
Neuron Developmental Modeling and Structural

Representation: An introduction to the N++

Language, an Open Stochastic L-System

Richard W. DeVaul

Bruce H. McCormick�

Technical Report

Scienti�c Visualization Laboratory

Department of Computer Science

Texas A&M University, College Station, TX, USA

December 11, 1996

Contents

1 Abstract 5

2 Speci�cations 6

3 Features 6

4 Signi�cance 6

5 Lindenmayer Systems 8

5.1 Introduction . 8
5.2 Simple L-systems . 8
5.3 Stochastic L-systems . 9
5.4 Parametric L-systems . 10
5.5 Open L-systems . 11
5.6 Notation Summary . 12

�This material is based in part on work supported by the Texas Advanced Technnology
Program under Grant No. 9999024 (McCormick)

1

6 N++ Grammar 13

6.1 Symbols . 13
6.2 Grammar . 15
6.3 Productions . 15

7 L-system Geometric Modeling 16

7.1 Overview . 16
7.2 Turtle Geometry . 16
7.3 Turtle Movement Commands 17

7.3.1 Turtle Movement and Parallel Growth 17

8 Representation of Neuron Components 18

8.1 Introduction . 18
8.2 A Schematic Arbor . 18
8.3 A Schematic Neuron . 19
8.4 Representation of the Soma 20

8.4.1 Soma positioning . 20
8.4.2 Soma geometry . 20

8.5 Representation of the Arbor 21
8.6 Representation of the Segment 21

8.6.1 Segment trajectory . 21
8.6.2 Segment Geometry . 22
8.6.3 Spines . 23

8.7 Representation of the Junction 23
8.7.1 Bifurcation . 23
8.7.2 Multifurcation . 24

9 Summary 26

10 Acknowledgments 26

11 Literature Cited 27

2

List of Figures

1 The turtle speci�es a position and orientation in 3-space. . . 16
2 A schematic representation of dendrite branching 18
3 A schematic neuron . 19
4 A micro-segment approximation for segment trajectory. . . . 21
5 A series of spheres approximating segment geometry. 22
6 Micro-segment details. 22
7 A bifurcation junction. 24

3

List of Tables

1 N++ non-terminal symbols 13
2 N++ terminal symbols . 14
3 Simpli�ed N++grammar . 14

4

1 Abstract

This is the �rst in a series of papers describing a set of tools for the de-
velopmental modeling, visualization, and statistical analysis of neuron pop-
ulations. This paper discusses the use of an open parametric stochastic
L-system for the developmental modeling and structural representation of
neurons. An overview of the basic principles of L-systems and turtle geom-
etry is presented, followed by an introduction to the concepts and grammar
of the N++ langauge, an open stochastic L-system developed to model the
growth and morphology of neurons as viewed at the limit of optical resolu-
tion.

5

2 Speci�cations

The N++ language1, an open stochastic L-system[3], provides a representa-
tional framework for the description of neuron development and morphology.
The N++ language produces well-formed sentences, each of which may be
geometrically interpreted as a neuron, adult (if composed only of terminal
symbols) or immature (composed of at least some non-terminal symbols).
The physical growth process of developing neurons is mimicked in the N++
language grammar. This means that the modeled neurons presumably grow
the same way real ones do, and that a sentence formed at any stage of the
generation process is a \snapshot" of a developing (or developed) neuron.

3 Features

The N++ language was designed with three key features in mind:

1. Accurate growth modeling. The system should accurately model the
growth and development of neurons within the con�nes of neural tis-
sue.

2. Accurate structural representation. The syntax of the representation
should reect the morphology of neurons.

3. Ease of statistical modeling. The syntax should lend itself to the types
of statistical analysis likely to be needed for stochastic modeling.

These requirements led to the development of an open stochastic Linden-
mayer system for the developmental modeling and structural representation
of neurons.

