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1 Abstract

This is the second in a series of papers describing a set of tools for the devel-
opmental modeling, visualization, and statistical analysis of neuron popula-
tions. Paper two covers the statistical model used by the N++ tools and the
probability density functions which accompany it. The statistical model is
described as a an essential set of properties describing neuron morphology,
auxiliary properties which derive from the essential properties, and a simple
indexed \at �le" organization suitable for import into a spreadsheet or sim-
ilar statistical analysis package. Probability density functions are described
both in terms of the properties they relate to and the parametric statistical
forms used in the N++ stochastic neuron generation process.
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2 Introduction

2.1 Purpose

The purpose of the statistical model is to create a framework for the de-
scription and statistical analysis of neurons and neuron populations. The
statistical model speci�es an indexed at �le organization suitable for im-
port into a spreadsheet or other statistical analysis tool. The purpose of
such analysis is twofold:

1. To derive probability density functions for neuron morphological prop-
erties.

2. To distinguish between di�erent types of neurons or between variant
types of neuron within an inhomogeneous neuronal population.

The probability density functions for neuron properties are of interest be-
cause they allow for the statistical description of neuron properties and for
the synthetic generation of neuron populations through the stochastic mod-
eling tools of N++. Our objective here is to stochastically generate neuron
populations which are visually and statistically indistinguishable in mor-
phology from the modeled neuron database.

2.2 Document Structure

This document is based on the N++ nneuron anatomical model, as described
in the �rst paper in this series, An Introduction to the N++ Language, an

Open Stochastic L-System. In this model a neuron is subdivided into a soma,
one or more dendritic arbors, and one or possibly two axonal arbors. Arbors
are subdivided into junctions and segments. Segments are subdivided into
generalized cylinders (which will be referred to simply as \segments") and
spines, which are small, regularly spaced protrusions on the sides of the
segment.

In each of the following sections a subdivision of the neuron morphologi-
cal model is described. Section 3 deals with somata, Section 4 with arbors,
Section 5 with segments, Section 6 with spines, and Section 7 deals with
junctions. Each section is divided into a Properties subsection and Prob-
ability Density Functions subsection. Auxiliary properties are discussed in
Section 8.
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Description Symbol Type Representation

A position property P1 <3 (p1 p2 p3) 2 <3

An orientation property P2 Qunit (q0 q1 q2 q3) 2 <4

Table 1: Schematic properties

2.2.1 Properties

The term property roughly corresponds to Mulchandani's[2] \morphological
variable" except that a distinction is made between properties, which provide
a primary or essential representation, and auxiliary properties which are
derived properties. Auxiliary properties are given their own treatment in
Section 81.

The term property is also used to refer to \synthetic" values (such as an
ID number) which are essential to the organization of the statistical data in
a at �le but which do not have a direct anatomical basis.

Associated with each Properties subsection is a table summarizing the
properties, a schematic representation of which is found in Table 1. Note
that a distinction is made between the property and its representation. In
Table 1 P1 is a vector but its representation is as three scalar values. Like-
wise, P2 is a quaternion but it is represented as four scalars. This distinc-
tion is important for representing data in a spreadsheet or other application
which may not directly support data types like vectors or quaternions.

2.2.2 Probability Density Functions

A probability density function describes the statistical distribution of a prop-
erty. All properties meaningful to the stochastic generation of neurons have
associated probability density functions.

Each Probability Density Functions subsection contains a brief descrip-
tion of the probability density functions associated with each non-synthetic
property. These are summarized in a table like Table 2.

1In many cases there is a direct correspondence between one of Mulchandani's morpho-
logical variables and a given property, but in a few cases there are signi�cant di�erences.
In every case the morphological variable can be reconstructed as an auxiliary property.
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Description Representation

Distribution of positions p(P1)
Distribution of orientations, conditional on P1 p(P2 j P1)

Table 2: Schematic probability density functions
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Description Symbol Type Representation

cell ID IDcell I � 100; 000 I

soma position Psoma <3 (p1 p2 p3) 2 <
3

soma orientation Osoma Qunit (q0 q1 q2 q3) 2 <
4

soma diameter Dsoma < <

Table 3: Somata properties

3 Somata

3.1 Properties

The soma is the root of the dendritic and axonal arbors. For the purposes
of the neuron morphology model the soma is a three-dimensional solid po-
sitioned and oriented in anatomical space. As such the soma has three
important properties:

cell ID A unique identi�er which distinguishes one neuron cell from every
other neuron cell in a population. Since there is only one soma per
cell, this also uniquely identi�es each soma. Cell ID is represented as
a six digit integer counting upwards from 100,000.

soma position The soma's position in anatomical (rostral � lateral � dor-
sal) space. Position is represented by a <3 position vector.

soma orientation The soma's orientation in anatomical space. The soma's
orientation is represented by a unit quaternion relative to the anatom-
ical space.

soma diameter The diameter of a circle with the same cross sectional area
as a 2D projection of the soma onto the sagittal plane. Soma diameter
is represented as a real number.

