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Abstract 
We present a data structure for the representation of 
volumetric data. The data structure is designed to allow 
for easy compression, storage, segmentation, and 
reconstruction of volumetric data. We call our data 
structure the L-block, abstracting many of the properties 
of Lego® blocks, and refer to the process of creating and 
manipulating L-blocks as the polymerization strategy. 
 
The concept of an enhanced volume data set (EVDS) is 
introduced, where the data set is enhanced by explicitly 
introducing Boolean labeling of edges between adjacent 
voxels of the volume data. This enhancement, by 
“polymerizing” adjacent connected voxels into connected 
components, facilitates real-time data compression and 
segmentation of embedded objects within the volume data 
set.  These connected components are packaged in the 
new container type, the L-block, with the intention of 
efficiently packaging the connected components with a 
minimum of adjacent unconnected voxels. 
 
We present the L-block data structure in detail.  We 
describe methods for compressing volume data using the 
L-block structure, intersecting and merging L-blocks, and 
segmenting data.  While the L-block data structure is 
general, it was developed to represent scanned brain 
microstructure at a neuronal level of detail. We highlight 
the performance of our implementation of the 
polymerization strategy on a set of sampled neuronal 
data. 
 

1. Introduction 

1.1. Motivation 

 Volumetric representations are needed to model the 
objects found in volumetric data sets.  Sources of such 
data sets include medical imaging procedures (e.g. MRI) 
and, more generally, various three-dimensional scanning 
processes on real-world data.   

 The work presented in this paper has been particularly 
motivated by our attempts to scan and reconstruct brain 
tissue at a neuronal level of detail.  The data sets acquired 
in this work tend to have several distinguishing features.  
Among them are: 

• The full volume data set can be extremely large.  
Raw data set sizes can reach into the terabytes. 

• The data of interest within the volume data sets 
(i.e., the stained neuronal tissue) tends to be 
sparse, taking up only a modest portion of the 
overall volume. 

• The neurons to be modeled have very long, thin 
branching structures. 

• Data will be acquired at a high rate, and one 
would like to have a quick way of compressing 
and storing it in a geometrically meaningful way 
that facilitates future reconstruction. 

 We have found current volumetric representation 
techniques to be deficient in addressing at least one of 
these features.  Due to the potential data size, methods 
that keep the entire volume in memory at once are 
unrealistic.  Several methods (such as the well-known 
octree) are poorly suited for modeling long, thin 
structures.  Medial-axis methods, while good for 
representing neurons, tend to process too slowly and can 
require too much data to be stored in memory.  Pure 
image and video compression techniques can work well 
for compression, but fail to give any meaningful insight 
into the geometric structure of the objects to be modeled.  

1.2. Main Results 

 We introduce a new data structure designed 
specifically to address the data set features listed above.  
There are two key components of our data structure. First, 
we introduce the concept of an enhanced volume data set 
(EVDS), where the data set is enhanced by explicitly 
introducing Boolean labeling of edges between adjacent 
voxels of the volume data. Next, we introduce a new 
container type, the L-block.  L-blocks (and coverings with 
L-blocks) are designed to efficiently package the 
connected components of the EVDS, with a minimum of 



adjacent unconnected voxels. We refer to the process of 
constructing L-blocks from volumetric data as the 
polymerization algorithm.  We have implemented the L-
block structure described, and present the results of its 
application to some sample neuron data. 

2. Representations 

 In this section we describe the representation of the L-
block data structure.  We begin by describing the concept 
of an enhanced volume data set.  Next we discuss the L-
block data structure itself.  Finally, we discuss the L-
block structure in relation to other volumetric models. 

2.1. Domain  

 We assume that we are given a uniform n-dimensional 
grid.  Every vertex of this grid is assigned a value.  The 
nature of this value may vary.  Three possible examples 
include: 

• An integer gray-scale value.  This might occur 
when the data has been obtained from some 
scanning process, such as from MRI. 

• A binary value.  This could indicate whether the 
vertex is or is not in some object.  Thresholding 
or similar techniques might have been used to 
convert grayscale values to binary values, for 
example. 

• A vector of values.  This might arise from multi-
spectral scanned data such as a color camera 
with three channels (RGB).  

 For simplicity, we will usually refer to a 3-dimensional 
data set, commonly called a volume data set.  For 3-D 
data sets, the voxels form the vertices of the grid.  
Although we often confine our description to 3D 
volumes, the concepts are equally applicable to other 
dimensional data sets.   