4 Signi�cance

The N++ language was created to address four issues in neuronal develop-
ment and morphology:

1. What structurally de�nes cell typology?

2. What constitutes the normal pattern of growth of a cell type?
1The symbol N++ (pronounced en-plus-plus) refers to an integrated collection of tools

for the stochastic modeling, visualization, and statistical analysis of neurons, one of which
is the N++ langauge.

6

3. What de�nes the normal morphology of a cell type?

4. When can the morphology of two cell populations be statistically dif-
ferentiated?

In the N++ language cell typology is de�ned by the stochastic model. The
normal pattern of growth is de�ned by the N++ language grammar in com-
bination with the stochastic model. The normal morphology of a cell type
is de�ned by the turtle geometry interpretation of the N++ language pro-
ductions, in combination with the N++ language grammar and stochastic
model. Statistical di�erentiation between two cell population is facilitated
by the string representation of N++ neuron models.

7

5 Lindenmayer Systems

L-systems are a type of formal language �rst described by Lindenmayer
in [1] and [2]. Since L-systems are not well known outside the procedural
modeling community a quick tutorial introduction to the concepts and syn-
tax of L-systems is presented here. For further information on L-systems,
both as grammar and in application to the geometric modeling of branching
structures, the reader is referred to [6].

5.1 Introduction

An L-system is essentially a parallel string rewriting system. Iteration of
the system results in a production string being substituted for each non-
terminal symbol in the current string, resulting in a new string. These
substitutions occur in parallel, meaning that productions depend only on
the predecessor string2. Further, some or all of the symbols in an L-system
may have a graphical or geometric interpretation. This section focuses on the
fundamentals of an L-system as a grammar. The geometric interpretation
of an L-system is explained in Section 7.2.

An open L-system[3] is a recent development which allows two-way com-
munication between an L-system and its environment. Open L-systems are
an extension of environmentally sensitive L-systems, which in turn are an
extension of parametric L-systems[5].

Traditional L-system notation describes a system in terms of a start
string, or axiom, and a set of productions. The notation used here is some-
what di�erent, and borrows from the description of context free grammars
as well as classic L-system notation. The set of terminal and non-terminal
symbols are explicitly stated along with the set of productions and the ax-
iom. See Section 5.6 for a comparison of the notation used here and classical
L-system notation.

5.2 Simple L-systems

The following is an example of a simple L-system. V is the set of non-
terminal symbols, T is the set of terminal symbols, P is the set of produc-
tions.

2This is not strictly true in environmentally sensitive or open L-systems as the envi-
ronment may e�ect productions, but the main point is that the results of productions do
not inuence each other

8

V = fA;Bg; T = f
g

P = f(A! AA); (B ! BB)g

If we take !0 = (A
B
) as our start string, then the following sequence
occurs:

!0 (A
B
)
!1 (AA
BB
)
!2 (AAAA
BBBB
)
!3 (AAAAAAAA
BBBBBBBB
)
!4 : : :

Note that these substitutions occur in parallel. This is a simple example
of exponential parallel growth using an L-system.

5.3 Stochastic L-systems

In the previous example the results are always the same for a given axiom.
This is because there is exactly one production for each non-terminal symbol.
When more than one production is speci�ed for the same non-terminal it
is necessary to have some means of deciding which production to use. One
way of deciding between productions is to use a stochastic L-system. In a
stochastic L-system a weight or probability is assigned to each production
such that 0 � p � 1, and that the sum of the weights for a given non-terminal
equals 1.

The syntax used in this paper di�ers somewhat from that used in other
treatments of stochastic L-systems. For the sake of simplicity the weight
of a production will be placed above the arrow symbol in the production

string, e.g. (A
1=2
! B) indicates a weight of 1=2 for the production of B from

A. Where no weight is speci�ed in a production it is assumed to be 1.
The following example is a linear stochastic growth model, in which the

string either grows linearly or terminates.