These properties are summarized in Table 3.

3.2 Probability Density Functions

In order to statistically model somata the following probability density func-
tions are necessary:

� p(Psoma) | A probability density function for the position of somata
in anatomical space.
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Description Representation

distribution of soma positions p(Psoma)
distribution of soma orientations p(Osoma j Psoma)
distribution of soma diameters p(Dsoma j Psoma)

Table 4: Soma probability density functions

� p(Osoma j Psoma) | A probability density function for the orientation
of somata in anatomical space, conditional on soma position.

� p(Dsoma j Psoma) | A probability density function for the diameter
of somata, conditional on soma position.

These are summarized in Table 4.
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Description Symbol Type Representation

arbor ID IDarbor I � 1 I

cell ID IDcell I � 100; 000 I

arbor type T fdendritic; axonalg fdendritic; axonalg
number of segments Nseg I � 1 I

number of junctions Njunction I � 1 I

arbor depth D I � 1 I

Table 5: Arbor properties

4 Arbors

4.1 Properties

An arbor is a collection of dendritic or axonal segments which share a com-
mon predecessor segment. Arbors have the following properties:

arbor ID An identi�er which distinguishes one arbor from every other ar-
bor belonging to the same cell. This is represented as an integer value
counting upwards from 1.

cell ID The identi�er of the neuron to which the arbor belongs.

arbor type A symbolic designator for the type of arbor,
s 2 fdendritic; axonalg.

number of segments The number of segments in the arbor.

number of junctions The number of junctions in the arbor.

arbor depth The maximum junction order of the arbor. The root Soma{
Arbor junction is order 0.

These properties are summarized in Table 5.

4.2 Probability Density Functions

None.
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5 Segments

5.1 Properties

Segments are modeled as a trajectory in space and a diameter which may
change as a function of length. Empirically measured segment trajectory
data is usually in the form of a series of sampled points, which may or may
not be regularly spaced. For the purposes of statistical modeling such data
is re-sampled at a user-speci�ed resolution. This results in a set of uniformly
spaced data points representing the segment trajectory.

The sampled data points are referred to as Pi; 1 � i � n. By linearly
interpolating between these points, a piecewise linear representation of the
trajectory may be constructed. Each linear portion of the piecewise trajec-
tory is referred to as a section, and is de�ned as:

si = Pi+1 � Pi j 1 � i < n (1)

5.1.1 Segment Trajectory

The Frenet Frame To statistically model the segment trajectory, it is
useful to introduce the Frenet frame of the trajectory at each sampled data
point Pi j 1 � i < n. The Frenet frame of a parametric curve x = f(s); x 2
<3 provides a local frame of reference de�ned by the direction and curvature
of f at s. The Frenet frame is de�ned as the triplet of orthonormal vectors
(t m b)

t =
_x

k _xk
; m = b ^ t; b =

_x ^ �x

k _x ^ �xk
(2)

where _x is the �rst derivative of x with respect to s, and �x is the second
derivative of x with respect to s, and both of these derivatives exist and are
non-zero[1, 2].

The Discrete Frenet Frame Since sampled data points themselves are
not a continuous curve, it is necessary to use other information to approx-
imate the true Frenet frame at a sampled data point. One way of doing
this would be to refer to the Frenet frame of an interpolating spline con-
structed through the data points. However, this would require the use of a
C2 continuous interpolating spline so that the required derivatives exist.

There is no a priori reason to believe that real segment trajectories are
C2 continuous. Further, the curvature of an interpolating spline depends on
a number of factors other than the data points. Thus it is desirable to �nd
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Figure 1: The discrete Frenet frame at Pi, with interpolating spline.

a representation which approximates the true Frenet frame of the trajectory
but is discrete and depends only on the sampled data points.

