
Polymerization Strategy for the Compression, Segmentation, and Modeling of
Volumetric Data

Bruce H. McCormick Brad Busse Purna Doddapaneni

Zeki Melek John Keyser
Department of Computer Science, Texas A&M University

Abstract
We present a data structure for the representation of
volumetric data. The data structure is designed to allow
for easy compression, storage, segmentation, and
reconstruction of volumetric data. We call our data
structure the L-block, abstracting many of the properties
of Lego® blocks, and refer to the process of creating and
manipulating L-blocks as the polymerization strategy.

The concept of an enhanced volume data set (EVDS) is
introduced, where the data set is enhanced by explicitly
introducing Boolean labeling of edges between adjacent
voxels of the volume data. This enhancement, by
“polymerizing” adjacent connected voxels into connected
components, facilitates real-time data compression and
segmentation of embedded objects within the volume data
set. These connected components are packaged in the
new container type, the L-block, with the intention of
efficiently packaging the connected components with a
minimum of adjacent unconnected voxels.

We present the L-block data structure in detail. We
describe methods for compressing volume data using the
L-block structure, intersecting and merging L-blocks, and
segmenting data. While the L-block data structure is
general, it was developed to represent scanned brain
microstructure at a neuronal level of detail. We highlight
the performance of our implementation of the
polymerization strategy on a set of sampled neuronal
data.

1. Introduction

1.1. Motivation

 Volumetric representations are needed to model the
objects found in volumetric data sets. Sources of such
data sets include medical imaging procedures (e.g. MRI)
and, more generally, various three-dimensional scanning
processes on real-world data.

 The work presented in this paper has been particularly
motivated by our attempts to scan and reconstruct brain
tissue at a neuronal level of detail. The data sets acquired
in this work tend to have several distinguishing features.
Among them are:

• The full volume data set can be extremely large.
Raw data set sizes can reach into the terabytes.

• The data of interest within the volume data sets
(i.e., the stained neuronal tissue) tends to be
sparse, taking up only a modest portion of the
overall volume.

• The neurons to be modeled have very long, thin
branching structures.

• Data will be acquired at a high rate, and one
would like to have a quick way of compressing
and storing it in a geometrically meaningful way
that facilitates future reconstruction.

 We have found current volumetric representation
techniques to be deficient in addressing at least one of
these features. Due to the potential data size, methods
that keep the entire volume in memory at once are
unrealistic. Several methods (such as the well-known
octree) are poorly suited for modeling long, thin
structures. Medial-axis methods, while good for
representing neurons, tend to process too slowly and can
require too much data to be stored in memory. Pure
image and video compression techniques can work well
for compression, but fail to give any meaningful insight
into the geometric structure of the objects to be modeled.

1.2. Main Results

 We introduce a new data structure designed
specifically to address the data set features listed above.
There are two key components of our data structure. First,
we introduce the concept of an enhanced volume data set
(EVDS), where the data set is enhanced by explicitly
introducing Boolean labeling of edges between adjacent
voxels of the volume data. Next, we introduce a new
container type, the L-block. L-blocks (and coverings with
L-blocks) are designed to efficiently package the
connected components of the EVDS, with a minimum of

adjacent unconnected voxels. We refer to the process of
constructing L-blocks from volumetric data as the
polymerization algorithm. We have implemented the L-
block structure described, and present the results of its
application to some sample neuron data.

2. Representations

 In this section we describe the representation of the L-
block data structure. We begin by describing the concept
of an enhanced volume data set. Next we discuss the L-
block data structure itself. Finally, we discuss the L-
block structure in relation to other volumetric models.

2.1. Domain

 We assume that we are given a uniform n-dimensional
grid. Every vertex of this grid is assigned a value. The
nature of this value may vary. Three possible examples
include:

• An integer gray-scale value. This might occur
when the data has been obtained from some
scanning process, such as from MRI.

• A binary value. This could indicate whether the
vertex is or is not in some object. Thresholding
or similar techniques might have been used to
convert grayscale values to binary values, for
example.

• A vector of values. This might arise from multi-
spectral scanned data such as a color camera
with three channels (RGB).

 For simplicity, we will usually refer to a 3-dimensional
data set, commonly called a volume data set. For 3-D
data sets, the voxels form the vertices of the grid.
Although we often confine our description to 3D
volumes, the concepts are equally applicable to other
dimensional data sets.

2.2. Enhanced volume data sets

 We create an enhanced volume data set (EVDS) as
described below. The goals of the enhancement are to:

• Allow data compression in real time, in such a
manner as to facilitate subsequent segmentation
of the volume data set;

• Provide data compression and segmentation
strategies that exploit the efficiencies of
examining successive serial images, yet are
independent of the axis chosen for serial
sectioning;

• Separate segmentation clearly from both
geometric modeling and visualization of the
identified objects in the volume data set.