V = fg; Sg; T = f�g

P = f(g
1=2
! Sg); (g

1=2
! �)g

9

If we take !0 = (g) as our start string, then the following sequences are
possible:

!1 (Sg)
!2 (SSg)
!3 (SSSg)
!4 (SSS�)

or
!1 (Sg)
!2 (S�)

or
!1 (�)

and an in�nite number of other combinations which may be summarized as:

!n 2 f(S
ng); (Si�) j 0 � i < ng

This example is more interesting from the point of view of neuron model-
ing because it suggests that a population of strings (or models) may be gen-
erated from a single stochastic grammar. Further, by adjusting the weights
the statistical properties of the population may be changed. However, there
is no way to deterministically control the �nal length of the string3. De-
terministic control over the choice among multiple productions for a given
non-terminal symbol may be achieved by using a parametric L-system.

5.4 Parametric L-systems

L-systems may be parametric, meaning that the choice of one production
over another for a given non-terminal may depend on parameters associ-
ated with that symbol. Parameters are enclosed in parentheses immediately
following the symbol they are associated with. In the syntax of this pa-
per a conditional production is indicated by a vertical bar j separating the
production string and a boolean expression governing the production.

As an example of a simple parametric L-system, the previous grammar
could be changed by adding a length parameter to g. Two conditional
productions handle the cases when the parameter is zero, or greater than
zero. This results in a simple deterministic linear growth system in which

3It is always possible to create deterministic results by specifying weights of 1 or 0, or by
composing a start string of terminal symbols. This is not particularly useful because the
�rst two cases are equivalent to a non-stochastic system and in the last case no rewriting
takes place.

10

the �nal string length is easily controllable by specifying the value of the
parameter for g in the start string.

Note that this example is not stochastic because the choice of one pro-
duction over another depends only on a parameter.

P = f(g(0) ! �); (g(i) ! Sg(i� 1) j i 2 N; i 6= 0)g

Taking !0 = (g(3)) as our start string results in the following productions:

!0 (g(3))
!1 (Sg(2))
!2 (SSg(1))
!3 (SSSg(0))
!4 (SSS�)

Thus, the length of the resulting string will always be one plus the value of
the parameter associated with g in the start string.

This type of parametric control is important in modeling neurons because
it allows properties decided at one level of the grammar to be passed down to
lower levels. For example, the length of a dendritic segment may be decided
before the segment itself begins to develop.

5.5 Open L-systems

An open L-system is a type of L-system allowing bilateral communication
between an L-system and its environment. Open L-systems are an extension
of the idea of environmentally sensitive L-systems, which provide one-way,
environment-to-L-system communication.

In an environmentally sensitive L-system, information is queried from
the environment after each iteration using a query symbol ?X, where X
designates the type of information to be queried. The results of the query
�ll in the parameters of the query symbol, which may then be used in sub-
sequent productions. Typically the information requested is the position or
orientation of the turtle (Section 7.2).

Open L-systems extend this idea by providing a two-way communication
mechanism. This is done through a special query symbol, ?E, which acts as
a \mailbox" for communications between the L-system and the environment.
Parameters to ?E set by the L-system are passed to the environment, which
interprets them and replaces the original parameters with a response mes-
sage. The format of the messages is de�ned elsewhere in a special message
format �le.

11

Open (or at least environmentally sensitive) L-systems are needed to
model neuron populations because the environment in which neurons grow
is a dense space-�lling medium through which dendritic and axonal segments
must \feel" their way. As the segments grow, they themselves �ll the space
in the matrix and change the environment. Further, boundary-conforming
growth is exhibited by neurons composing anatomical structures such as
pyramidal cell modules in the striate cortex.

5.6 Notation Summary

In the notation used in this paper4, an L-system is de�ned as a set of non-
terminal symbols, V , a set of terminal symbols T , and a set of productions,
P .