To accomplish this, the discrete Frenet frame (Figure 1) at Pi j 1 < i < n

is de�ned as:

t =
si�1 + si

ksi�1 + sik
; m = b� t; b =

si � si�1

ksi � si�1k
(3)

For the special case of P1 the discrete Frenet frame is de�ned as:

t =
RFt + s1

kRFt + s1k
;m = b� t; b =

s1 �RFt

ks1 �RFtk
(4)

where RFt is the t vector of the initial segment reference frame. A succession
of discrete Frenet frames may be described in terms of a series of rotations
of the initial segment coordinate frame.

A Continuous Reconstruction A continuous reconstruction of the seg-
ment trajectory may occasionally be useful for resampling or visualization.
Using an interpolating spline with a Catmull-Rom interpolant results in cur-
vature at the control points which matches the discrete Frenet frame at that
point.
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Description Symbol Type Representation

segment ID IDsegment I � 200; 000 I

cell ID IDcell I � 100; 000 I

arbor ID IDarbor I � 1 I

segment type t fnonterminal ; terminalg fnonterminal ; terminalg
parent junction ID IDj0 I � 300; 000 I

daughter junction ID IDj1 I � 300; 000 I

initial diameter di < > 0 <
initial taper �d0i < > 0 <
�nal diameter df < > 0 <
�nal taper �d0f < > 0 <

diameter interpolation method Imethod flinear ;Hermiteg flinear ;Hermiteg
segment arc length larc < > 0 <
segment electrotonic length le < > 0 <
total rotation Rtotal Qunit (q0 q1 q2 q3) 2 <

4

number of sampled data points n I � 2 I

sampling interval ls Larc � ls > 0 <
trajectory T (P1 P2 : : : Pn) Pi = (pi0 pi1 pi2) 2 <

3

discrete Frenet frames D (QP1 QP2 : : : QPn) QPi = (qPi0 qPi1 qPi2 qPi3) 2 <4

segment growth force �eld �r� (�r�P1 �r�P2 : : : �r�Pn) �r�Pi = (�@�
@t

�@�
@m

�@�
@b

) 2 <3

Table 6: Segment properties

5.1.2 Force Fields

To model the growth of neuron segments it is necessary to take into account
the e�ects of chemical \force �elds" which attract or repel the neuron growth
cone. The statistical model assumes that such a �eld can be approximated
as a constant gradient with respect to the growth of a single section, but
can vary over the length of the segment. The further assumption is that
the �eld e�ects segment growth by applying a torque to the Frenet frame of
the growth tip equal to the cross product of the t vector and the gradient.
The presence of such a �eld is therefor detectable through analysis of the
discrete Frenet frame data.

5.1.3 Properties list

Segments have the following properties:

segment ID A unique identi�er which distinguishes one segment from ev-
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ery other segment in a neuron. Segment ID is represented as a six
digit integer counting upwards from 200,000.

cell ID The identi�er of the cell in which the segment resides.

arbor ID The identi�er of the arbor in which the segment resides.

segment type There are two types of segments, nonterminal and terminal.
Nonterminal segments have daughter junctions; terminal segments do
not.

parent junction ID The identi�er of the parent junction of the segment.

daughter junction ID The identi�er of the daughter junction of the seg-
ment.

initial diameter The initial diameter of the segment.

initial taper The negative slope of the diameter as a function of length at
the beginning of the segment. This is used as the initial tangent for
cubic Hermitian diameter interpolation.

�nal diameter The �nal diameter of the segment.

�nal taper The negative slope of the diameter as a function of length at
the end of the segment. This is used as the �nal tangent for cubic
Hermitian diameter interpolation.

diameter interpolation method The method used to interpolate between
the initial and �nal diameter. The choices are linear and hermite.

segment arc length The path length of the trajectory of segment.

segment electrotonic length The electrotonic length of the segment.

total rotation The rotation of the �nal reference frame of the trajectory
with respect to the initial reference frame, i.e. RFinitial ) RFfinal

number of sampled data points The number of data points in the tra-
jectory.

sampling interval The sampling interval for the data points.

14



Description Representation

Distribution of nonterminal segments p(t)
Distribution of initial segment diameter p(di)
Distribution of initial segment taper p(�d0i)
Distribution of �nal segment diameter p(df )
Distribution of �nal segment taper p(�d0f )

Distribution of segment arc length p(larc)
Distribution of segment electrotonic length p(le j larc j di j df )
Distribution of successive discrete Frenet frame rotations p(QP )
Distribution of segment growth force �eld p(�r�)

Table 7: Segment probability density functions

trajectory A sequence of sampled data points representing the segment
trajectory. These are <3 vectors relative to the initial reference frame
of the segment.

discrete Frenet frames The discrete Frenet frames at points Pi j 1 � i �
n expressed as a series of successive rotations of the initial segment
reference frame.

segment growth force �eld The negative gradient of the chemical con-
centration e�ecting the growth of the segment, as measured at each
sampled data point.