2.2. Enhanced volume data sets 

 We create an enhanced volume data set (EVDS) as 
described below.  The goals of the enhancement are to: 

• Allow data compression in real time, in such a 
manner as to facilitate subsequent segmentation 
of the volume data set; 

• Provide data compression and segmentation 
strategies that exploit the efficiencies of 
examining successive serial images, yet are 
independent of the axis chosen for serial 
sectioning;  

• Separate segmentation clearly from both 
geometric modeling and visualization of the 
identified objects in the volume data set.  

• Exhibit the statistical basis for the enhancement 
of the volume data set. 

 Given a volume data set, we define an EVDS as 
follows: in addition to the value assigned to every vertex 
(voxel) of the grid, selected edges between vertices of the 
grid are given a Boolean label of 1 for active edges and 0 
for inactive edges. This enhancement alone can aid in 
topological analysis of the relevant data [5]. 
 Edge labeling is used to provide independent 
information about whether two vertices sharing a 
common active edge belong to the same underlying 
object.  Boolean labeling {0, 1}, as derived typically from 
a decision function, is of course a crude estimate of this 
co-habitation in the same object.  
 It is important to note that the decision function used to 
assign the Boolean values is in effect the segmentation 
process, and is of primary importance in determining how 
faithful a particular segmentation or reconstruction is.  
This function can be arbitrarily complex.  Choosing such 
a function is outside the scope of this paper; we assume 
such a function is available, and seek to provide the data 
structure support needed to work with the result. 
 In three dimensions, the data volume is typically 
created by serially scanning successive sections 
perpendicular to (say) the vertical Z-axis. Here voxels at 
the same (X, Y) position in two successive registered 
images can be conveniently labeled as likely drawn from 
the same underlying physical object by marking their 
common vertical edge as active. However, as the 
specimen could have been sectioned perpendicular to the 
X- or Y- axes, we extend the same edge labeling scheme 
to all three directions.  
 Any enhanced volume data set (in three dimensions) 
can have many representations. Most useful for our 
purposes is an assignment at each vertex of an association 
{<voxel value> <edge labels>}, where the Boolean vector 
<edge labels> indicates the activity level of the edges 
emanating from the vertex. Vertices at the boundary of 
the grid may lack some edges; we treat these as inactive. 
 Note that for a regular grid, there may be a choice in 
the number of edges emanating from any one vertex.  We 
only assume that each vertex has a fixed set of emanating 
edges.  The number of edges emanating from any one 
vertex is referred to as the connectivity level.  For 
example, consider a regular 3D grid of vertices.  If no 
edges are stored at any vertex (i.e. the data set is not 
enhanced), we have 0-connectivity.  Placing edges in the 
axis directions (i.e. (i,j,k) is connected to (i+1,j,k), 
(i,j+1,k), and (i,j,k+1)) gives 3-connectivity. Imagining an 
axis-aligned cube around the vertex, 3-connectivity would 
give connections across each face.  Connections across 
the edges as well would yield 9-connectivity, while 
including the corners in addition would give 13-
connectivity.  Note that for dimension k, the connectivity 



level will often be k, as well, and the connectivity level 
may be at most  (3k-1)/2. 
 A vertex in an EVDS with 3-connectivity can be 
thought of as having “links” that extend to the 
neighboring vertices along the three coordinate axes (see 
Figure 1).  Thus it behaves somewhat like a Lego® block, 
with connections possible along 3 axes. 

            

Figure 1. Vertices in a 3-connected and 9-
connected EVDS.  The bars show potential links 
to neighboring vertices. 

2.3. L-blocks, Coverings, and Partitions 

 Given an EVDS, “whitespace” is defined as vertices 
that do not satisfy the threshold test.  We use L-blocks, L-
block coverings, and L-block partitions to represent the 
data that is not whitespace. 

2.3.1. L-blocks 
 An L-block is defined as a k-dimensional iso-
rectangular block of enhanced vertex information. The 
block must be entirely contained within the uniform k-
dimensional grid of the EVDS. An (l1 ,l2 ,…, lk) L-block 
refers to a block of l1 vertices in the first dimension, l2 in 
the second, etc. Each L-block is defined by its <header> 
information followed by its <vertex array>. The 
<header>={<position>< template>}, is given by: (1) the 
position, e.g. (x,y,z), of its least vertex, as indexed within 
the parent k-dimensional uniform grid, and (2) its 
template (l1  l2  … lk). Its <vertex array> contains the 
enhanced vertex information (voxel value(s) and edge 
labels). In summary the {<position> <template> <vertex 
array>} characterizes a L-block. 
 Given a k-dimensional (l1 ,l2 ,…, lk) L-block, the 
number of bits required to store the header is 2D, where  
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k directions.  For example, a 10243 data set would give L-
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bits, where br is the number of bits 

required to store an individual sample and j is the 
connectivity level. For binary data, br would be 1, for 

grayscale data, br is often 8, and for color images, br is 
often 24.  
 The L-block as a whole can be visualized as a block of 
vertices, with extensions that demonstrate connectivity.  
An example is seen in Figure 2. 