The notation used for productions can be summarized as follows:

id : pred
prob
�! succ j cond (1)

where id is a label, pred is the strict predecessor (the symbol for which
the production is being speci�ed), cond is a conditional governing the pro-
duction, succ is the successor string (the string that is substituted for the
predecessor in the resulting string), and prob is a probability governing a
stochastic production. Productions are also written in string notation with-
out an explicit label:

(pred
prob
�! succ j cond) (2)

4The classical L-system notation is somewhat di�erent. The set of symbols is not
explicitly stated, and the notation for productions di�ers as well:

id : lc < pred > rc : cond ! succ : prob

The lc and rc symbols, which in the classical notation allow for context sensitive L-systems,
are a construct not used in this paper.

12

Symbol Description Function

N Neuron Neuron generation start symbol.
O Soma Starts soma generation
A Axonal arbor Starts generation of axonal arbor.
D Dendritic arbor Starts generation of dendritic arbor.
J Junction Produces a junction marker and daughter segments.
S Segment Terminates or produces a growth cone.
g Growth cone Produces junction or a micro-segment plus growth cone.
u Micro-segment Produces a rotation plus a translation plus geometry.

Table 1: N++ non-terminal symbols

6 N++ Grammar

The intent of this section is to acquaint the reader with the organization of
the N++ language. This section describes the overall structure of the N++
language and presents a simpli�ed L-system grammar.

The N++ language is a stochastic open L-system. The grammar pre-
sented here is simpli�ed for the sake of clarity. The full grammar is funda-
mentally the same but its syntax is more complex to allow (1) arbors of more
than one type (e.g. basal and apical dendritic arbors in pyramidal cells),
and (2) to allow neuron populations to interact with their environment.

6.1 Symbols

The N++ alphabet may be summarized as:

V = fN;O;A;D; J; S; g; ug; T = f[;]; r; t; G; J 0; J 00;H; u0; s; r; t; �g (3)

A brief description of the N++ language non-terminal symbols is to be
found in Table 1. From the point of view of the grammar, non-terminal
symbols are best described in terms of their productions (Section 6.3). Ta-
ble 2 is a summary of the terminal N++ symbols, and is provided mostly
for reference. Section 7 describes the function of the turtle-geometry related
symbols ([,], r, and t). Section 8 discusses the interpretation of the other
symbols as they relate to neuron morphology.

13

Symbol Description Function

[Push Pushes the state of the turtle onto the stack.
] Pop Pops the state of the turtle.
r Rotation Turtle rotation symbol
t Translation Turtle translation symbol
G Soma geometry Represents soma geometry.
J 0 Junction marker Marks a junction terminating a parent segment.
J 00 Soma-arbor junction marker Marks a junction of soma and arbor.
S0 Segment header Marks initiation of a daughter segment.
u0 Micro-sphere Represents micro-segment geometry.
s Spine Represents spine geometry.
� Termination Growth termination symbol

Table 2: N++ terminal symbols

Label Production

pN : N �! [O[A]+[D]+]
pO : O �! rtrG
pA : A �! J 00[rS]
pD : D �! J 00[rS]

pJ00 : J
fJ0

00�! J 0[rS][rS]

pJ01 :
fJ0

01�! J 0[r[rS]S]

pJ000 :
fJ0

000�! J 0[rS][rS][rS]
... (See Equations 19, 20, and 21.)

pS+ : S
f+non�term
�! S0g

pS� :
f�non�term
�! �

pg+ : g
f+
J�! J

pg� :
f�
J�! ug

pu+ : u
f+
spine
�! rtu0s

pu� :
f�
spine
�! rtu0

Table 3: Simpli�ed N++grammar

14

6.2 Grammar

As previously stated the full N++ grammar is an open, stochastic L-system.
For the sake of simplicity the grammar is presented here as a stochastic
L-system in which production weights are represented symbolically. Para-
metric expressions and conditionals are not used. The notation f+ and f�

indicate that f+ + f� = 1. It is assumed that the sum of symbolic weights
for all productions associated with a given non-terminal equals one. The
special symbol + is used in the classic regular expression sense to denote
one or more repetitions of a symbolic unit.