These properties are summarized in Table 6.

5.2 Probability Density Functions

A segment may be statistically modeled using the following probability den-
sity functions:

� p(t) | A probability density function for the distribution of nonter-
minal segments.

� p(di) | A probability density function for the distribution of initial
segment diameter.

� p(�d0i) | A probability density function for the distribution of initial
segment taper.
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� p(df ) | A probability density function for the distribution of �nal
segment diameter.

� p(�d0f ) | A probability density function for the distribution of �nal
segment taper.

� p(larc) | A probability density function for the distribution of segment
arc length.

� p(le) | A probability density function for the distribution of segment
electrotonic length. It is assumed that electrotonic length can be com-
puted from larc, di, and df , and for segments adjacent to the soma,
additionally from �d0i and �d

0

f .

� p(QP ) | A probability density function for the distribution of suc-
cessive discrete Frenet frame rotations independent of segment growth
force �eld.

� p(�r�) | A probability density function for the distribution of seg-
ment growth force �eld.

These probability density functions are summarized in Table 7.
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Description Symbol Type Representation

segment ID IDsegment I � 200; 000 I

cell ID IDcell I � 100; 000 I

number of spines nspine I � 0 I

spine distances dspines (d1 d2 : : : dnspine
) di 2 <

spine rotations �spines (�1 �2 : : : �nspine
) �i 2 <

Table 8: Spine properties

6 Spines

6.1 Properties

Spines are small protrusions found on the sides of segments. The precise
measurement of individual spines is diÆcult and time consuming given their
small scale | these structures are barely visible at the limit of optical resolu-
tion. However, an attempt must be made to accurately measure the position
and orientation of individual spines on at least some segments for statistical
modeling purposes. Spines have the following properties:

segment ID The ID of the segment being described.

cell ID The identi�er of the cell in which the segment resides.

number of spines The observed number of spines on the segment.

spine distances A list of the distances of each spine from the parent junc-
tion.

spine rotations A list of the rotations of each spine (in radians) relative
to the b vector of the Frenet frame.

These properties are summarized in Table 8.

6.2 Probability Density Functions

Spines may be statistically modeled using the following probability density
functions:

� p(nspine j larc) | a probability density function for the distribution of
the number of spines, conditional on segment length.
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Description Representation

Distribution of number of spines p(nspine j larc)
Distribution of spine distances p(dspines j nspine j larc)
Distribution of spine rotations p(�spines)

Table 9: spine probability density functions

� p(dspines) | a probability density function for the distribution of the
distance of spines from the segment junction.

� p(�spines) | a probability density function for the distribution of spine
rotations relative to the b vector of the local Frenet frame.

These probability density functions are summarized in Table 9.
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7 Junctions

7.1 Properties

A junction is a branch point in an axon or dendrite. A single segment, re-
ferred to as the parent, branches into two or more daughter segments. In
the case where there are two daughter segments the junction is termed a
bifurcation, otherwise it is called a multifurcation. The statistical model
directly accommodates bifurcations and multifurcations of three daughter
segments. For multifurcations of more than three daughter segments, addi-
tional junctions may be used.

Junctions are de�ned by the intersection of parent and daughter seg-
ments. The parent segment is referred to as S0 and the daughter segments
as S1 : : : Sn; n 2 f2; 3g. Daughter segments are designated S1, S2, etc. in
order of decreasing diameter, unless dependency relationships dictate oth-
erwise (see below).

7.1.1 Relative Angle Junction Geometry Representation

Mulchandani[2] describes bifurcation junction geometry in terms of three
relative angles (�01, �02, and �12) and a chirility factor which indicates the
\handedness" of the structure. Unfortunately this is adequate only for a
bifurcation. For a trifurcation the number of relative angles needed increases
to six (�01, �02, �03, �12, �13, and �23.) Further, an additional \twist" angle
must be calculated for each daughter segment trajectory to orient the initial
reference frame of the daughter segment.