 

Figure 2.  A (3,3,2) L-block.  Cylinders represent 
active edges emanating from the L-block. 

2.3.2. Coverings and Partitions 
 A covering of a volume, V, by a set, A, of L-blocks is 

defined as U
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may overlap and need not be adjacent. Note that the 
volume V may be of arbitrary shape and size (it need not 
be rectangular). A covering ( , )C A V can be given a 
hierarchical decomposition in terms of other coverings, 

U
m

i
ii VACVAC

1

),(),(
=

= , where 

{ }miAAi ,,1| K=⊆  and VV
m

i
i ⊆

=
U

1

. 

 A partition P(A,V) is a restricted form of covering such 
that the L-blocks themselves do not overlap. Similar to 
coverings, an L-block partition can be given a hierarchical 
decomposition in terms of other L-block partitions.  
 A hierarchical L-block covering (and thus an L-block 
partition) can be defined by a <header> followed by a 
<sub-block list>.  The header is identical to that for an L-
block, and thus also requires 2D bits to store.  The <sub-
block list> is composed of a list of pointers to other L-
block coverings.  The number of bits needed for the sub-
block list, then, is bv+Nbm, where bv is the number of bits 
needed to store the maximum number of pointers (note 
that bv is never more than D), N is the number of pointers 
used, and bm is the number of bits used for a pointer 
(usually operating system or compiler dependent). Of 
course, each covering or L-block that is referenced has its 
own storage cost. The elements of a covering can be 
stored in any order, and can be transmitted without 
concern for their order of arrival at the receiving site.   



 An example of a hierarchical L-block covering can be 
seen in Figure 3. 

 

Figure 3.  An L-block covering (top of the tree) is 
formed from the union of two other L-block 
coverings (middle row).  Those L-block 
coverings are formed from unions of (1,1,1) L-
blocks (on the bottom row). 

2.3.3. Notation 
 Hereafter, we will use the following abbreviations.  An 
L-block, consisting of a header and enhanced vertex array 
will be referred to as an LB, with the template optionally 
given immediately beforehand.  For example, a single 3-D 
voxel could be described by a (1,1,1)LB.  A covering of 
L-blocks will be referred to as an LBC, and a partitioning 
of L-blocks as an LBP.  It will be assumed that all LBCs 
and LBPs are expressed hierarchically. 

2.4. Applying LBCs to volume data 

 Our intention is to identify objects of interest from 
within a volumetric data set.  To this end the 
polymerization strategy, described in section 3.2 below, 
views active edges within the EVDS as hardening 
(polymerizing) into a structure not unlike a jungle gym 
and the objects of interest lifted (segmented) out of the 3D 
block-structured grid. 
 Several definitions and lemmas are introduced here to 
help formalize the polymerization process. 

2.4.1.  Volume and regions of interest  
 A volume of interest, AVOI , is a covering ( , )C VΑ  

of a connected component G , where ( , )G C V⊆ Α . A 
volume segmentation strategy then consists of identifying 

volumes of interest, { }1 2, ,..., nVOI VOI VOI , that 

collectively provide a covering of all connected 
components within a given volume, V.  
 For the special case where V is a planar slice of the 
EVDS, a region of interest, AROI , is a covering 

( , )C VΑ  of a connected component G , where 

( , )G C V⊆ Α . An image segmentation strategy then 
consists of identifying regions of interest, 

{ }1 2, ,..., nROI ROI ROI , that collectively provide a 

covering of all connected components within the volume 
(image) V. ROIs from successive images can then be 
threaded together by their active edges to form VOIs.  

2.4.2. Graph of a covering  
 Two distinct L-blocks, Lα and Lβ , are joined if their 

vertices share at least one active edge.  Adjacent or 
overlapping LBs may or may not be joined. We define the 

graph G of a covering ( ),C A V , as follows:   

1) Vertices of the graphG : Each L-block, 
AL ∈αα , , is assigned a vertex in G . 