In the full N++ grammar the symbolic production weights of the simpli-
�ed grammar are replaced by a more complicated system allowing growing
neurons to interact with both the physical environment and a user-de�ned
distribution function environment. In e�ect, each non-terminal symbol X
of the simpli�ed grammar is equivalent to ?E(X : : :), where the ellipses rep-
resent symbolic parameters passed to the two environments. Likewise, each
stochastic production of the simpli�ed grammar becomes a conditional pro-
duction which is a function of the information passed back.

6.3 Productions

The set of productions for the simpli�ed N++ language grammar may be
summarized as:

P = fpN ; pO; pA; pD; pJ00 ; pJ01 ; pJ000 ; pS+ ; pS� ; pg+ ; pg� ; pu+ ; pu�g (4)

The individual productions are described in Table 3.

15

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

����
����
����

����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

U
R

H
Y

X

Z

Turtle Coordinate Frame

Turtle Position Vector

World Coordinate Frame

H

RU

Figure 1: The turtle speci�es a position and orientation in 3-space.

7 L-system Geometric Modeling

7.1 Overview

L-systems are useful in graphics because of their applications in procedu-
ral modeling. Symbols in an L-system string may be assigned a graphi-
cal or geometric interpretation, allowing an L-system grammar to generate
two-dimensional images or three-dimensional models. This interpretation is
performed in a step separate from the parallel rewriting grammar.

Traditionally, L-systems have been combined with a geometric construct
called turtle geometry. This allows a simple geometric interpretation to
be assigned to symbols in an L-system alphabet. By interpreting an L-
system string symbol-by-symbol, a geometric model may be constructed.
This string interpretation step is sequential and completely separate from
the parallel operation of the grammar.

7.2 Turtle Geometry

The \turtle" in turtle geometry is a position in space combined with an
orientation. (See Figure 1) The turtle may be rotated to produce a new
orientation or translated along its primary H axis to a new position. An
analogy may be made between the turtle and a vehicle which can either
rotate about its center or move forwards, but not both simultaneously.

16

7.3 Turtle Movement Commands

In the syntax of the N++ there are four turtle geometry movement com-
mands: rotate, translate, push, and pop. These are all terminal symbols.
Rotate and translate are parametric, whereas push and pop are not.

rotate | r(: : :) Rotate the turtle relative to the turtle's current coordi-
nate frame. The actual rotation is de�ned by the parameters to r and
may be speci�ed in a number of ways.

translate | t(d) Translate d units in the direction of the turtle's primary
axis, as de�ned by the H vector (See Figure 1.)

push | [Push the current orientation and position of the turtle (the
turtle's state) on to the stack5. This does not change the state of the
turtle. See pop.

pop |] Pop replaces the turtle's current state with the state on the top
of the stack. The top state is then removed from (popped o�) the
stack. Push and pop work together to provide a simple mechanism to
save and restore the state of the turtle.

In some applications of turtle geometry the turtle is analogous to a \pen"
which draws as it moves. In N++, neurons are modeled as space-�ling solid
models. The turtle acts as a cursor which positions and orients geometric
primitives in space. Any command which creates geometry does so with the
turtle's current position and orientation.

7.3.1 Turtle Movement and Parallel Growth

The reader may observe that the construction of branching �gures using
L-system turtle geometry conventions is a depth-�rst process, meaning that
a single branch is traced from its origin to its end before the turtle backs
up to trace other branches. At �rst glance this may appear contradictory
to the principle of parallel growth. However, the apparent contradiction is
resolved when one observes that parallel growth is a property of the parallel
rewriting grammar, and depth-�rst geometric construction is a property of
the subsequent sequential interpretation and visualization of the string.

5A stack is a list of items which is accessed in LIFO, or last-in-�rst-out, order. An
analogy may be made to a stack of books, in which only the book on top is accessible.

17

8 Representation of Neuron Components

8.1 Introduction

In this section the N++ representation of neuron morphology is explained
on an element-by-element basis. This representation is based in large mea-
sure on the neuron morphology modeling work of Kishore Mulchandani[4].
Rather than present a complete morphology representation and dissect it
into components, a top-down approach is utilized in which progressively
more detail is added to a simple representation. The reader is encouraged
to refer back to Section 6 to see how the representations discussed here �t
into the N++ grammar, and to Section 7 for clari�cation of the geometric
interpretation of N++ strings.

