operators" have already

been de�ned to enhance neural tissue features [17].

2. The algorithms can be tested against speci�c situations. The use of speci�c scenarios

over sectioned neuron models allows concentration on \problem situations," a possible

but most likely infeasible task using full data sets.

3. The reconstruction can be easily veri�ed manually or with visualization tools. Special-

ized data sets are su�ciently small to trace manually as the reconstruction program

reports interconnections. If further veri�cation is needed, visualization tools can su-

perimpose reconstructed models over the original neuron geometry.

9

In short, small, targetted data sets allow rapid development and testing of reconstruc-

tion algorithms.

B Neuron Slicing with the Nslice Tool

This section describes a tool that simulates sectioned data from existing neuron mod-

els. Nslicer (\neuron slicer") is a tool that reads existing descriptions of 3-D neuron models

and creates a digital image sequence that simulates sectioned tissue. Accurate neuron mod-

els of pyramidal and motor neurons have been created by Mulchandani [18], and software

to create 3-D models from these descriptions is freely available over the Internet (the L-Sys

program [19]). Nslicer is written in C and utilizes the OpenGL graphics library for rendering

[20].

Nslicer loads the neuron description �le, building a cylindrical representation of the

neuron's processes. Neural processes are represented by a number of 3-D line segments,

with each segment modeled by polygonal cylinders of 5 to 9 sides. The entire collection of

polygons is saved into a callable OpenGL display list for ease of rendering. An OpenGL

display list allows a program to treat complex geometrical objects as a single entity and

render them in a single step without reprocessing data to build the object.

As the description is read, X, Y and Z maxima and minima are recorded for con�guring

the graphics display and determining bounds of the sectioning. The coordinate system used

is a right-handed system with Z coming out of the screen, X horizontal to the right, and Y

up. Once loaded, Nslicer sets the position to the maximum Z value, which is \in front" of

the neuron(s) from the camera's point of view.

Sectioning is performed by setting OpenGL's front and back clipping planes close to-

gether, and moving the Z position frommaximum (in front) to minimum (in back), rendering

10

the neuron segments at each step. Each image is retrieved from OpenGL's framebu�er and

saved to disk in the PPM format [21]. Four sequential sample slices taken from a pyramidal

model are displayed in Fig. 1.

Section thickness is set to simulate a 1�m sectioning depth according to the neuron

model's morphological type and its Z-length. For example, a pyramidal cell model (average

span of 250�m), with its axis lying in the X-Y plane, might have Z maximum of 13 and

minimum of -11 yielding a simulated 1�m section by setting the clipping planes (13 +

11)=250�m = 0:096 apart in world coordinates.

As a development tool, Nslicer's resulting image sequence leaves much to be desired.

First, the polygonal modeling technique creates rendering artifacts which are not conducive

to early developmental reconstruction systems. The artifacts, primarily discontinuous fea-

tures, create image segmentation problems and complicate algorithm development, although

using a higher image resolution would improve data quality. However, these artifacts can

be reduced by simply rendering cylinder models with more than 5 to 9 polygons. Second,

sliced images from established models are too complex for algorithm testing. To aid recon-

struction algorithm development, a tool to generate situational data sets would be better.

Nslicer's place, however, may be for testing established algorithms against more complex

scenarios.

C The Datagen Tool

The need for improved test data sets prompted the development of another tool to

create serial section data. This section describes the Datagen tool that, like Nslicer, creates

serial section data sets, but does so from mathematically de�ned dendritic segments and

�bers, not existing neuron models. In addition to serially-sectioned image data, Datagen

11

(a) Slice 12 (b) Slice 15

(c) Slice 18 (d) Slice 21

Fig. 1. Sections 12, 15, 18, and 21 produced by Nslicer from a sample neuron.

12

also has the ability to write out neuron geometry �les, in the same format that Nslicer

reads.

C.1 Types of Data Created

Several data types are created by Datagen to provide a variety of test cases. These

types are delineated below:

Stochastic pipe. This data type creates a single neuron segment initially parallel to

the Z axis. As the segment extends through the sectioning planes, each X-Y position is

displaced by a Gaussian jitter to simulate neuron process wandering. A derivative of this

displacement is the concept of coherence distance, which is the average length along the

segment where the initial and �nal X-Y positions are less than one segment diameter apart.

The coherence distance imposes limits on predictive path �nding.

Splits (bifurcations). This set creates a section sequence starting with a straight parent

segment (not necessarily perpendicular to the sectioning plane) which splits into two or three

daughter straight segments. The bifurcation angle is adjustable to test narrow and wide

bifurcations.

Joins. The join data set merges two or three straight segments into a single segment.

Helix. The helix type creates a N-helix with the number of segments adjustable. The

segments are parallel, evenly spaced, and concurrently revolve about the Z axis. This data

set tests the ability of the tracing algorithms to follow a constantly changing trajectory

while correctly discriminating between multiple segments.

Braid. Finally, the braid datatype goes a step beyond the helix data set. A at

braid of three segments is created along the Z axis, and is designed to test the ability of a

tracing algorithm to predict subsequent contour intersections. Compared to the helix set,

13

where a segment's direction vector uniformly rotates about a vertical axis, a braid's segment

direction vector continuously changes. In addition, the braid segments are closer together,

further testing discrimination techniques. During growth, bundles of neuronal segments

can form tangled cables which this data set simulates. Presently set to create three tangled

segments, this model can be enhanced to create any number of intermingled segments.

C.2 Superimposing Reconstructed Models over Original Models

By default, each of the data types created by Datagen results in a sequence of images.

As an option, the �ve data types can be saved in the textual neuron �le format, creating

a geometric description of the image set. Once a data set is reconstructed, the resulting

reconstructed geometry and the reference geometry �les can be compared by visualizing

both at the same time using translucent surfaces for rendering. Any discrepancies in the

reconstruction are easily found using this technique.

14

CHAPTER V

DATA ACQUISITION

The previous chapter described how to synthesize data when data acquisition hardware

is unavailable or when speci�c test cases are required during software development. This

chapter describes the data acquisition process for existing microscopy hardware.

Achieving usable data for the reconstruction of neural structures is a multi-step pro-

cess, described in Fig. 2.

Tissue

Staining
- Tissue

Sectioning
- Digitizing - Data

Transfer
- Preliminary

Filtering

Fig. 2. Overview of data acquisition.

A Tissue Staining

Tissue sectioning is preceded by a staining process that enhances neuronal features

of the tissue. Depending on the type of microscopy and stain used, the stain adjusts the

contrast or the reectivity of the neuronal structures. Two stain techniques stand out for

neuron reconstruction: Golgi and PHA-L.

Golgi staining was developed more than a century ago and remains one of the best

contrast stain techniques developed. This method permits limited but accurate glimpses of

the nervous system structure [22]. Its use is limited due to the lack of distribution control of

the Golgi stain and once applied, only a small percentage of the cells is stained (one study

found a high of 2.26%, with an average of 1.29% of the cells stained [23]). However, these

stained cells have high contrast and detailed feature isolation, providing for accurate tissue

15

observation.