• Exhibit the statistical basis for the enhancement
of the volume data set.

 Given a volume data set, we define an EVDS as
follows: in addition to the value assigned to every vertex
(voxel) of the grid, selected edges between vertices of the
grid are given a Boolean label of 1 for active edges and 0
for inactive edges. This enhancement alone can aid in
topological analysis of the relevant data [5].
 Edge labeling is used to provide independent
information about whether two vertices sharing a
common active edge belong to the same underlying
object. Boolean labeling {0, 1}, as derived typically from
a decision function, is of course a crude estimate of this
co-habitation in the same object.
 It is important to note that the decision function used to
assign the Boolean values is in effect the segmentation
process, and is of primary importance in determining how
faithful a particular segmentation or reconstruction is.
This function can be arbitrarily complex. Choosing such
a function is outside the scope of this paper; we assume
such a function is available, and seek to provide the data
structure support needed to work with the result.
 In three dimensions, the data volume is typically
created by serially scanning successive sections
perpendicular to (say) the vertical Z-axis. Here voxels at
the same (X, Y) position in two successive registered
images can be conveniently labeled as likely drawn from
the same underlying physical object by marking their
common vertical edge as active. However, as the
specimen could have been sectioned perpendicular to the
X- or Y- axes, we extend the same edge labeling scheme
to all three directions.
 Any enhanced volume data set (in three dimensions)
can have many representations. Most useful for our
purposes is an assignment at each vertex of an association
{<voxel value> <edge labels>}, where the Boolean vector
<edge labels> indicates the activity level of the edges
emanating from the vertex. Vertices at the boundary of
the grid may lack some edges; we treat these as inactive.
 Note that for a regular grid, there may be a choice in
the number of edges emanating from any one vertex. We
only assume that each vertex has a fixed set of emanating
edges. The number of edges emanating from any one
vertex is referred to as the connectivity level. For
example, consider a regular 3D grid of vertices. If no
edges are stored at any vertex (i.e. the data set is not
enhanced), we have 0-connectivity. Placing edges in the
axis directions (i.e. (i,j,k) is connected to (i+1,j,k),
(i,j+1,k), and (i,j,k+1)) gives 3-connectivity. Imagining an
axis-aligned cube around the vertex, 3-connectivity would
give connections across each face. Connections across
the edges as well would yield 9-connectivity, while
including the corners in addition would give 13-
connectivity. Note that for dimension k, the connectivity

level will often be k, as well, and the connectivity level
may be at most (3k-1)/2.
 A vertex in an EVDS with 3-connectivity can be
thought of as having “links” that extend to the
neighboring vertices along the three coordinate axes (see
Figure 1). Thus it behaves somewhat like a Lego® block,
with connections possible along 3 axes.

Figure 1. Vertices in a 3-connected and 9-
connected EVDS. The bars show potential links
to neighboring vertices.

2.3. L-blocks, Coverings, and Partitions

 Given an EVDS, “whitespace” is defined as vertices
that do not satisfy the threshold test. We use L-blocks, L-
block coverings, and L-block partitions to represent the
data that is not whitespace.

2.3.1. L-blocks
 An L-block is defined as a k-dimensional iso-
rectangular block of enhanced vertex information. The
block must be entirely contained within the uniform k-
dimensional grid of the EVDS. An (l1 ,l2 ,…, lk) L-block
refers to a block of l1 vertices in the first dimension, l2 in
the second, etc. Each L-block is defined by its <header>
information followed by its <vertex array>. The
<header>={<position>< template>}, is given by: (1) the
position, e.g. (x,y,z), of its least vertex, as indexed within
the parent k-dimensional uniform grid, and (2) its
template (l1 l2 … lk). Its <vertex array> contains the
enhanced vertex information (voxel value(s) and edge
labels). In summary the {<position> <template> <vertex
array>} characterizes a L-block.
 Given a k-dimensional (l1 ,l2 ,…, lk) L-block, the
number of bits required to store the header is 2D, where

∑
=

=
k

i
iDD

1

, and Di is the number of bits needed to store

the size of the EVDS (not just the L-block) in each of the
k directions. For example, a 10243 data set would give L-
blocks with Di = 10, D = 30, and each header requiring at
least 60 bits. The vertex array of the L-block requires

()∏
=

+
k

i
ir ljb

1

bits, where br is the number of bits

required to store an individual sample and j is the
connectivity level. For binary data, br would be 1, for

grayscale data, br is often 8, and for color images, br is
often 24.
 The L-block as a whole can be visualized as a block of
vertices, with extensions that demonstrate connectivity.
An example is seen in Figure 2.