7.1.2 Quaternion Junction Rotation Representation

The relative angle representation treats the junction as a rigid body. More
generally, the neuron morphology model treats the junction as a set of
branching trajectories, each with its own reference frame. This means that
the initial trajectory of each Si; 1 � i � n may be described in terms of a
rotation of the �nal trajectory reference frame of S0. This junction rotation
may be conveniently represented as a unit quaternion qi. The quaternion
representation has several advantages:

1. A quaternion completely speci�es the initial reference frame of a daugh-
ter segment trajectory. Additional factors such as chirility and \twist"
are derived attributes.
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Figure 2: Example hierarchical dependency relationships

2. The quaternion representation allows junction branch angles to be
easily decoupled or made dependent. (See below.)

3. The quaternion representation supports the neuron morphology model
paradigm of treating junctions as branching segment trajectories, each
with its own coordinate frame. This paradigm is not supported by
using relative angles.

4. Figuring out \twist" angles in the relative angle approach requires
analyzing a junction in terms of segment trajectories and reference
frames anyway. Thus, no work is saved by using this representation.

7.1.3 Hierarchical Daughter Segment Dependency

In the simplest case the initial frame of reference and the trajectory of
daughter segment Sn depends only on the �nal reference frame of S0. In
other words, the initial trajectories of all daughter segments are inuenced
only by the �nal trajectory of the parent. There is no a priori reason to
believe that this is true in every case; it is possible that the initial trajectory
of daughter segments could inuence each other. Leaving aside the problem
of detecting such inuences, it is possible to represent this kind of complex
trajectory dependency in the statistical model through hierarchical daughter
dependency relationships.
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Figure 3: Dendritic branching with three levels of daughter dependency

Figure 2 graphically represents three possible dependency relationships.
In A, all daughter segments depend only on the parent segment | the sim-
plest case. The junction rotations of each daughter segment are speci�ed
relative to the �nal reference frame of S0. In B, the initial trajectory (junc-
tion rotation) of daughter segment S2 depends on the junction rotation of
daughter segment S1, which in turn depends on the �nal trajectory of S0.
The dependency relationship in C is a three level hierarchy, and is geomet-
rically illustrated in Figure 3.

7.1.4 Properties List

A junction has the following properties:

junction ID Junction ID is a unique identi�er which distinguishes one
junction from every other junction in a neuron. Junction ID is repre-
sented as a six digit integer counting upwards from 300,000.

cell ID The identi�er of the cell in which the junction resides.

arbor ID The identi�er of the arbor in which the junction resides.

junction order The order of the junction.

path length The total length of the shortest path from the branch point
of the junction back to the root of the arbor.

electrotonic path length The total electrotonic length of the shortest
path from the branch point of the junction back to the root of the
arbor.

21



Description Symbol Type Representation

junction ID IDjunction I � 300; 000 I

cell ID IDcell I � 100; 000 I

arbor ID IDarbor I � 1 I

junction order O I � 1 I

path length lpath < > 0 <
electrotonic path length le < > 0 <
number of segments Nseg f3,4g I

parent segment ID IDS0 I � 200; 000 I

S1 ID IDS1 I � 200; 000 I

S2 ID IDS2 I � 200; 000 I

S3 ID IDS3 I � 200; 000 I

S1 rotation dependency DS1 f0g I

S2 rotation dependency DS2 f0; 1g I

S3 rotation dependency DS3 f0; 1; 2g I

S1 junction rotation RS1 Qunit (q0 q1 q2 q3) 2 <
4

S2 junction rotation RS2 Qunit (q0 q1 q2 q3) 2 <
4

S3 junction rotation RS3 Qunit (q0 q1 q2 q3) 2 <
4

Table 10: Junction properties
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Description Representation

Distribution of S1 junction rotations. p(RS1)
Distribution of S2 dependencies. p(DS2)
Distribution of S2 junction rotations dependent on S0. p(RS2 jDS2 = 0)
Distribution of S2 junction rotations dependent on S1. p(RS2 jDS2 = 1)
Distribution of S3 dependencies. p(DS2)
Distribution of S3 junction rotations dependent on S0. p(RS3 jDS3 = 0)
Distribution of S3 junction rotations dependent on S1. p(RS3 jDS3 = 1)
Distribution of S3 junction rotations dependent on S2. p(RS3 jDS3 = 2)

Table 11: Junction probability density functions

number of segments The number of segments intersecting at the junc-
tion.

parent ID The identi�er of the S0 (parent) segment.

Si ID Three segment identi�ers corresponding to daughter segments S1, S2,
and S3. For a bifurcation only S1 and S2 will be non-zero.