The second method anterogradely stains tissue with PHA-L (Phaseolus vulgaris-

leucoagglutinin), a kidney bean lectin. As described in [16], PHA-L o�ers many advantages

over other staining techniques, the most relevant to neuron identi�cation and reconstruction

being the following. First, using iontophoresis, small sites (50-100�m) can be isolated and

included neurons are completely �lled with label. Second, PHA-L clearly stains morpho-

logical features such as cell bodies, axons, dendritic arbors and dendritic spines. Further,

PHA-L is not absorbed and propagated by �bers of passage. PHA-L provides good identi-

�cation and tight targetability, traits necessary for reliable neuron reconstruction and �ber

tracing.

B Tissue Sectioning

Two techniques exist to section or slice tissue: optical sectioning and physical sec-

tioning. Optical sectioning is performed with confocal laser scanning microscopy (CLSM),

which uses a laser and a small aperture to control depth of focus. Tissue further or closer

than that in the focal plane is undetected, thus the CLSM instrument allows selection of

a speci�c layer of the tissue for imaging [24]. Physical sectioning, however, only provides

imaging in a front-to-back manner, with the frontmost tissue layers physically removed to

reveal deeper tissue. Physical sectioning is inherently destructive, but is not depth-limited.

C Digital Scanning

Electronic detectors and CCD cameras sample with 8 to 14 bits per pixel (bpp) provid-

ing from 256 to 16,384 intensity levels, with image resolutions being 512x512, 768x512 and

1024x1024 in practice. Sampling at 8 bits, these resolutions produce raw data of 0.25MB,

16

0.37MB, and 1.0MB per image. Newer CCD arrays o�er 2Kx2K (1K=1024) and 4Kx4K res-

olutions, with linear detectors o�ering 8K scanning. Digital scanning of tissue is performed

at a resolution of 150{1000nm per pixel.

The 1MB image sizes are quite easy to work with independently. However, when the

area of the sampled tissue is larger than the current �eld of view, then many images taken

at the current sectioning plane must be tiled together. The resulting mosaics are large

(several megabytes to several gigabytes) and create processing problems for later steps.

D Data Transfer

The interface between the digital camera (or CLSM) and the data acquisition com-

puter is a specialized hardware interface such as VME or a proprietary interface, as is com-

mon in PC-class machines. Data transfer is initiated by the computer, and for 1024x1024

images took 20 seconds per frame in older systems [25, 9].

More recent CCD technology drastically reduces these scanning times by two orders

of magnitude, transferring video from a 1024x1024 CCD camera at 30Mpixels/s, or 0.33s

per image [3]. Video advances have further pushed this to 100Mpixels/s [3]. The data

acquisition computer captures the video feed and stores it initially directly in memory.

E Preliminary Filtering

Modern microscropy equipment typically includes a PC-class machine for instrument

control and data analysis. Given the volume of raw data and the task at hand, it makes sense

to discard as much data as possible, as early as possible. Preliminary �ltering performs noise

reduction and image normalization to reduce the storage space of each image. Filtering also

enhances features in the data.

17

Simple methods have been used in several systems to enhance image data. Image

normalization through Laplacian �ltering, histogram analysis and thresholding produces

binary data that represents the basic skeleton of image features [9, 8]. Image erosion and

dilation has been employed to remove small artifacts (air bubbles or dust) by min-selecting

then max-selecting neighboring pixels [8, 26]. These methods have proven e�ective at in-

creasing the signal-to-noise ratio in digitized images, making the algorithms required for

image segmentation simpler.

18

CHAPTER VI

DATA RECONSTRUCTION

After data acquisition, the process of segment reconstruction begins. An implemen-

tation of the process was written and is called the Recon System, described in this chapter.

The following chapters discuss each step of reconstruction and how they were implemented

in the Recon System.

A Overview of Reconstruction

Image

Segmentation
- Segment

Tracing
- Structural

Representation
- Junction and

Bend Detection

Fig. 3. Overview of data reconstruction.

The reconstruction process, illustrated in Fig. 3, is a data ow pipeline. After tissue

sectioning and digitizing, the �rst step is image segmentation, which identi�es and isolates

ROIs. Once ROIs are created, segments are traced through consecutive sections by matching

neighboring ROIs. This step generates ROI interconnection information, storing it in the

structural representation. After segment tracing, the structural representation is scanned

for junctions and bends to detect and resolve ambiguous situations.

B The Recon System

The Recon System implements the automated neuron reconstruction system using an

object-oriented approach. The reconstruction problem is especially suited for an object-

oriented design for three reasons: (1) the various data types have real world conceptual

19

correspondences, (2) the interactions between the types and algorithms are clearly de�ned,

and (3) rapid development and testing demands easy code changes. The interchangability

provided by abstract and derived classes allows easy testing of di�erent algorithms and

internal representations, and supports multiple data formats with minimal source code

changes.

The basic types of the Recon System correspond to the objects of the reconstruction

problem. There are tissue sections, consisting of digital images and contours, and various

algorithms, such as image segmenters and reconstruction algorithms. The more important

objects are listed in Table 1 with descriptions of each type below.

TABLE 1

Object De�nitions Used by the Recon System

Object name Description Contains...

Object Basic object type, Superclass
of all other objects.

Section Implements concept of a tissue Image, Segmenter,
section; manages Image and Contour, and Z
Contours for this tissue slice. position in data set

Image Abstract class for digital
images.

Segmenter Abstract algorithm object to
perform image segmentation.

Contour A sequence of Point2i's Point2i
enclosing the ROI.

OBB Finds a minimal enclosing
rectangle about a Contour.

Segment Sequence of 3D points to Point2i with
represent �ber trajectory. Section-Z

Reconstructor Abstract algorithm object to
perform reconstruction from
Sections. Generates Segments.

Point2[i,f] 2-D integer and real points.

Object. This object acts as the superclass for all other object types used in this system.

20

This abstract class provides equality and identity checks for objects as well as polymorphism

for data structures. This design creates a monolithic class hierarchy which is not required

in C++, the language being used. However, should the Recon System be translated to

another object-oriented language with a monolithic hierarchy such as Java, this design will

minimize architectural changes.

Section. A Section object represents one tissue section and stores information about

that section such as Z-position, thickness, the digital image corresponding to this section,

and the list of feature Contours extracted from the image. It also ensures that the partic-

ular subclass of Image is correctly matched with a segmentation algorithm for that type

(monochrome or grayscale).

Image. A digital image from the data acquisition subsystem is stored in an Image class.

Presently, two Image subclasses exist for storing grayscale and bitmap images, respectively:

PGMImage and PBMImage. An Image object also performs memory management.

Segmenter. This algorithm object performs image segmentation on the Section to

which it is assigned. Segmenter objects detect neuron segment intersections and create

a list of Contour objects representing the features. Subclasses of Segmenter operate on

speci�c subclasses of Image.