Figure 2. A (3,3,2) L-block. Cylinders represent
active edges emanating from the L-block.

2.3.2. Coverings and Partitions
 A covering of a volume, V, by a set, A, of L-blocks is

defined as U
A

LVAC
∈

=
α

α),(, such that any vertex in V

is in the vertex array of some Lα . The L-blocks, Lα ,
may overlap and need not be adjacent. Note that the
volume V may be of arbitrary shape and size (it need not
be rectangular). A covering (,)C A V can be given a
hierarchical decomposition in terms of other coverings,

U
m

i
ii VACVAC

1

),(),(
=

= , where

{ }miAAi ,,1| K=⊆ and VV
m

i
i ⊆

=
U

1

.

 A partition P(A,V) is a restricted form of covering such
that the L-blocks themselves do not overlap. Similar to
coverings, an L-block partition can be given a hierarchical
decomposition in terms of other L-block partitions.
 A hierarchical L-block covering (and thus an L-block
partition) can be defined by a <header> followed by a
<sub-block list>. The header is identical to that for an L-
block, and thus also requires 2D bits to store. The <sub-
block list> is composed of a list of pointers to other L-
block coverings. The number of bits needed for the sub-
block list, then, is bv+Nbm, where bv is the number of bits
needed to store the maximum number of pointers (note
that bv is never more than D), N is the number of pointers
used, and bm is the number of bits used for a pointer
(usually operating system or compiler dependent). Of
course, each covering or L-block that is referenced has its
own storage cost. The elements of a covering can be
stored in any order, and can be transmitted without
concern for their order of arrival at the receiving site.

 An example of a hierarchical L-block covering can be
seen in Figure 3.

Figure 3. An L-block covering (top of the tree) is
formed from the union of two other L-block
coverings (middle row). Those L-block
coverings are formed from unions of (1,1,1) L-
blocks (on the bottom row).

2.3.3. Notation
 Hereafter, we will use the following abbreviations. An
L-block, consisting of a header and enhanced vertex array
will be referred to as an LB, with the template optionally
given immediately beforehand. For example, a single 3-D
voxel could be described by a (1,1,1)LB. A covering of
L-blocks will be referred to as an LBC, and a partitioning
of L-blocks as an LBP. It will be assumed that all LBCs
and LBPs are expressed hierarchically.

2.4. Applying LBCs to volume data

 Our intention is to identify objects of interest from
within a volumetric data set. To this end the
polymerization strategy, described in section 3.2 below,
views active edges within the EVDS as hardening
(polymerizing) into a structure not unlike a jungle gym
and the objects of interest lifted (segmented) out of the 3D
block-structured grid.
 Several definitions and lemmas are introduced here to
help formalize the polymerization process.

2.4.1. Volume and regions of interest
 A volume of interest, AVOI , is a covering (,)C VΑ

of a connected component G , where (,)G C V⊆ Α . A
volume segmentation strategy then consists of identifying

volumes of interest, { }1 2, ,..., nVOI VOI VOI , that

collectively provide a covering of all connected
components within a given volume, V.
 For the special case where V is a planar slice of the
EVDS, a region of interest, AROI , is a covering

(,)C VΑ of a connected component G , where

(,)G C V⊆ Α . An image segmentation strategy then
consists of identifying regions of interest,

{ }1 2, ,..., nROI ROI ROI , that collectively provide a

covering of all connected components within the volume
(image) V. ROIs from successive images can then be
threaded together by their active edges to form VOIs.

2.4.2. Graph of a covering
 Two distinct L-blocks, Lα and Lβ , are joined if their

vertices share at least one active edge. Adjacent or
overlapping LBs may or may not be joined. We define the

graph G of a covering (),C A V , as follows:

1) Vertices of the graphG : Each L-block,
AL ∈αα , , is assigned a vertex in G .

2) Edges of the graph G : An edge eαβ ∈G links

two L-blocks iff the L-blocks are joined. In
general, the edge is undirected.

 Lemma. Every connected component within a

covering (),C A V resides in a connected component of

the graph of the covering. The converse is not in general
true.