2) Edges of the graph G : An edge eαβ ∈G  links 

two L-blocks iff the L-blocks are joined. In 
general, the edge is undirected. 

 Lemma. Every connected component within a 

covering ( ),C A V  resides in a connected component of 

the graph of the covering.  The converse is not in general 
true.  

2.4.3. Cost of a covering or partition 
 Useful segmentations, by coverings or partitions, of 
the active vertices in a volume V must be efficient: 
avoiding overly large blocks (covering excessive white 
space) or requiring large numbers of small blocks. The 
quality of the covering (partition) can be controlled in part 
by assigning a cost to a covering (partition). For a 
covering ( , )C A V , we assign a cost 

( )( ) ( )∑
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where κ is a cost associated with the covering 
(irrespective of the L-blocks), λ is a cost associated with 
a single L-block, µ is a cost associated with a single 

vertex, and αN is the number of vertices in Lα . An 
identical cost formula will be used for partitions.   
 Although many such cost functions are possible, one 
natural one is based on the memory requirements of the 
structure, as outlined in the bit costs described in section 
2.3.  In this case, the parameters κ and λ represent the 
space needed to store the header information, while 
µ represents the space needed to store the voxel value 
and edge information at each vertex. 
 The objective, then, is to find a minimal cost covering 
for the given volume.  Notice that for 0λ = , any 
covering of all active vertices by L-blocks with (1 1 1) 
templates is of minimal cost, provided the (1 1 1) 
template is permitted in the covering. For µλ > , 



minimal coverings will trade off using fewer blocks with 
covering more white space. As λ increases, a minimal 
cost covering will, in general, use fewer blocks of larger 
size. Counter to intuition, for a given covering 

( ),C A V and cost parameter λ<0 , a partition 

( , )P A V′ of lower cost might not exist. 

3. Operations 

3.1. Binary L-block operations  

 There are many possible operations that can be defined 
on L-blocks.  We present two binary L-block operations 
that are quite useful for reconstructing solids from 
scanned data.  Merging is commonly used when 
processing data.  Intersection is important in that it can be 
used to examine only the portion of a data structure within 
a restricted region of space. 

3.1.1. Merge/Union 
 The merging of two LBs will form another LB.  For 
given input LBs Lα  and Lβ , assume the header 

information in dimension i is given by position pi and 
template value ti.  Then, the new header will have position 

),min( ,,, βααβ iii ppp = , and template index 

),max( ,,,,,,, αβββαβαααβ iiiiiii ptpptpt −+−+= .  

It is necessary to assign values to all the vertices within 
the merged L-block.  For those corresponding to vertices 
from the input LBs, this is straightforward.  For the other 
vertices, no information is known, and we assign “empty” 
values with no active edges to each of these vertices.   
 Considering LBCs, the merging of two LBCs is a 
straightforward process.  Either a new LBC is created, 
with pointers to the input LBCs as sub-blocks, or the 
pointers of the two input LBCs are merged into a single 
list.  In either case, the header information is adjusted as 
for merging two LBs.  LBCs are closed under union. 

3.1.2. Intersection 
 The intersection of two LBs, Lα  and Lβ , 

aL L Lβ α β= I , is either an LB or the empty set ∅ . 

Forming the header and vertex array is straightforward.  
For LBPs this representation is unique: Given partitions 
P(A,V) and P(B,V), with ( )Β∈Α∈ νβµα ,|, , then 

≠= µναβ LL ∅  implies νβµα == , .  

Lemma: The class of coverings with respect to a volume 
V is closed under intersection. 

The intersection of two LBCs, 

( ) ( ) ( ), , ,C V C A V C B V∆ = I , is again an LBC.  

The resulting LBC is formed from a collection of LBs: 
{ }∆∈∈∈= αββαβααβ ,,| BALLL I .  In general 

the covering set ∆  will have members in neither A  
nor B .  
Lemma. The class of partitions with respect to a volume 
V is closed under intersection.  
The intersection of two LBPs, 

( ) ( ) ( ), , ,P V P A V P B V∆ = I , is again formed as a 

collection of LBs in the same way as for coverings. The 
result is a partition since the Lαβ  are disjoint: 
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That is, the intersection of the two partitions can be 
expressed as a collection of disjoint L-blocks. 