Contour. The Contour type is generated by the image Segmenter class, and stores the

boundary points from a neuron segment intersection. It maintains other information such

as contour center, a convex hull of the boundary points, and a rotation that describe the

Contour geometry for later path-following tests. Point data is recorded in a list of Point2i

objects.

OBB. The OBB (oriented bounding box) object encapsulates an algorithm and data

21

to determine a minimal, aligned rectangle that tightly encloses a Contour. This boundary

is used to minimize secondary storage needs, and is fully described in Chapter VII.

Segment. During the segment tracing process, points along each segment path are

saved in this class. Like the Contour object, it provides no functionality but is used for

data organization.

Reconstructor. This abstract class de�nes a basic interface for speci�c reconstruction

algorithms to follow. Reconstructor objects implement segment tracing algorithms, applying

them to an array of Section objects. This type provides no data storage, and provides only

algorithmic functionality. Subclasses of Reconstructor implement di�erent reconstruction

strategies. Reconstructors \read" Section objects and create a structural representation of

the neuron segment paths.

Point2i, Point2f. These small objects represents a 2-D point and provide utility

operations such as distance measurements. Integer and oating-point representations are

used throughout the Recon System.

Several other utility objects exist for data collections and representations, but the

above set is most representative of the reconstruction problem.

22

CHAPTER VII

SECTION SEGMENTATION

Section segmentation is the process of locating and extracting interesting features

from section data.

This chapter describes how features present in digitized section images are detected

and how their enclosing boundary, the ROI, is determined. Using the ROI, data storage

requirements are reduced.

A Feature Detection and Isolation

As mentioned in Chapter V feature detection and isolation is performed by image

histogram analysis, thresholding, and erosion-dilation. Further, advanced algorithms based

on the Hough transform have been developed to detect closed objects such as contour

intersections [17].

Test data set images are monochrome images with black features on a white back-

ground. Segmentation involves determining the bounds and outline points of each feature,

and returning the bounding contours generated.

A straightforward contouring algorithm is used with monochrome images. It starts

by creating a blank \edge image" of the same resolution as the section, then it �nds the

left edges of image features by locating white-to-black color transitions. If pixel (i; j) is

white and the right neighbor (i+1; j) is black, the edge image's (i+1; j) pixel is set black.

After �nding all transitions, the edge image contains relatively few black pixels. A section

from a 12-segment helix data set (with a nonconvex feature added) and its left-edge image

23

are shown in Fig. 4. To trace a contour, the algorithm searches each row from the top-left

corner of the edge image to �nd a black pixel, (iB ; jB). Starting at the corresponding point

in the section image, the algorithm follows the white-black border clockwise around the

feature, recording the points and eventually returning to (iB ; jB). Direction checks during

the trace prevent the algorithm from looping. As each point (i; j) is recorded, the (i; j)

pixel in the edge image is set to white. This removes the edge from the edge image which

means each contour can be detected and traced only once. After tracing a feature, the scan

of the edge image for black pixels continues where it left o�, at pixel (iB ; jB). The contour

tracing algorithm is capable of following convex and nonconvex shapes no matter how thin.

(a) Section Data (b) Left Edges

Fig. 4. A 12-segment section image and its left-edge image.

Data reduction consists of generating the convex hull of the contour points using the

Graham scan algorithm (from [27]), which signi�cantly decreases the number of contour

points. Reducing the number of contour points accelerates later reconstruction tests.

24

B Creation and Storage of ROIs

A region of interest is simply a rectangular subimage that contains a feature to record.

In the past, an ROI's boundaries were parallel to the X and Y image axes, but to reduce

ROI storage requirements a bounding box oriented to the feature itself is used.

To prevent confusion, two terms will refer to the speci�c type of bounding box strategy

used. \ABB" denotes the axis-aligned bounding box and \OBB" denotes the oriented

bounding box aligned to the feature. \ROI" now refers to the region in general, which is

speci�cally described by either the OBB or ABB. OBBs used in the Recon System are a

2-D simpli�cation of the OBB-Trees developed by Gottschalk et. al. [28].

Once a feature has been isolated and its boundary determined by image segmentation,

the ABB is created by �nding the minimum and maximum X and Y values of the feature's

boundary points. An example feature is in Fig. 5. In Fig. 6, the feature's elliptical boundary

is contained by the ABB.

Fig. 5. Elliptical contour of a neuronal segment.

Next, the OBB is created by the following steps. The major axis of the feature's

contour is determined by a least-squares line �t to the contour points. A coordinate system is

then attached to the feature based on this axis, and a transformation from image coordinates

to OBB coordinates is created (called \img2obb" in the Recon System), along with the

25

-50

0

50

100

150

200

250

0 50 100 150 200 250

Contour
ABB

Fig. 6. ABB creation as the min-max box of a contour.

inverse transformation (referred to as \obb2img"). The transformation describes a rotation

and translation into the local OBB coordinates. The contour points are then transformed

into local OBB coordinates to determine the size of the oriented bounding box. Fig. 7 shows

the contour, its main axis, and the associated OBB. The contour and its ABB and OBB are

illustrated in Fig. 8. In this example, the OBB has a smaller area than the original ABB.

To prevent unnecessary work, two checks are performed after determining the OBB.

First, if the OBB's major axis is aligned with either the section's X or Y axis, no rotation is

speci�ed. A second check compares the area enclosed by the OBB with that enclosed by the

ABB. If the area in the OBB is smaller than the ABB's area, then the OBB is choosen for the

ROI. Otherwise the ABB is selected to represent the ROI. Both tests prevent unproductive

�ltering and the latter ensures the smallest amount of image data containing a contour is

saved.

26

-50

0

50

100

150

200

250

0 50 100 150 200 250

Contour
Main Axis

OBB

Fig. 7. OBB creation as an oriented min-max box of a contour.

Each ROI contains one contour and is assigned a unique serial number. The ROI

serial number is used to identify ROIs and acts as a key for later retrieval. A description is

also written that describes the ROI's rotation (if any) and position in the original section

image. Finally, the subimage data contained within the ROI is extracted and saved through

a straightforward map.

C Data Compression

After determining the ROI, the enclosed image data is extracted, saved, and com-

pressed. Compression is by the Limpel-Ziv algorithm as implemented in the GNU zlib

library [29]. Data culling via OBB processing increases the e�ective compression ratio by

reducing the amount of image data saved.

Dense brain tissue such as the human cortex contains approximately 100,000 neurons

in a 1mm x 1mm x 3mm volume. A 1024x1024 scan of the section at 0.3�m/pixel covers

27

-50

0

50

100

150

200

250

0 50 100 150 200 250

Contour
ABB
OBB

Fig. 8. The feature's contour, ABB, and OBB.

about 300x300�m2, or about 0.10mm2. Golgi staining labels 2% of the present neurons, so

the total number of segments to expect in one image is:

100; 000 neurons=mm2
� 0:10mm2

� 2% = 200 neurons:

This density of 10,000 segments per 1024x1024 image translates to

1024x1024 pixels

10; 000 segments
� 104 pixels=segment

or an ROI dimension of 10x10. At 0.30�m per pixel, this ROI is from a segment of 3�m

diameter, assuming the segment is perpendicular to the sectioning plane.