2.4.3. Cost of a covering or partition
 Useful segmentations, by coverings or partitions, of
the active vertices in a volume V must be efficient:
avoiding overly large blocks (covering excessive white
space) or requiring large numbers of small blocks. The
quality of the covering (partition) can be controlled in part
by assigning a cost to a covering (partition). For a
covering (,)C A V , we assign a cost

()() ()∑
Α∈

+=
α

ακ LVAC $,$, and () µλ αα NL +=$,

where κ is a cost associated with the covering
(irrespective of the L-blocks), λ is a cost associated with
a single L-block, µ is a cost associated with a single

vertex, and αN is the number of vertices in Lα . An
identical cost formula will be used for partitions.
 Although many such cost functions are possible, one
natural one is based on the memory requirements of the
structure, as outlined in the bit costs described in section
2.3. In this case, the parameters κ and λ represent the
space needed to store the header information, while
µ represents the space needed to store the voxel value
and edge information at each vertex.
 The objective, then, is to find a minimal cost covering
for the given volume. Notice that for 0λ = , any
covering of all active vertices by L-blocks with (1 1 1)
templates is of minimal cost, provided the (1 1 1)
template is permitted in the covering. For µλ > ,

minimal coverings will trade off using fewer blocks with
covering more white space. As λ increases, a minimal
cost covering will, in general, use fewer blocks of larger
size. Counter to intuition, for a given covering

(),C A V and cost parameter λ<0 , a partition

(,)P A V′ of lower cost might not exist.

3. Operations

3.1. Binary L-block operations

 There are many possible operations that can be defined
on L-blocks. We present two binary L-block operations
that are quite useful for reconstructing solids from
scanned data. Merging is commonly used when
processing data. Intersection is important in that it can be
used to examine only the portion of a data structure within
a restricted region of space.

3.1.1. Merge/Union
 The merging of two LBs will form another LB. For
given input LBs Lα and Lβ , assume the header

information in dimension i is given by position pi and
template value ti. Then, the new header will have position

),min(,,, βααβ iii ppp = , and template index

),max(,,,,,,, αβββαβαααβ iiiiiii ptpptpt −+−+= .

It is necessary to assign values to all the vertices within
the merged L-block. For those corresponding to vertices
from the input LBs, this is straightforward. For the other
vertices, no information is known, and we assign “empty”
values with no active edges to each of these vertices.
 Considering LBCs, the merging of two LBCs is a
straightforward process. Either a new LBC is created,
with pointers to the input LBCs as sub-blocks, or the
pointers of the two input LBCs are merged into a single
list. In either case, the header information is adjusted as
for merging two LBs. LBCs are closed under union.

3.1.2. Intersection
 The intersection of two LBs, Lα and Lβ ,

aL L Lβ α β= I , is either an LB or the empty set ∅ .

Forming the header and vertex array is straightforward.
For LBPs this representation is unique: Given partitions
P(A,V) and P(B,V), with ()Β∈Α∈ νβµα ,|, , then

≠= µναβ LL ∅ implies νβµα == , .

Lemma: The class of coverings with respect to a volume
V is closed under intersection.

The intersection of two LBCs,

() () (), , ,C V C A V C B V∆ = I , is again an LBC.

The resulting LBC is formed from a collection of LBs:
{ }∆∈∈∈= αββαβααβ ,,| BALLL I . In general

the covering set ∆ will have members in neither A
nor B .
Lemma. The class of partitions with respect to a volume
V is closed under intersection.
The intersection of two LBPs,

() () (), , ,P V P A V P B V∆ = I , is again formed as a

collection of LBs in the same way as for coverings. The
result is a partition since the Lαβ are disjoint:

() ()
() ()

αββναµββνααµ

νβµα

νµβαµναβ

δδδδ LLL

LLLL

LLLLLL

==

=

=

I

III

IIII

That is, the intersection of the two partitions can be
expressed as a collection of disjoint L-blocks.

3.2. The polymerization strategy

 The polymerization strategy refers to the use of an
enhanced data set stored in an LBC to encompass an
object of interest within a given volume. This strategy
will be successful to the extent that the data-dependent
edge-labeling function captures the connectivity of the
underlying physical objects in the scanned block. In
practice, we usually use a conservative labeling function
initially, allowing us to quickly segment and compress a
superset of the critical data. Later, more sophisticated
(and slower) techniques can be applied to these initial
LBCs in order to adjust the edge labeling.
 Connected components in the extended volume data
set are of particular interest, as these are the substrata
upon which objects in the volume data set are modeled.
Focusing on its connected components, and efficiently
packaging these within LBCs, can significantly compress
an EVDS. Given an EVDS, polymerization therefore lets
us compress the data, retaining only what is needed.
 Isolated vertices, those having no active edges, occur
regularly in scanned volume data, often due to “noise.”
Such vertices can be ignored, or at worst, packaged in
small LBs for separate consideration, should their voxel
value exceed some threshold. In this case the remaining
vertices outside the coverings can be treated as “white
space”, and ignored in subsequent image processing. The
content of the EVDS, exclusive of its “white space”, is
then captured in the L-block covering or partition.
 At other times only the boundaries of objects warrant
consideration. Here “black space” LBs, whose every