3.2. The polymerization strategy 

 The polymerization strategy refers to the use of an 
enhanced data set stored in an LBC to encompass an 
object of interest within a given volume. This strategy 
will be successful to the extent that the data-dependent 
edge-labeling function captures the connectivity of the 
underlying physical objects in the scanned block.  In 
practice, we usually use a conservative labeling function 
initially, allowing us to quickly segment and compress a 
superset of the critical data. Later, more sophisticated 
(and slower) techniques can be applied to these initial 
LBCs  in order to adjust the edge labeling. 
 Connected components in the extended volume data 
set are of particular interest, as these are the substrata 
upon which objects in the volume data set are modeled. 
Focusing on its connected components, and efficiently 
packaging these within LBCs, can significantly compress 
an EVDS. Given an EVDS, polymerization therefore lets 
us compress the data, retaining only what is needed. 
 Isolated vertices, those having no active edges, occur 
regularly in scanned volume data, often due to “noise.”  
Such vertices can be ignored, or at worst, packaged in 
small LBs for separate consideration, should their voxel 
value exceed some threshold. In this case the remaining 
vertices outside the coverings can be treated as “white 
space”, and ignored in subsequent image processing. The 
content of the EVDS, exclusive of its “white space”, is 
then captured in the L-block covering or partition. 
 At other times only the boundaries of objects warrant 
consideration. Here “black space” LBs, whose every 



associated edge is active, can be separately noted, and 
suppressed. 
 Volume data generated by serial sectioning and 
scanning of a three-dimensional specimen can be 
compressed in real time by incrementally generating the 
EVDS. As each consecutive image is scanned, only its 
immediate predecessor need be retained in memory while 
the current image data is enhanced and incrementally 
added to the evolving EVDS.  For example, let 
consecutive serial sections be scanned in the XY plane at 
depths of Z and Z+1 respectively. The Z+1-plane image 
data is used to enhance the Z-plane image data. Regions-
of-interest (ROIs) in the Z-plane image are then packaged 
in (m n 1) L-blocks and added to the evolving compressed 
representation of the EVDS. Black space blocks can be 
deleted at this time or their processing deferred.  This is a 
key advantage of the LBC approach in that it allows us to 
process, compress, and (coarsely) segment data on the fly 
based on only a local set of data.  

4. Comparison with other data structures 

4.1. LBCs as a geometric superstructure 

 L-block coverings can be viewed as a geometric 
superstructure, encapsulating several other common 
volumetric representations.  These include grid-sampled 
data, enumerated voxels, octrees, BSP-trees, kD-trees, and 
AABB-trees (see, e.g. [3] for discussions of these).  LBCs 
can be used to describe these structures, with the same 
algorithmic benefits, but possibly at an increased storage 
cost. We refer the reader elsewhere for the details of this 
encapsulation [7]. 

4.2. Comparison with other methods 

 There are a large number of approaches to the storage 
of volumetric data. Here, we will briefly summarize 
several of these other volumetric data structures, and 
highlight the relative advantages/disadvantages of our 
data structure.   The results are summarized in Table 1. 

4.2.1. Alternative Data Structures 
 A number of data structures can be used to describe 
volumetric solids.  A current and detailed summary of the 
most important of these methods is given by Winter[14].  
We briefly summarize the key alternative approaches: 
• Grid-sampled data.  This is the standard input format 

for sampled data – values are kept at every point in the 
entire data set.  Since this clearly provides no 
compression, it will not be considered for comparison. 

• Spatial-occupancy enumeration. [3] In this very 
simple structure, the individual voxels of interest are 
listed and stored individually. 

• Octree/quadtree. [4][9][10][11] The well-known 
octree uses a hierarchical spatial-occupancy approach.  
Blocks of data are recursively broken into 8 
suboctants, each of which are either completely filled, 
completely empty, or partially filled, in which case 
they are further subdivided. 

• BSP-tree. [3] This approach recursively divides space 
by an arbitrary plane at each level, usually dividing the 
remaining points equally.  The leaves of this tree are 
convex regions bounded by the planes in ancestor 
nodes, and are classifed as either inside or outside.  
Though created for a continuous domain, binary space 
partition trees can be easily adapted to a grid domain 
by limiting the binary planes at each step to an axis-
aligned approach.  BSP trees can also describe infinite 
volumes, which is not needed in our domain. 

• kD-trees.  [8] A kD-tree is similar to a cross between 
an octree and a BSP-tree.  Space is subdivided 
recursively, but at each level, the (axis aligned) 
direction and exact position of the plane can be 
chosen.  Because of their similarity to BSP-trees, we 
will treat them together. 