Using this size, compression ratios can be determined for the section containing 200

contours. Table 2 lists two cases of 3�m �bers: the 10x10 ROI size represents a segment

perpendicular to the sectioning plane, while the 14x10 ROI size is from a segment at a 45o

angle to the plane. The basis of the ratio is a 1024x1024 image, 1MB in size.

28

TABLE 2

E�ective Compression Ratios for 200 Segments

Fiber ROI Uncompressed Compressed
diameter resolution ROI size Ratio :1 ROI size Ratio :1

3�m 10x10 158 33 106 49
3�m 14x10 198 26 133 39

29

CHAPTER VIII

SEGMENT TRACING

Which ROIs should be bundled together to form a segment lends itself to a variety of

selection algorithms. A simple greedy algorithm does not provide the discriminating ability

of more sophisticated algorithms. The various segment tracing methods investigated are

described in this chapter.

A Minimal Distance Selection

In the minimal distance selection algorithm, a reconstructed segment's next point is

selected by �nding the ROI of the next section with the minimal X-Y planar displacement

from the current segment position. In other words, the contours' center positions from

section n are projected onto section n + 1 to determine 2-D distances. Segment positions

are denoted by each segment's center which is determined by averaging that contour's convex

hull points. As each contour match is tested, the pair with minimal distance between centers

is selected.

Selecting minimal distance is context-free. At each section, the segment's next contour

is picked without considering its current trajectory. Further, this technique handles branch

points poorly.

B Intersecting Contour Selection

The second algorithm determines pathways by simply �nding overlapping contours

from adjacent sections. Overlaps are found by testing if the contour outlines (or more

30

e�ciently, their convex hulls) intersect. While in general it is not accurate, the algorithm

becomes more accurate if the sectioning thickness is su�ciently thin to allow these contour

intersections to exist.

A problem with this and the previous algorithm is the inherent dependence upon thin

sectioning for accurate results. Thin sectioning minimizes the X-Y o�set of neighboring

ROIs for the minimal distance method and guarantees polygonal intersections in the second.

Thin sectioning, by oversampling, also increases the volume of data, and it may be desirable

to process only one of every several slices, which thwarts the bene�ts provided by thin

sectioning.

Another problem with minimal distance selection is how easy the technique is fooled.

Fig. 9 shows three contours overlaid from two sections. The solid circle represents a contour

in the current section while the dashed circles are contours in the next section. Minimal-

distance selection will choose the A-C pairing over the A-B match, although the correct

match is A-B. Because contours A and B intersect, the contour-intersection method will

select correctly. This situation also illustrates that di�erences in contour size between suc-

cessive sections is another factor to consider in the match test. The present implementation

in the Recon System does not perform this check.

Both techniques are improved by limiting the search to regions proportional to current

segment diameter, but more tolerant techniques, discussed next, exist.

C Path Prediction

The path prediction technique uses the past few ROI positions in each segment to

predict where in the next slice a contour may be. The heuristic is that subsequent ROIs

lie within some expected distance from the predicted point. Prediction uses polynomial

31

A

B

C

Section i

Section i+1

Fig. 9. Minimal distance selects pair A-C over A-B.

extrapolation based on the previous 3{5 segment positions. At each segment test, the

polynomial is evaluated at the depth of the next section to create a test point, which is then

tested to reside within a contour.

Two polynomials, parameterized by slice depth Z, are used to create a (X,Y) position

in a subsequent slice. The X-function is interpolated through the X positions for the previous

Z positions, and the Y-function is treated similarly. Neville's algorithm as implemented in

[30] is used for generating the functions.

A predictive method initially has no basis for generating predictions, so this method

uses the contour-intersection technique for the �rst few points. Once enough points are

collected for extrapolation, the intersection method is no longer used.

D Improvements to Prediction

If neuron processes were guaranteed to be cylindrical, path prediction would be trivial.

The cylindrical shape, when sliced by a sectioning plane, is elliptically distorted. The

32

amount of distortion depends on the intersecting angle of the segment with the sectioning

plane. Distortions for intersecting angles from 5o to 85o are shown in Table 3. The values in

the table represent the length of the major axis of the feature; the minor axis size remains

equal to segment diameter.

TABLE 3

Projected Width of Segments with Respect to Segment Angle

D 5 15 25 35 45 55 65 75 85 degrees

1�m 1.0 1.0 1.1 1.2 1.4 1.7 2.4 3.9 11.5
3�m 3.0 3.1 3.3 3.7 4.2 5.2 7.1 11.6 34.4
5�m 5.0 5.2 5.5 6.1 7.1 8.7 11.8 19.3 57.4
7�m 7.0 7.2 7.7 8.5 9.9 12.2 16.6 27.0 80.3
9�m 9.0 9.3 9.9 11.0 12.7 15.7 21.3 34.8 103.3
11�m 11.0 11.4 12.1 13.4 15.6 19.2 26.0 42.5 126.2
13�m 13.0 13.5 14.3 15.9 18.4 22.7 30.8 50.2 149.2
15�m 15.1 15.5 16.6 18.3 21.2 26.2 35.5 58.0 172.1
17�m 17.1 17.6 18.8 20.8 24.0 29.6 40.2 65.7 195.1
19�m 19.1 19.7 21.0 23.2 26.9 33.1 45.0 73.4 218.0
21�m 21.1 21.7 23.2 25.6 29.7 36.6 49.7 81.1 240.9

By determining the eccentricity of the feature's outline, the intersecting angle is re-

solved. Further, calculating the major axis of the ellipse gives the segment direction that,

although ambiguous, is easily corrected. Figs. 10a and 10b show the ambiguity that arises

using one oblique intersection. Fig. 10c is the orthogonal view of the intersection.

The ambiguity of the cylinder-plane intersection is clari�ed by examining where in

the sectioning plane the previous intersection is located. That position, once a trajectory

has been calculated, determines which intersection scenario is most likely.

Because neural processes are not cylindrical in general, using projected feature out-

lines to determine segment directions is unreliable. Natural shape irregularities as well as

dendritic spines may foil this method. However, two situations arise that bene�t from this

33

(a) Upward trajec-
tory

(b) Downward tra-
jectory

(c) Orthogonal view

Fig. 10. Ambiguous plane-segment intersections.

method. The �rst is when starting the reconstruction process, before previous intersections

are available to estimate directions. Inferring direction from intersection outline orientation

provides two starting possibilities. The second situation occurs when a contour outline

has no neighboring, intersecting outline. (The segment intersection of section n intersects

no contours of section n+ 1.) Determining segment trajectory from outline orientation in

section n gives a position in section n+ 1.