associated edge is active, can be separately noted, and
suppressed.
 Volume data generated by serial sectioning and
scanning of a three-dimensional specimen can be
compressed in real time by incrementally generating the
EVDS. As each consecutive image is scanned, only its
immediate predecessor need be retained in memory while
the current image data is enhanced and incrementally
added to the evolving EVDS. For example, let
consecutive serial sections be scanned in the XY plane at
depths of Z and Z+1 respectively. The Z+1-plane image
data is used to enhance the Z-plane image data. Regions-
of-interest (ROIs) in the Z-plane image are then packaged
in (m n 1) L-blocks and added to the evolving compressed
representation of the EVDS. Black space blocks can be
deleted at this time or their processing deferred. This is a
key advantage of the LBC approach in that it allows us to
process, compress, and (coarsely) segment data on the fly
based on only a local set of data.

4. Comparison with other data structures

4.1. LBCs as a geometric superstructure

 L-block coverings can be viewed as a geometric
superstructure, encapsulating several other common
volumetric representations. These include grid-sampled
data, enumerated voxels, octrees, BSP-trees, kD-trees, and
AABB-trees (see, e.g. [3] for discussions of these). LBCs
can be used to describe these structures, with the same
algorithmic benefits, but possibly at an increased storage
cost. We refer the reader elsewhere for the details of this
encapsulation [7].

4.2. Comparison with other methods

 There are a large number of approaches to the storage
of volumetric data. Here, we will briefly summarize
several of these other volumetric data structures, and
highlight the relative advantages/disadvantages of our
data structure. The results are summarized in Table 1.

4.2.1. Alternative Data Structures
 A number of data structures can be used to describe
volumetric solids. A current and detailed summary of the
most important of these methods is given by Winter[14].
We briefly summarize the key alternative approaches:
• Grid-sampled data. This is the standard input format

for sampled data – values are kept at every point in the
entire data set. Since this clearly provides no
compression, it will not be considered for comparison.

• Spatial-occupancy enumeration. [3] In this very
simple structure, the individual voxels of interest are
listed and stored individually.

• Octree/quadtree. [4][9][10][11] The well-known
octree uses a hierarchical spatial-occupancy approach.
Blocks of data are recursively broken into 8
suboctants, each of which are either completely filled,
completely empty, or partially filled, in which case
they are further subdivided.

• BSP-tree. [3] This approach recursively divides space
by an arbitrary plane at each level, usually dividing the
remaining points equally. The leaves of this tree are
convex regions bounded by the planes in ancestor
nodes, and are classifed as either inside or outside.
Though created for a continuous domain, binary space
partition trees can be easily adapted to a grid domain
by limiting the binary planes at each step to an axis-
aligned approach. BSP trees can also describe infinite
volumes, which is not needed in our domain.

• kD-trees. [8] A kD-tree is similar to a cross between
an octree and a BSP-tree. Space is subdivided
recursively, but at each level, the (axis aligned)
direction and exact position of the plane can be
chosen. Because of their similarity to BSP-trees, we
will treat them together.

• AABB-trees. [13] Axis-aligned bounding box trees,
more commonly used in collision detection, are
perhaps the most similar to LBCs. These trees consist
of a hierarchical collection of iso-rectangular boxes,
each bounding the boxes of the child nodes. The key
difference in our approach is that the enhanced data
allows us to easily build LBCs incrementally and to
maintain connectivity between nodes without having
to go through a parent node.

4.2.2. Comparison Criteria
 While our data structure is general, and could be used
in a number of volumetric applications, we are
particularly interested in it as a data type for initial
processing of scanned neuron data. Several
distinguishing characteristics of this data were listed in
Section 1.1, and the criteria we describe below are derived
from those considerations.
 Obviously, a key concern is the amount of storage
required by the structure. Note that efficiency will vary
depending on whether the voxel values are binary (“in” or
“out”) or more complex (e.g. grayscale values).
 A second concern is that the method be able to handle
neuron shapes well. Neurons tend to be very long and
very thin, and have a complex branching structure;
methods that work well for big, blocky shapes (e.g.
octrees) typically represent long thin structures poorly.
 In addition, we would like the method to let us easily
determine the shape of the modeled object from the data
structure (e.g. by adapting size along axes). In addition,
we would like the method to allow us to easily capture the
complex branching structure of the neurons.

Table 1. A comparison of several volumetric data structures on important criteria.

 Finally, we want the method to be well suited to
incremental construction, where we cannot keep the entire
input dataset in memory at once. This makes spatial
subdivision methods poorly suited to the problem.