• AABB-trees. [13] Axis-aligned bounding box trees, 
more commonly used in collision detection, are 
perhaps the most similar to LBCs.  These trees consist 
of a hierarchical collection of iso-rectangular boxes, 
each bounding the boxes of the child nodes.  The key 
difference in our approach is that the enhanced data 
allows us to easily build LBCs incrementally and to 
maintain connectivity between nodes without having 
to go through a parent node. 

4.2.2. Comparison Criteria 
 While our data structure is general, and could be used 
in a number of volumetric applications, we are 
particularly interested in it as a data type for initial 
processing of scanned neuron data.  Several 
distinguishing characteristics of this data were listed in 
Section 1.1, and the criteria we describe below are derived 
from those considerations. 
 Obviously, a key concern is the amount of storage 
required by the structure.  Note that efficiency will vary 
depending on whether the voxel values are binary (“in” or 
“out”) or more complex (e.g. grayscale values). 
 A second concern is that the method be able to handle 
neuron shapes well.  Neurons tend to be very long and 
very thin, and have a complex branching structure; 
methods that work well for big, blocky shapes (e.g. 
octrees) typically represent long thin structures poorly. 
 In addition, we would like the method to let us easily 
determine the shape of the modeled object from the data 
structure (e.g. by adapting size along axes).  In addition, 
we would like the method to allow us to easily capture the 
complex branching structure of the neurons. 



 

Table 1. A comparison of several volumetric data structures on important criteria. 

 Finally, we want the method to be well suited to 
incremental construction, where we cannot keep the entire 
input dataset in memory at once.  This makes spatial 
subdivision methods poorly suited to the problem. 

5. Application 

 We describe here the results of the polymerization 
strategy applied to a sample database of scanned neuronal 
data – demonstrating the utility of our approach for the 
compression, storage, segmentation, and reconstruction of 
volume data. 

5.1.  Forming the EVDS 

 We use a volume data set obtained from a set of 14 
serial scanned images from Golgi-stained mouse brain 
tissue imaged through a light microscope with incoherent 
illumination.  Registration of the images along the vertical 
axis was done by hand. Regions near the borders of the 
images are unusable (i.e. one image might contain data at 
positions unavailable in the images above and below).  
Each voxel of the data set represents a volume of 0.37 µ 
m by 0.37 µ m by 0.5 µ m.  The Z direction is taken to be 
perpendicular to the image plane. We often refer to 
individual images as “sections.” The details of this data 
set have been described in [2].  A sample is shown in 
Figure 4. 
 We plan to use our L-block structure to process data 
obtained from the Brain Tissue Scanner (BTS) [6].  The 
BTS is a unique instrument developed at Texas A&M that 
uses a diamond knife to concurrently cut tissue and scan 
the tissue at the knife edge.  We anticipate the BTS data 
for Golgi stain will be similar to the sample data.  Other 
stains may have different properties.  
 For the examples presented here, we use very simple 
functions to determine valid vertices and edge labels.  We 
consider vertices significant if they pass a simple 
thresholding test (e.g. have grayscale values above a 
certain level and below another level).  Edges are labeled 
active iff both of the adjacent vertices are significant. 
While future reconstruction efforts will likely involve 
more complex labeling functions, these suffice for making 
an EVDS for initial testing purposes.   

 
Figure 4.  A section in our dataset.  The large 
black region is a stain smear. 

5.2. Compression of Data 

 The memory needed to hold useful amounts of 
uncompressed neural data is exceedingly large.  For 
example, the raw BTS data for an entire mouse brain 
requires approximately 29 terabytes. For this reason, 
space saving features of the L-block structure and 
compression of the initial data are very important. 
 The majority of data compression takes place during 
the thresholding stage.  Voxels that do not pass the 
thresholding stage are considered “white space,” and it is 
assumed that they can be ignored thereafter.  The EVDS 
is partitioned into 2 by 2 by 2 cells.  If any of the voxels 
in a cell is valid (i.e. passes the threshold test), that cell is 
stored as a (2,2,2) LB.  The compression achieved will 
depend on the stain, the threshold used, and the density of 
the data.  For our sample Golgi-stained data set the initial 
data requires approximately 112 MB of storage space.  
With realistic threshold levels, we form 47,258 LBs 
requiring about 4.4 MB to store, yielding a compression 
factor of approximately 25. 