E E�ciency Concerns

Early reconstruction methods performed a brute force check against all ROI pairings

between the sections to �nd all contour intersections. Exhaustive searching �nds all joins

and splits, but is ine�cient, since for n ROIs in each slice this approach has time complexity

O(n2). This is tolerable for very small numbers of ROIs, but reconstruction of rat brain

tissue, with section resolutions of 30,000 by 60,000 pixels (representing 1cm x 2cm sections),

can contain more than 1,000,000 ROIs. The brute force searching method is infeasible.

34

An improved approach is to take advantage of the contours' Y ordering. During image

segmentation each ROI is created and saved in increasing Y order. Applying binary search

allows a reconstruction algorithm to test against contours most likely to match. This reduces

the time complexity for the number of contour intersection tests to O(n log n) where n is

the number of contours. However, the actual intersection test imposes large constants on

the runtime, which is dependent on the number of points in each contour. Total complexity

can be expressed as O(NM n logn), where N and M are the number of points in the

two contours being tested. The test data sets, while small, have large constants for this

complexity.

An even better approach to �nding intersections is to perform all contour intersection

tests at once. Each feature contour, represented by a convex polygon, can be deconstructed

into its constituent line segments. Finding contour intersections now becomes a problem of

�nding line segment intersections. For each contour c, attach a label to its line segments to

identify each segment with c. A plane-sweep algorithm [31] is run over the line segments.

The resulting list of line intersections is translated back to contour intersections by exam-

ining each intersecting pair of line segments { those that have di�erent labels indicate two

contours intersected. Calculating all line segment intersections can be expected to take time

O(n(N +M) log n(N +M)). For data sets containing about 200 identi�able contours per

section, this translates to about 11% of the previous improvement's work, and roughly 1%

of the original brute force technique.

F Section Skipping

Testing for segment paths is further accelerated by skipping the tests for adjacent

sections based on the current segment diameter and section intersection angle. This reduces

35

the adjacent section dependencies and thus the need to analyze every section. Given a

segment-plane intersection angle (�), the section diameter (D), and section thickness (t),

the number of skippable sections (SS) is determined by:

SS =
D

t sin�

Table 4 contains the number of sections to skip, based on segment diameter and intersection

angle. The numbers are based on the pipe model with 1�m sectioning, and for actual

data more conservative values should be used. In general, as the segment becomes more

perpendicular to the plane, more sections can be skipped. Reconstruction algorithms use

these values to reduce the number of tests performed per section pair. Segments with large

diameters are tested sporadically while smaller-diameter segments are tested more often.

TABLE 4

Number of Sections to Skip Given Segment Diameter D and Angle

D 5 15 25 35 45 55 65 75 85 degrees

1�m 11 3 2 1 1 1 1 1 1
3�m 34 11 7 5 4 3 3 3 3
5�m 57 19 11 8 7 6 5 5 5
7�m 80 27 16 12 9 8 7 7 7
9�m 103 34 21 15 12 10 9 9 9
11�m 126 42 26 19 15 13 12 11 11
13�m 149 50 30 22 18 15 14 13 13
15�m 172 57 35 26 21 18 16 15 15
17�m 195 65 40 29 24 20 18 17 17
19�m 218 73 44 33 26 23 20 19 19
21�m 240 81 49 36 29 25 23 21 21

36

CHAPTER IX

STRUCTURAL REPRESENTATION OF NEURONS AND FIBERS

The branching structure of neuron morphology hints at a binary tree representation, a

representation that has been used in other computer-aided reconstruction and growth mod-

eling systems [32, 33]. For an automated system, a better data representation is required to

facilitate connectivity tests and post-processing. This chapter introduces the Rete diagram

and the string representation of the reconstructed neuronal �bers.

The Rete diagram is analogous to the Feynman diagram of particle physics, in that it

shows, from a segment's initial detection, the path and intersections the segment possesses

through the volumetric data set. The Rete diagram is not de�nitive of a �ber's structure,

it only records per-segment pathways and leaves higher level structure determination to

disambiguation techniques, discussed in the next chapter.

After considering various link-based structures, a simple 2D square bitmap was deter-

mined su�cient to record segment pathways, and is referred to as the \connection matrix."

After image segmentation, the Recon system has recorded the number of Contours (N)

present in the entire data set across all sections, and creates a connection matrix of that

dimension (N x N). Each element is initially zero.

As segment reconstruction progresses, element (i; j) of the connection matrix is set to

1 when a path extends from contour i to contour j. This is all the information explicitly

stored in the connection matrix.

The implementation as an C++ object allows simple optimizations to be added to

37

prevent O(n2) lookup times. Each row and each column has a counter to record the num-

ber of entries in the row or column. This simple addition ensures disambiguation checks

can occur in constant time. As for storage space, this matrix is inherently sparse (and

upper-triangular) and bene�ts from an appropriate internal representation. However, the

development version uses a byte array to store the N2 bits to mark each connection. This

simple representation has proved adequate during testing and will continue to be used.

38

CHAPTER X

JUNCTION AND BEND DETECTION

In the previous chapters, assigning contours serial numbers was discussed, as was the

connection matrix to record inter-contour connection information. This chapter introduces

methods for detecting branches, joins, and bends using the connection matrix, as well as

creating a string representation of the connection information.

A Junction Classi�cation

Earlier stages of the reconstruction followed segment paths through contours by pre-

dictive methods and as the connections were identi�ed, the corresponding connection matrix

entries were set. There were no semantic checks during this construction phase.

In �gure 11a, a neuron process is traced from contour 0 to contour 1, where it bi-

furcates. The two new processes go through contours 2, 4, and 6, and 3, 5, and 7. The

connection matrix for these contours is in Fig. 11b. Where the bifurcation occurs, at con-

tour 1, the corresponding row contains two entries. Thus, bifurcations can be identi�ed by

searching the connection matrix for rows with multiple entries.

Fiber merges can similarly be detected. In Fig. 12a, two �bers join at contour 4,

then continue as a single path through contours 5 and 6. The connection matrix for this

junction in Fig. 12b represents the junction with multiple entries in column 4. All joins can

be identi�ed by searching the matrix for columns with multiple entries.

Planar sectioning of neural tissue will uncover \bends" in the �bers, where it appears

as if the traced �ber may turn around inside a section. This situation can also be detected

39

0
-q

1
��

��
��*

HHHHHHj

q

2
-q

3
-q

4
-q

5
-q

6
q

7
q

(a) Interconnections of a bifurcation

0 1 2 3 4 5 6 7

0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
2 0 0 0 0 1 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1 0
5 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

(b) Connection matrix for bifurcation

Fig. 11. Representation of a bifurcation.

with the connection matrix. As an example, the two �bers in Fig. 13a form a bend at

contour 6. The corresponding connection matrix in Fig. 13b has two entries in column 6 for

rows 4 and 5. At �rst sight this situation is no di�erent from the join above, where a column

has multiple entries. However, the identifying test is checking whether the �ber continues

from contour 6 (or contour 4 in the prior join example). The test is simply seeing if row 6

has any entries; if not, classify the junction as a bend, else a join if the �ber continues.