Si rotation dependency Three dependency identi�ers designating the ro-
tation dependencies of the daughter segments S1, S2, and S3 respec-
tively.

Si junction rotation Three rotations speci�ed as unit quaternions repre-
senting the junction rotations of the daughter segments S1, S2, and S3
respectively.

These properties are summarized in Table 10.

7.2 Probability Density Functions

The probability density functions which govern the junction all relate to
the initial junction rotation and hierarchical dependency relationships of
the daughter segments. Separate probability density functions for junction
rotation are speci�ed for each daughter segment dependency case.

A junction may be statistically modeled using the following probability
density functions:

� p(RS1) | A probability density function for the junction rotation of
S1. By de�nition, S1 always depends on S0.

23



� p(DS2) | A probability density function for the dependency of the
junction rotation of S2. Segment S2 may depend on either the parent
or the �rst daughter segment.

� p(RS2 jDS2 = 0) | A probability density function for the junction
rotation of S2 when S2 depends on S0.

� p(RS2 jDS2 = 1) | A probability density function for the junction
rotation of S2 when S2 depends on S1.

� p(DS3) | A probability density function for the dependency of the
junction rotation of S3. Segment S3 may depend on either the parent,
the �rst, or the second daughter segment.

� p(RS3 jDS3 = 0) | A probability density function for the junction
rotation of S3 when S3 depends on S0.

� p(RS3 jDS3 = 1) | A probability density function for the junction
rotation of S3 when S3 depends on S1.

� p(RS3 jDS3 = 2) | A probability density function for the junction
rotation of S3 when S3 depends on S2.

These probability density functions are summarized in Table 11.
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Description Type Representation

auxiliary property name [A : : : Z a : : : z]n text string
auxiliary property type fsoma arbor segment spine junctiong fsoma arbor segment spine junctiong
auxiliary property description descriptive text text string

Table 12: Auxiliary Property De�nition

8 Auxiliary Properties

8.1 Introduction

Auxiliary properties provide an alternate or elaborated representation of
neuron morphology. An auxiliary property derives from one or more of
the fundamental properties of a morphological element. On example of
an auxiliary property is the Mulchandani relative angle representation for
junction geometry.

There are two components to the N++ aauxiliary property framework:
an auxiliary property de�nition, and zero or more auxiliary property records.
The auxiliary property de�nition provides a label for the auxiliary property
and a description of how the property is calculated. An auxiliary property
record is a individual instance of an auxiliary property.

8.2 Auxiliary Property De�nition

In the at �le representation, auxiliary property de�nitions are placed after
all other data except auxiliary property records. An auxiliary property
de�nition is composed of the following elements:

auxiliary property name A unique text string identifying the property.
This string is composed of the letters A{Z and a{z.

auxiliary property type The type of morphology to which this auxiliary
property relates.

auxiliary property description A text string describing the property.
This description could take the form of a symbolic expression or de-
scriptive text. If a symbolic expression is used it should be human-
readable, since the N++ model does not specify a standard for parsing
such expressions and a data-set may be evaluated in a wide range of
software applications.

The auxiliary property de�nition is summarized in Table 12.
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Description Symbol Type Representation

record ID IDrecord I � 400; 000 I

cell ID IDcell I � 100; 000 I

arbor ID IDarbor I � 1 I

segment ID IDsegment I � 200; 000 I

junction ID IDjunction I � 300; 000 I

property Xrecord any text string

Table 13: Auxiliary Property Record

8.3 Auxiliary Property Record

An auxiliary property record is an instance of an auxiliary property which
refers to a particular soma, arbor, segment, or junction. In the at �le repre-
sentation, auxiliary property records are placed after all auxiliary property
de�nitions. An auxiliary property record is composed of the following ele-
ments:

record ID A unique identi�er which distinguishes this auxiliary property
record from every other auxiliary property record in the at �le. Record
ID is represented as a six digit number counting upwards from 400,000.

record type The type of auxiliary property record. This string must match
a de�ned auxiliary property name.

cell ID The ID of the neuron to which the auxiliary property record refers.

arbor ID The identi�er of the arbor to which the auxiliary property record
refers, if relevant. Zero otherwise.

segment ID The identi�er of the segment to which the auxiliary property
refers, if appropriate. Zero otherwise.

junction ID The identi�er of the junction to which the auxiliary property
refers, if appropriate. Zero otherwise.

property A text string representation of the value of the auxiliary property.
The use of a text string representation allows the greatest exibility
for the contents of this �eld.
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