5. Application

 We describe here the results of the polymerization
strategy applied to a sample database of scanned neuronal
data – demonstrating the utility of our approach for the
compression, storage, segmentation, and reconstruction of
volume data.

5.1. Forming the EVDS

 We use a volume data set obtained from a set of 14
serial scanned images from Golgi-stained mouse brain
tissue imaged through a light microscope with incoherent
illumination. Registration of the images along the vertical
axis was done by hand. Regions near the borders of the
images are unusable (i.e. one image might contain data at
positions unavailable in the images above and below).
Each voxel of the data set represents a volume of 0.37 µ
m by 0.37 µ m by 0.5 µ m. The Z direction is taken to be
perpendicular to the image plane. We often refer to
individual images as “sections.” The details of this data
set have been described in [2]. A sample is shown in
Figure 4.
 We plan to use our L-block structure to process data
obtained from the Brain Tissue Scanner (BTS) [6]. The
BTS is a unique instrument developed at Texas A&M that
uses a diamond knife to concurrently cut tissue and scan
the tissue at the knife edge. We anticipate the BTS data
for Golgi stain will be similar to the sample data. Other
stains may have different properties.
 For the examples presented here, we use very simple
functions to determine valid vertices and edge labels. We
consider vertices significant if they pass a simple
thresholding test (e.g. have grayscale values above a
certain level and below another level). Edges are labeled
active iff both of the adjacent vertices are significant.
While future reconstruction efforts will likely involve
more complex labeling functions, these suffice for making
an EVDS for initial testing purposes.

Figure 4. A section in our dataset. The large
black region is a stain smear.

5.2. Compression of Data

 The memory needed to hold useful amounts of
uncompressed neural data is exceedingly large. For
example, the raw BTS data for an entire mouse brain
requires approximately 29 terabytes. For this reason,
space saving features of the L-block structure and
compression of the initial data are very important.
 The majority of data compression takes place during
the thresholding stage. Voxels that do not pass the
thresholding stage are considered “white space,” and it is
assumed that they can be ignored thereafter. The EVDS
is partitioned into 2 by 2 by 2 cells. If any of the voxels
in a cell is valid (i.e. passes the threshold test), that cell is
stored as a (2,2,2) LB. The compression achieved will
depend on the stain, the threshold used, and the density of
the data. For our sample Golgi-stained data set the initial
data requires approximately 112 MB of storage space.
With realistic threshold levels, we form 47,258 LBs
requiring about 4.4 MB to store, yielding a compression
factor of approximately 25.

Data Structure Storage
(binary)

Storage
(values)

Suited for neuron
shape

Determine shape
from structure

Incremental
Construction

Spatial enumeration Poor Good Fair Poor Excellent
Quadtree/octree Excellent Excellent Poor Fair Poor
BSP/kD tree Excellent Excellent Fair Good Poor
AABB tree Good Very Good Good Very Good Fair
EVDS/LBCs Good Very Good Good Excellent Very Good

 We then provide additional compression by combining
LBs where appropriate. Merging L-blocks has the
advantage of eliminating the overhead of the header
information. While combining two (2,2,2) LBs into, say
a (4,2,2) LB is straightforward, combining larger LBs
with smaller ones may be more problematic. Because
LBs store all data in an iso-rectangular volume, expanding
an LB might require storing “white” space along with
relevant data. To determine whether or not it is
appropriate to create such LBs, we use a cost function
based strictly on the relative storage requirements for the
merged and unmerged LBs. We consider merging LBs in
each of the positive X, Y, and Z axis directions. The L-
blocks are extended if the space that would be saved by
eliminating L-block overhead is greater than the space
lost by storing empty data. Figure 5 shows a close-up
image of merged LBs (drawn as wireframe boxes) from
the sample neuron data set. Figure 6 shows the merged
LBs for the entire sample data set, and Figure 7 shows the
merged LBs for a portion of the data set, overlaid with the
valid data. For the entire data set, our merging strategy
reduces the total number of LBs fourfold to 12,841,
requiring less than 3.7 MB of storage.

Figure 5. Merged L-blocks.

Noise reduction can also be used to reduce data
storage. LBs that have no active edges emanating can be
eliminated. Such LBs are unlikely to be a part of a
neuronal structure, and are most likely due to noise in the
input data. For our sample data set, noise reduction
reduces the total number of LBs to 7525, requiring only
2.3 MB to store. Together, noise reduction and LB
merging provide a factor of 2x compression in our sample
data, giving an overall compression of approximately 50x.