Data Structure Storage 
(binary) 

Storage 
(values) 

Suited for neuron 
shape 

Determine shape 
from structure 

Incremental 
Construction 

Spatial enumeration Poor Good Fair Poor Excellent 
Quadtree/octree Excellent Excellent Poor Fair Poor 
BSP/kD tree Excellent Excellent Fair Good Poor 
AABB tree Good Very Good Good Very Good Fair 
EVDS/LBCs Good Very Good Good Excellent Very Good 



 We then provide additional compression by combining 
LBs where appropriate.  Merging L-blocks has the 
advantage of eliminating the overhead of the header 
information.  While combining two (2,2,2) LBs into, say  
a (4,2,2) LB is straightforward, combining larger LBs 
with smaller ones may be more problematic.  Because 
LBs store all data in an iso-rectangular volume, expanding 
an LB might require storing “white” space along with 
relevant data.  To determine whether or not it is 
appropriate to create such LBs, we use a cost function 
based strictly on the relative storage requirements for the 
merged and unmerged LBs.  We consider merging LBs in 
each of the positive X, Y, and Z axis directions.  The L-
blocks are extended if the space that would be saved by 
eliminating L-block overhead is greater than the space 
lost by storing empty data. Figure 5 shows a close-up 
image of merged LBs (drawn as wireframe boxes) from 
the sample neuron data set.  Figure 6 shows the merged 
LBs for the entire sample data set, and Figure 7 shows the 
merged LBs for a portion of the data set, overlaid with the 
valid data.  For the entire data set, our merging strategy 
reduces the total number of LBs fourfold to 12,841, 
requiring less than 3.7 MB of storage. 

 
Figure 5. Merged L-blocks. 

Noise reduction can also be used to reduce data 
storage.  LBs that have no active edges emanating can be 
eliminated.  Such LBs are unlikely to be a part of a 
neuronal structure, and are most likely due to noise in the 
input data.  For our sample data set, noise reduction 
reduces the total number of LBs to 7525, requiring only 
2.3 MB to store.  Together, noise reduction and LB 
merging provide a factor of 2x compression in our sample 
data, giving an overall compression of approximately 50x. 

Note that these strategies are well suited for processing 
3D microscopic data where data arrives one “section” at a 
time and each section must be processed in real time.  
Due to the amount of data, it is not practical to store many 

sectional images in memory at once. Merging LBs 
requires only storage of the (possibly already combined) 
LBs that cover portions of the immediately preceding 
section – typically there will be only a few such LBs, and 
in any case, the number is bounded by the size of the 
section.  Although this process biases LB merging in the 
Z direction, it is necessary due to time and memory 
constraints.  Finally, noise reduction can be applied to 
only those LBs currently in memory. 
 

 

Figure 6. The merged L-blocks formed for the 
entire data set.  The portion used to form Figure 
5 is highlighted. 

 
Figure 7.  A portion of the reconstructed data 
showing the valid data within the L-blocks. 

5.3. Data segmentation 

 Taking advantage of the fact that neural data (Golgi 
stained) is both sparse and clustered, our data is further 
combined into clusters, each expressed as an LBC.  
Clusters are defined as groups of interconnecting L-
blocks.  If two L-blocks border on each other and at least 
one of the voxels composing that border has an active link 
to a voxel in the other L-block, both L-blocks are 



considered to be in the same cluster.  Since the voxels 
themselves are used to determine cluster boundaries, this 
scheme effectively segments the data, i.e. it does not 
group two pieces of data that should have been separate.  
Notice that it is possible for two different LBCs to have 
L-blocks that overlap in space, but relevant data in one L-
block will be empty space in the other, so no harm is 
done.  Also, if LBs are clustered before merging, the 
space of LBs to be examined for potential merging is 
reduced, thus speeding up the algorithm. 
 Figure 8a shows an example of the connectivity 
between the LBs of Figure 5.  The lines in the figure 
indicate that the LBs centered at each endpoint are joined 
by an active edge, and thus are grouped together in a 
cluster. 

 

Figure 8.  a) The connectivity graph for Figure 5.  
LBs in the same connected component are 
grouped in an LBC. b) The major threads from a. 