The semantic tests of the connection matrix can be summarized thus:

� Join: if a column i has multiple entries, and row i has one entry, then a join occurs

at contour i.

� Bend: if a column i has multiple entries but row i is empty, then a bend occurs at

contour i.

40

0
-q

1
-q

2
HHHHHHj

q

3
��

��
��*

q

4
-q

5
-q

6
q

(a)Interconnections of a join (merge).

0 1 2 3 4 5 6

0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 1 0
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

(b) Connection matrix for a join

Fig. 12. Representation of a join.

� Bifurcation: if a row i has multiple entries, then a bifurcation occurs at contour i.

Other situations can also be de�ned. Bends occurring in the opposite direction (i.e.,

similar to a bifurcation) are detected by an empty column check, similar to the empty row

check. Ambiguous situations, such as junctions occurring near the data set boundaries

where continuation is impossible to check, can be de�ned as a bend or a junction.

The connection matrix will be extremely sparse when used on real data. The simple

matrix implementation satis�es test cases, but for actual tissue sections a more appropriate

data structure is required. Graph representations are a natural way to record the intercon-

nections, and column and row checks equate to in-degree and out-degree comparisons of

graph vertices.

41

0
-q

1
-q

2
-q

3
-q

4

R

q

5

�

q

6
q

(a) Interconnections of a bend

0 1 2 3 4 5 6

0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0
3 0 0 0 0 0 1 0
4 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

(b) Connection matrix for a bend

Fig. 13. Representation of a bend.

B Models of Dendritic Bifurcation

One enhancement to the determination of bifurcations is the use of a model to locate

(or reject) candidate ROIs. Consider the bifurcation in Fig. 14, where the \parent" �ber

(with diameter Dp) bifurcates into \daughter" �bers (with diameters of Dd1 and Dd2).

Dd2Dd1

Dp

Fig. 14. Dendritic bifurcation with \daughter" and \parent" diameters.

42

Introduce two parameters �; � 2 [0; 1] such that

Dd1 = �Dp;Dd2 = �Dp:

For the mutual dependence of �, �, we use the two limiting models described below. The

�rst is Rall's ratio, a ratio determined from passive electrical models of dendrite segments

to be about 1 [34]. The second is based on the projected area of segments where the ratio

of parent segment area and the sum of daughter segments is also one (constant area before

and after the bifurcation).

1. Rall factor conserving:

RR =
(Dd1)

3=2 + (Dd2)
3=2

Dp
3=2

= 1

�3=2 + �3=2 = 1

2. Projected area conserving:

(Dd1)
2 + (Dd2)

2

D2
p

= 1

or,

�2 + �2 = 1

We introduce a �ll ratio (FR) to represent the ratio of �lled area (stained tissue) after

bifurcation to the �lled area before:

FR �

D2
d1
+D2

d2

D2
p

= �2 + �2

For model 2 (area preserving)

FR = 1:

43

For model 1 (Rall's model)

FR = �2 + �2

subject to

�3=2 + �3=2 = 1 �; � 2 [0; 1]:

�2 = (1� �3=2)
4=3

and substituting,

FR = �2 + (1� �3=2)
4=3

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1alpha

Fig. 15. Plot of Fill Ratio vs. �.

To �nd the �ll factor, that fraction of the unit area that contains stained tissue, we

need to combine the �ll ratio with the observation that bifurcating dendrites are growing

aymptotically more parallel to the cortical surface and here their area is elongated accord-

ingly.

44

M
ai

n
ne

ur
on

 a
xi

s

Cortical Surface

Fig. 16. Asymptotic growth of an apical dendrite w.r.t. cortical surface.

So after each bifurcation,

FR = FFcos �:

Cross-sectional
area

Cortical Surface

M
ai

n
ne

ur
on

 a
xi

s θ

Fig. 17. Fiber sectional area is proportional to angle �.

45

CHAPTER XI

RESULTS

Results gathered from running the Recon System on generated data are presented in

this chapter.

A Reconstruction of Simulated Data

Test data generated by the Datagen program was reconstructed to �nd out which

reconstruction algorithms worked, what the accuracy was, and how long each took. Results

are presented only for the braid and helix data sets.

A.1 Preparation

Data sets consisted of 100 section images (1�m thick) for both the braid and helix

data types. Image resolutions varied from 512 x 512 to 1024 x 1024 pixels (256K and 1MB

in size, respectively). Segment diameters were a constant 15�m thick. The braid data type

is �xed at 3 segments, and successful reconstructions should only report this many. On the

other hand, the helix type is more exible and renders from 1 to 22 segments as needed.

The minimum distance �nding, contour intersection, and path prediction algorithms

were tested against the same data sets. During testing, it was observed that the minimum

distance and contour intersection algorithms are inherently very similar. For the two test

data sets, there was no di�erence in performance between these two methods, and so no

results from the minimum distance test are presented.

All tests were performed on the following hardware con�guration: 400MHz Intel Pen-

tium II processor, Intel 440BX motherboard with 128MB RAM, 4.3GB EIDE disk. The

46

system was running Redhat Linux v. 5.1 with the X Window System.

A.2 General Results

The �rst test compared the intersection and path prediction methods against the braid

data set. Two views of the braid data set are shown in Fig. 18. Path prediction was run

with 3 and 4 points for extrapolation. The results along with execution times (in seconds)

are in Table 5. The \skip" number is the number of sections skipped during reconstruction,

and \segs" is the number of segments reported reconstructed (3 is correct). What this

shows in the contour intersection case is that for this data set, using every �fth section

caused this algorithm to miss contours. The path prediction breaks down a bit earlier;

when 4 points are used for extrapolation this method begins missing contours when using

every fourth section. When 3 points are used the method lasts until every �fth section,

then mispredicts, giving worse results than contour intersection.

Fig. 18. Two 3-D views of the braid structure.

A.3 Compression Ratios

The reconstruction algorithms do not a�ect the image segmentation and ROI gener-

ation, so data compression rates do not vary with the reconstruction algorithm. E�ective

47

TABLE 5

Results of the Braid Test for Intersection and Predictive Algorithms

Skip=1 Skip=2 Skip=3 Skip=4 Skip=5

10242 Segs time Segs time Segs time Segs time Segs time

intersection 3 19.9 3 10.4 3 7.02 3 5.18 6 4.26

predict N=4 3 19.4 3 10.2 3 6.60 5 5.20 8 4.09

predict N=3 3 3 3 3 8

TABLE 6

Braid Compression Ratios for 100 Sections at 1024 x 1024

Original Uncompressed ROI Compressed ROI

size: 100MB 1212KB 616KB

ratio(:1): 1 82.5 162

compression ratios for the braid data set are listed in Table 6. The high ratio of 162:1 is

representative of only having three segments to reconstruct { the vast majority of the image

is discardable.