Note that these strategies are well suited for processing
3D microscopic data where data arrives one “section” at a
time and each section must be processed in real time.
Due to the amount of data, it is not practical to store many

sectional images in memory at once. Merging LBs
requires only storage of the (possibly already combined)
LBs that cover portions of the immediately preceding
section – typically there will be only a few such LBs, and
in any case, the number is bounded by the size of the
section. Although this process biases LB merging in the
Z direction, it is necessary due to time and memory
constraints. Finally, noise reduction can be applied to
only those LBs currently in memory.

Figure 6. The merged L-blocks formed for the
entire data set. The portion used to form Figure
5 is highlighted.

Figure 7. A portion of the reconstructed data
showing the valid data within the L-blocks.

5.3. Data segmentation

 Taking advantage of the fact that neural data (Golgi
stained) is both sparse and clustered, our data is further
combined into clusters, each expressed as an LBC.
Clusters are defined as groups of interconnecting L-
blocks. If two L-blocks border on each other and at least
one of the voxels composing that border has an active link
to a voxel in the other L-block, both L-blocks are

considered to be in the same cluster. Since the voxels
themselves are used to determine cluster boundaries, this
scheme effectively segments the data, i.e. it does not
group two pieces of data that should have been separate.
Notice that it is possible for two different LBCs to have
L-blocks that overlap in space, but relevant data in one L-
block will be empty space in the other, so no harm is
done. Also, if LBs are clustered before merging, the
space of LBs to be examined for potential merging is
reduced, thus speeding up the algorithm.
 Figure 8a shows an example of the connectivity
between the LBs of Figure 5. The lines in the figure
indicate that the LBs centered at each endpoint are joined
by an active edge, and thus are grouped together in a
cluster.

Figure 8. a) The connectivity graph for Figure 5.
LBs in the same connected component are
grouped in an LBC. b) The major threads from a.

 Noise reduction features are also implemented at the
cluster level to conserve space. Two types of noise are
targeted in our implementation. The first type is clusters
that are too small to be a valid neural structure by
themselves and too isolated to be a fragment of a larger
structure. The second type is stain smears – medium to
large swaths of data that exist entirely on the XY plane
(arising from the staining agent smearing as the tissue was
being cut). Figure 4 includes a stain smear. The rules
used to identify these noise clusters are ad hoc, and
though very effective on the sample data sets, would need
to be altered for other data sets.
 Note that this segmentation can be performed locally.
That is, LBCs can be formed based on just a limited
amount of data in memory at one time. Again, this is
necessary due to the potentially large amount of data.
 For the sample data set, the number of clusters formed
from the data after initial thresholding is 5610. Section
5.2 describes the exact number of LBs and the total
memory requirements. After noise reduction is used to
eliminate some clusters entirely, the total number of
clusters is reduced to only 1654.

5.4. Neuron Reconstruction

 We have implemented a method for extracting a
neuron model based on the segmented LBC. This is
presented primarily to show the utility of the LB/LBC
data structure, and not as an ideal neuron reconstruction
algorithm. Note that our goal is actual neuron modeling,
not simply visualization [1].
 We begin by dilating the L-blocks within each cluster
(i.e. expanding the apparent size of the L-blocks by
adjusting the header information). After doing this, LBs
begin to overlap (in extent) “nearby” LBs. We join these
overlapping LBCs, effectively filling in gaps that could be
missing due to noise. We form an expanded connectivity
graph, linking the overlapping dilated LBs. This can be
visualized as in Figure 8a. Of course, this also joins some
LBCs that should be kept separate. We must therefore
reduce the complexity of the connectivity graph in order
to identify the major threads along which the neuron lies.

Figure 9. A view of the reconstructed neurons.

 The expanded connectivity graph is then simplified
into a tree format (i.e. a hierarchical LBC) that captures
the major dendritic threads passing through the sample
section set. This is done by first temporarily removing
“fine-scale” detail, which can be identified based in part
on the LB sizes. Removing this detail simplifies the
connectivity graph considerably, after which we apply
graph algorithms to simplify the graph further. In the end,
a “thread axis” (possibly including branching) is
constructed around which the hierarchical LBC can be
created. Given the hierarchical LBC, a medial axis
approximation can be obtained. Using radius estimation,
the medial axis representation can be iteratively refined to
match the L-block representation. A picture of the thread
axis so obtained is shown in Figure 8b. A 3D
reconstructed view can be seen in Figure 9. Note that
because the reconstruction region is so small, we have
only portions of each neuron, and thus we do not capture
much of the branching structure typical of neurons.