 Noise reduction features are also implemented at the 
cluster level to conserve space.  Two types of noise are 
targeted in our implementation.  The first type is clusters 
that are too small to be a valid neural structure by 
themselves and too isolated to be a fragment of a larger 
structure.  The second type is stain smears – medium to 
large swaths of data that exist entirely on the XY plane 
(arising from the staining agent smearing as the tissue was 
being cut).  Figure 4 includes a stain smear.  The rules 
used to identify these noise clusters are ad hoc, and 
though very effective on the sample data sets, would need 
to be altered for other data sets. 
 Note that this segmentation can be performed locally.  
That is, LBCs can be formed based on just a limited 
amount of data in memory at one time.  Again, this is 
necessary due to the potentially large amount of data. 
 For the sample data set, the number of clusters formed 
from the data after initial thresholding is 5610.  Section 
5.2 describes the exact number of LBs and the total 
memory requirements.  After noise reduction is used to 
eliminate some clusters entirely, the total number of 
clusters is reduced to only 1654.   

5.4. Neuron Reconstruction  

 We have implemented a method for extracting a 
neuron model based on the segmented LBC.  This is 
presented primarily to show the utility of the LB/LBC 
data structure, and not as an ideal neuron reconstruction 
algorithm. Note that our goal is actual neuron modeling, 
not simply visualization [1]. 
 We begin by dilating the L-blocks within each cluster 
(i.e. expanding the apparent size of the L-blocks by 
adjusting the header information). After doing this, LBs 
begin to overlap (in extent) “nearby” LBs.  We join these 
overlapping LBCs, effectively filling in gaps that could be 
missing due to noise.  We form an expanded connectivity 
graph, linking the overlapping dilated LBs. This can be 
visualized as in Figure 8a. Of course, this also joins some 
LBCs that should be kept separate. We must therefore 
reduce the complexity of the connectivity graph in order 
to identify the major threads along which the neuron lies.   
 

 
Figure 9. A view of the reconstructed neurons. 

 The expanded connectivity graph is then simplified 
into a tree format (i.e. a hierarchical LBC) that captures 
the major dendritic threads passing through the sample 
section set. This is done by first temporarily removing 
“fine-scale” detail, which can be identified based in part 
on the LB sizes.  Removing this detail simplifies the 
connectivity graph considerably, after which we apply 
graph algorithms to simplify the graph further.  In the end, 
a “thread axis” (possibly including branching) is 
constructed around which the hierarchical LBC can be 
created.  Given the hierarchical LBC, a medial axis 
approximation can be obtained.  Using radius estimation, 
the medial axis representation can be iteratively refined to 
match the L-block representation.  A picture of the thread 
axis so obtained is shown in Figure 8b. A 3D 
reconstructed view can be seen in Figure 9.  Note that 
because the reconstruction region is so small, we have 
only portions of each neuron, and thus we do not capture 
much of the branching structure typical of neurons. 



6. Conclusion 

6.1. Summary 

 We have presented a data structure for the 
representation of volumetric solids.  We have described 
the basic operations on this structure, including the 
polymerization strategy for segmenting data from a 
volumetric data set.  We have outlined how this strategy 
can be used for the compression, storage, segmentation, 
and reconstruction of volume data. The L-block data 
structure and polymerization strategy have been 
implemented, and we have demonstrated that it can be 
used effectively in the reconstruction of neuron data. 

6.2. Features of Our Data Structure 

 To conclude, we point out a number of features of our 
data structure that give it an advantage over other 
structures, in certain circumstances. 
• The structure can be used for data compression and 

segmentation in an incremental manner.  That is, only a 
limited amount of the data set needs to be in memory at 
any one time, making it useful for application in a real-
time scanning environment. 

• The compressed data has clear geometric meaning, as 
opposed to compression methods such as standard 
image compression (e.g. JPEG/MPEG), where most 
geometric interpretation is lost.  

• The data structure is well suited for describing long, 
thin objects, as well as branching structures.  Many 
other methods  (e.g. octrees) are geared more toward 
compact, fatter objects. 

• The structure is well suited for sparse, clustered data, 
for which it provides very good data. 

• The data structure is very general, capable of 
mimicking the operation of other data structures.  Thus 
it is flexible and can be applied easily to a wide variety 
of situations. 

6.3. Future Work 

 Among the directions for further work are: 
• A number of operations on L-blocks and their coverings 

could be defined. Though many operations are 
straightforward, some (such as reordering the hierarchy 
of a LBC) are quite challenging.  In particular, 
determining a satisfying cost covering is challenging. 

• It would be interesting to determine what benefits might 
be gained from expanding the data structure, e.g. by 
allowing multiple edge labels, or non-axis aligned (e.g. 
sheared) collections of voxel data. 

• The polymerization strategy on volume data is highly 
dependent on the edge labeling strategy.  Developing an 

effective edge-labeling strategy is thus important for the 
polymerization strategy to be effective. 
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