An example of the helix data set with 10 segments of 15�m diameter is shown in

Fig. 19. The helix data set, with an adjustable number of segments, has considerably more

variance in compression ratios, as listed in Table 7. As the number of segments increases,

the amount of discardable image data decreases, and the e�ective ratio drops. The values

in this table were created by the Recon System based on 15�m diameter segments.

For real tissue data, sections are expected to contain 200 to 600 maximum segment

intersections of 3�m diameter. Using the test cases as a basis for extrapolation, the expected

compressed data size is 1500KB with an e�ective compression ratio of 69:1. At the maximum

600 segments of 3�m diameter, the compressed size will be approximately 4500KB with a

48

Fig. 19. Helix data set with 10 segments.

TABLE 7

Helix Compression Ratios for 100 Sections at 1024 x 1024

Number of Uncompressed Compressed
Segments Size(MB) Ratio (:1) Size(KB) Ratio (:1)

2 0.46 215 31.70 3230
6 1.39 71 95.40 1073
10 2.32 43 159.10 643
14 3.25 30 223.10 458
18 4.18 23 287.20 356
22 5.11 19 351.30 291

200 1500.00 69
600 4500.00 22

ratio of 22:1. These values are based on the following expression:

N = (200; 600)segments

section
� 100 sections� 76 bytes�

1 KB

1024 bytes
:

The factor of 76 bytes is the sum of the 21-byte ROI descriptor and the 55-byte compressed

ROI image for a 3�m2 region.

49

A.4 Execution Times

Table 5 listed the execution times (in seconds) of the two algorithms for the 3-segment

braid. These times are for the full reconstruction process, from reading the images to

tracing �bers, and decrease linearly as the number of skipped frames increases. There is no

appreciable di�erence in execution times for reconstructing three segments. However, the

reconstruction methods' execution times di�er dramatically with an increasing number of

segments per section, as plotted in Fig. 20. The high growth rate of the contour intersection

algorithm is indicative of excessive testing; reducing the number of contour intersection tests

by more sophisticated algorithms would shorten execution times.

15

20

25

30

35

40

45

50

55

60

65

70

75

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Segments

Intersection
Predict

Fig. 20. Execution times w.r.t. the number of segments

50

B Overview of Visualization Procedure

Tools based on the Visualization Toolkit were written to visualize the di�erences be-

tween neuron geometry �les created by Datagen and those created by the Recon System.

Reconstruction accuracy is determined manually by visual inspection and to this end a sim-

ple method of rendering the neurons is used to enhance the di�erences. In a VTK pipeline

the reconstructed neuron is rendered as a wireframe model �rst, then the original neuron

geometry is rendered with transparent cylinders by setting opacity to 10%. This creates a

skeleton and skin model. Two comparisons are shown in Fig. 21. On the left is a correct re-

construction, where the reconstructed skeleton extends fully through the cylindrical model

and branches correctly. On the right is a topologically correct reconstruction, but branch

point locations and segment endpoints are incorrect.

After reconstruction, neuron models can be placed into a virtual environment to visu-

alize the dense neuronal forests of the cortex and the morphology of neighboring cells [35].

51

(a) Identical neurons (b) Minor problems

Fig. 21. The skeleton-skin visualization technique with axes.

52

CHAPTER XII

CONCLUSIONS

An automated system for parallel neuron tracing and reconstruction has been im-

plemented and shown to be feasible. Aiding the implementation is a clear separation of

the data acquisition tasks and reconstruction tasks through an object-oriented design. The

limitations of the reconstruction algorithms were explicitly tested using model data. These

techniques help create a system that is adaptable, easily modi�ed, and robust.

A Parallel Tracing and Reconstruction of Dendritic Processes and Fibers

The Recon System is capable of following segment paths, recording the 3-D positions,

and performing structure-based reconstruction. Path following is performed in parallel,

stepping each neuron segment through the sections, and visiting each section only once.

B Data Compression for Maximal Scan Rate

The required e�ective data compression rate of 20:1 was surpassed by using data

culling and data compression. Since the ROIs extracted from each image are used in recon-

struction e�orts, the background areas of the section images is discarded. For estimated

worst cases of 600 3�m contours per 0.1mm2, the compression ratio is 22:1, and for fewer

contours the ratio is greater. Combining data culling and data compression techniques

provide quite pleasing results.

53

C Automating the Three-dimensional Reconstruction

The Recon System as implemented is run from the computer's command line with a

list of �les to process, along with a command line argument to select the reconstruction al-

gorithm. The Recon System loads the images and performs all reconstruction tasks without

intervention, writing its results to a log �le.

D Future Work

The Recon System implemented here has limitations. The reconstruction algorithms

(brute force or predictive) perform O(NM) tests per-section, where N and M are the number

of contours in two neighboring slices. This growing execution time was graphed in Fig. 20.

The fact that contours are created and stored in sorted Y order can be leveraged to �ght

this growth. Intersection or contour \hit" testing based on binary search of the contours

would then take O(NlogM).

Boundary e�ects come into play when statistics are gathered on reconstructed neurons.

Future development should consider how to manage isolated segment parts present in one

volumetric data set that belong to neurons in a neighboring volume. This problem also

includes matching of segment data between volumetric blocks, and basic inter-data set

registration.

Reconstruction can bene�t from the statistical analysis present in the N++ system,

perhaps using collected data to guide the predictive reconstruction methods [36].

A parametric string representation was considered to describe the reconstructed seg-

ments and neurons. A more compact alternative is to use piecewise cubic splines to represent

neuronal segments. Dierckx describes these splines in [37].

Past branched structure work was applied to coronary arteries (and other vessels) and

54

other similar tissue. The Recon System was implemented for neuronal �ber reconstruction.

Applying the system to other reconstruction domains will require speci�c predictive recon-

struction and disambiguation methods, as well as adding scale-awareness to the system.

Image processing appropriate to other domains is also required.

Finally, porting the Recon System to other platforms may bene�t from another lan-

guage, such as Java. The current system was designed with this in mind to ease the

translation.

55

REFERENCES

[1] J. J. Capowski and M. J. Sedivec, \Accurate Computer Reconstruction and Graphics

Display of Complex Neurons Utilizing State-of-the-art Interactive Techniques," Comp.

Biomed. Res., vol. 14, pp. 512{532, 1981.

[2] J.-D. Boissonnat and B. Geiger, \Three Dimensional Reconstruction of Complex

Shapes Based on the Delauney Triangulation," Tech. Rep. 1697, INRIA Rapports de

Recherche-Sophia Antipolis, 1992.

[3] B. H. McCormick, \Design of a Brain Tissue Scanner," Neurocomputing, in press 1999.

[4] P. V. Belichenko and A. Dahlstr�om, \Confocal Laser Scanning Microscopy and 3D

Reconstruction of Neuronal Structures in Human Brain Cortex," NeuroImage, vol. 2,

pp. 201{7, 1995.

[5] A. W. Toga, ed., Three-Dimensional Neuroimaging. New York, NY: Raven Press, 1990.