6. Conclusion

6.1. Summary

 We have presented a data structure for the
representation of volumetric solids. We have described
the basic operations on this structure, including the
polymerization strategy for segmenting data from a
volumetric data set. We have outlined how this strategy
can be used for the compression, storage, segmentation,
and reconstruction of volume data. The L-block data
structure and polymerization strategy have been
implemented, and we have demonstrated that it can be
used effectively in the reconstruction of neuron data.

6.2. Features of Our Data Structure

 To conclude, we point out a number of features of our
data structure that give it an advantage over other
structures, in certain circumstances.
• The structure can be used for data compression and

segmentation in an incremental manner. That is, only a
limited amount of the data set needs to be in memory at
any one time, making it useful for application in a real-
time scanning environment.

• The compressed data has clear geometric meaning, as
opposed to compression methods such as standard
image compression (e.g. JPEG/MPEG), where most
geometric interpretation is lost.

• The data structure is well suited for describing long,
thin objects, as well as branching structures. Many
other methods (e.g. octrees) are geared more toward
compact, fatter objects.

• The structure is well suited for sparse, clustered data,
for which it provides very good data.

• The data structure is very general, capable of
mimicking the operation of other data structures. Thus
it is flexible and can be applied easily to a wide variety
of situations.

6.3. Future Work

 Among the directions for further work are:
• A number of operations on L-blocks and their coverings

could be defined. Though many operations are
straightforward, some (such as reordering the hierarchy
of a LBC) are quite challenging. In particular,
determining a satisfying cost covering is challenging.

• It would be interesting to determine what benefits might
be gained from expanding the data structure, e.g. by
allowing multiple edge labels, or non-axis aligned (e.g.
sheared) collections of voxel data.

• The polymerization strategy on volume data is highly
dependent on the edge labeling strategy. Developing an

effective edge-labeling strategy is thus important for the
polymerization strategy to be effective.

Acknowledgement

 This work was supported by Texas Higher Education
Coordinating Board ATP grant 000512-0146-2001.

References

[1] Avila, R. S., L. M. Sobierajski, and A. E. Kaufmann,
Visualizing Nerve Cells. IEEE Computer Graphics and
Applications. pp. 11-13, September 1994.

[2] Burton, B.P., B.H. McCormick, R. Torp, and J.H. Fallon.
Three-dimensional reconstruction of neuronal forests.
Neurocomputing, 38-40:1643-1650, 2001.

[3] Foley, J. D., A. van Dam, S. K. Feiner, J. F. Hughes.
Computer Graphics Principles and Practice, Second
Edition in C. Addison-Wesley, Boston, pp. 548-557,
1996.

[4] Jackins, C. and S. L. Tanimoto. Oct-trees and their use in
representing 3-d objects. Computer Graphics and Image
Processing, 14, pp. 249-270, 1980.

[5] Kong, T.Y. and A. Rosenfeld. Digital topology:
introduction and survey. Computer Vision, Graphics, and
Image Processing, 48, pp. 357-393, 1989.

[6] McCormick, B.H., Development of the Brain Tissue
Scanner. Technical Report, Department of Computer
Science, Texas A&M University, College Station, TX,
March 18, 2002. Available from
http://research.cs.tamu.edu/bnl

[7] McCormick, B.H., B. Busse, Z. Melek and J. Keyser,
Polymerization Strategy for the Compression,
Segmentation, and Modeling of Volumetric Data.
Technical Report 2002-12-1, Department of Computer
Science, Texas A&M University, College Station, TX,
December 2002. Available from
http://research.cs.tamu.edu/bnl

[8] Overmars, M. H. and J. Van Leeuwen. Dynamic multi-
dimensional data structures based on quad- and k-d trees.
Acta Inform., 17, pp. 267-235, 1982.

[9] Samet, H. The quadtree and related hierarchical data
structures. ACM Computing Survey, 16, 1984.

[10] Samet, H. and R. E. Webber, Hierarchical Data
Structures and Algorithms for Computer Graphics, Part
1: Fundamentals. IEEE Computer Graphics and
Applications, 5, pp.48-68, 1988.

[11] Samet, H. and R. E. Webber, Hierarchical Data
Structures and Algorithms for Computer Graphics, Part
2: Applications. IEEE Computer Graphics and
Applications, 7, pp.59-75, 1988.

[12] Thompson, J.F., B.K. Soni, and N.P. Weatherill,
Handbook of Grid Generation, CRC Press, 1999, pp. 1-4.

[13] van den Bergen, G. Efficient collision detection of
complex deformable models using AABB trees. Journal
of Graphics Tools, 2:4, pp. 1-13, 1997.

[14] Winter, A.S., Volume Graphics, Field Based Modelling
and Rendering. Ph.D. Thesis, Department of Computer
Science, University of Wales, Swansea, December 2002.