[6] P. D. Coleman, C. F. Garvey, J. H. Young, and W. Simon, \Semiautomatic Tracking

of Neuronal Processes," in Computer Analysis of Neuronal Structures (R. D. Lindsay,

ed.), ch. 5, pp. 91{109, New York, NY: Plenum Press, 1977.

[7] E. W. Stockley, H. M. Cole, A. D. Brown, and H. V. Wheal, \A System for Quan-

titative Morphological Measurement and Electrotonic Modelling of Neurons: Three-

Dimensional Reconstruction," J. Neurosci. Methods, vol. 47, pp. 39{51, 1993.

[8] V. A. Moss, D. M. Jenkinson, and H. Y. Elder, \Automated Image Segmentation and

Serial Section Reconstruction in Microscopy," J. Microscopy, vol. 158, pp. 187{196,

May 1990.

56

[9] A. Odgaard, K. Andersen, F. Melsen, and H. J. G. Gundersen, \A Direct Method for

Fast Three-Dimensional Serial Reconstruction," J. Microscopy, vol. 159, pp. 335{342,

Sept. 1990.

[10] C. Levinthal and R. Ware, \Three Dimensional Reconstruction from Serial Sections,"

Nature, vol. 236, pp. 207{211, Mar. 1972.

[11] P. Rakic, L. J. Stensas, E. P. Sayre, and R. L. Sidman, \Computer-Aided Three-

Dimensional Reconstruction and Quantitative Analysis of Cells from Serial Electron

Microscopic Montages of Foetal Monkey Brain," Nature, vol. 250, pp. 31{34, July 1974.

[12] C. Barillot, B. Gibaud, J. Scarabin, and J. Coatreux, \3D Reconstruction of Cerebral

Blood Vessels," IEEE Computer Graphics and Applications, vol. 5, pp. 13{19, 1985.

[13] J. K. Udupa and D. Odhner, \Shell Rendering," IEEE Computer Graphics and Appli-

cations, vol. 13, no. 4, pp. 58{67, 1993.

[14] W. E. Lorensen and H. E. Cline, \Marching Cubes: A High Resolution 3-D Surface

Construction Algorithm," Computer Graphics, vol. 21, pp. 163{169, 1987.

[15] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. Upper Saddle

River, NJ: Prentice Hall, second ed., 1998.

[16] C. R. Gerfen and P. E. Sawchenko, \An Anterograde Neuroanatomical Tracing Method

that Shows the Detailed Morphology of Neurons, Their Axons and Terminals: Immuno-

histochemical Localization of an Axonally Transported Plant Lectin, Phaseolus vulgaris

Leucoagglutinin (PHA-L)," Brain Research, vol. 290, pp. 219{238, 1983.

57

[17] K. Montgomery, \Automated Reconstruction of Neural Elements from Transmission

Electron Microscope Images," PhD thesis, University of California, Santa Cruz, 1996.

[18] K. Mulchandani, \Morphological Modeling of Neurons," Master's thesis, Texas A&M

University, College Station, TX, 1995.

[19] J. Leech, \The Lsys Software Program," Available from ftp://ftp.cs.unc.edu-

/pub/users/leech, May 1993.

[20] M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide. Reading, MA:

Addison-Wesley Developers Press, 1997.

[21] J. Poskanzer, \NETPBM Portable Digital Image Software," Available from

ftp://wuarchive.wustl.edu/graphics/packages/NetPBM, Dec. 1993.

[22] M. Mar�in-Padilla, \The Pyramidal Cell and its Local-Circuit Interneurons: A Hypo-

thetical Unit of the Mammalian Cerebral Cortex," J. Cog. Neurosci., vol. 2, no. 3,

pp. 180{194, 1991.

[23] J. F. Pasternak and T. A. Woolsey, \On The "Selectivity" of the Golgi-Cox Method,"

J. Comp. Neurology, vol. 160, pp. 307{312, Apr. 1975.

[24] T. Wilson, Confocal Microscopy. San Diego, CA: Academic Press Ltd., 1990.

[25] K. Carlsson and A. Liljeborg, \A Confocal Laser Microscope Scanner for Digital

Recording of Optical Serial Sections," J. Microscopy, vol. 153, pp. 171{180, Feb. 1989.

[26] C. Pellot, A. Herment, M. Sigelle, P. Horain, and P. Peronneau, \Segmentation, Mod-

elling and Reconstruction of Arterial Bifurcations in Digital Angiograhy," Med. & Biol.

Eng. & Comput., vol. 30, pp. 576{583, 1992.

58

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT

Press, 1994.

[28] S. Gottschalk, M. Lin, and D. Manocha, \Obb-Tree: A Hierarchical Structure for

Rapid Interference Detection," in Proc. ACM Siggraph '96, pp. 171{180, 1996.

[29] J. Gailly and M. Adler, \The zlib General Purpose Compression Library," Available

from ftp://prep.ai.mit.edu/pub/gnu, 1998.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C. Cambridge University Press, second ed., 1992.

[31] M. deBerg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-

etry, Algorithms and Applications. Berlin: Springer, 1997.

[32] G. Coppini, M. Demi, R. Mennini, and G. Valli, \Three-Dimensional Knowledge Driven

Reconstruction of Coronary Trees," Med. & Biol. Eng. & Comput., vol. 29, pp. 535{

542, 1991.

[33] J. van Pelt, R. Verwer, and H. Uylings, \Application of Growth Models to the Topology

of Neuronal Branching Patterns," J. Neurosci. Methods, vol. 18, pp. 153{165, 1986.

[34] W. Rall, \Core Conductor Theory and Cable Properties of Neurons," in The Nervous

System: Cell Biology of Neurons (E. Kandel, ed.), vol. 1, pp. 39{97, Bethesda, MD:

American Physiological Society, 1977.

[35] B. P. Burton, T. S. Chow, A. T. Duchowski, W. Koh, and B. H. McCormick, \Exploring

the Brain Forest," Neurocomputing, in press 1999.

59

[36] R. W. DeVaul and B. H. McCormick, \Neuron Developmental Modeling and Structural

Representation: The Statistical Model," tech. rep., Scienti�c Visualization Laboratory,

Department of Computer Science, Texas A&M University, College Station, TX 77843-

3112, July 1997.

[37] P. Dierckx, Curve and Surface Fitting with Splines. Oxford Press, 1993.

60

VITA

Brent P. Burton received his B.S. degree in Computer Science from Texas A&M

University in August 1992. After working as a UNIX system administrator for the Institute

for Scienti�c Computation and the Department of Mathematics (Oct. 1992 { Apr. 1996),

he joined the Scienti�c Visualization Laboratory as a Graduate Assistant Research (Apr.

1996 { Jan. 1998).

Brent is employed by 3dfx in Austin, TX, and can be reached at the following address:

2901 Barton Skyway Apt. 1305

Austin, TX 78746-7555

Email: bburton@3dfx.com