8.2 A Schematic Arbor

S1

S4

S2

S3

S5

Figure 2: A schematic representation of dendrite branching

To begin the discussion of neuron morphology, we will start with the
schematic dendritic arbor presented in Figure 2. While this �gure is very
simple it does exhibit the fundamental branching structure characteristic
of neuron morphology. Figure 2 may be represented in a bracketed string
notation as follows:

[S1[S2[S3]S4]S5] (5)

18

1

S2
S3

S
5

1J’

4S

S

J’2

1J’’

1O

Figure 3: A schematic neuron

Everything has been eliminated from the representation but dendritic seg-
ments Si (1 � i � 5), [and]. Reading from left-to-right, this string is
interpreted as:

Save (push) the state of the turtle, draw segment one, push the
state again, draw segment two, push the state, draw segment
three, replace the turtle's current state with the one on the top
of the stack and remove that state from the stack (pop the state),
draw segment four, pop the state again, draw segment �ve, pop
the state.6

Equation 5 shows how a simple branching �gure may be represented using
the L-system turtle geometry conventions, particularly the operation of the
\push" and \pop" commands.

8.3 A Schematic Neuron

Figure 3 is a schematic representation of a neuron with a single dendritic
arbor and no axon, and is the next step in elaboration on the basic branching

6The reader may note that this sequence begins with a push and ends with a pop,
thus restoring the original state of the turtle. While not necessary in this example, strings
representing segments, arbors, neurons, and larger-scale neural structures should always
be bracketed in this way, allowing elements to be cleanly positioned and oriented.

19

structure represented in Figure 2. This cell could be described using an
abbreviated N++ representation as follows:

[O1J
00

1 [S1J
0

1[S2J
0

2[S3]S4]S5]] (6)

In this equation O1 represents the soma, J
00

1 represents the soma-arbor junc-
tion, The Si represent segments and The J 0

i represent junctions. Note that
in this simpli�ed representation there are no explicit references to rotations,
translations, or geometric primitives, and the two non-terminal symbols O
and S are used as though they were terminal. While this representation is
deliberately incomplete, Equation 6 will form the basis for further elabora-
tion.

8.4 Representation of the Soma

The �rst symbol in Equation 6 is O1, representing the soma. The soma is
the \root" of the dendritic and axonal arbors of a neuron, and may have a
variety of di�erent shapes. A soma has three basic properties: a position in
space, an orientation, and a geometric form.

8.4.1 Soma positioning

The �rst step in describing a soma is to position it in space. Using turtle
geometry conventions, this involves a rotation followed by a translation.
The next step is to orient the soma, which is a rotation. This process is
represented as a production in Equation 7.

O ! rtr (7)

8.4.2 Soma geometry

Equation 7 is not complete. Once the Soma is positioned and oriented its
geometry must be created to represent the soma as a three-dimensional solid
model. In N++ this is done either by approximation with simple geometric
primitives (e.g., sphere, cone) or through a more complex reconstruction
based on sampled contours. In either case the symbol G will be used to
represent this geometry, with both the type and sampled data (if any) being
associated with G as parameters.

O ! rtrG (8)

20

1

u7

u2

u5

u

u
u

u

3
4

6

S

Figure 4: A micro-segment approximation for segment trajectory.

This results in Equation 8, which the reader may observe is equivalent to
production pO in Table 3.

8.5 Representation of the Arbor

The remainder of Equation 6 (everything but the �rst symbol) is a simpli�ed
arbor. In N++ an arbor (either axonal or dendritic) begins with a soma-
arbor junction marker J 00. This is a marker symbol used in the statistical
analysis phase and has no geometric interpretation. Following the soma-
arbor junction marker is a series of segments intersecting at junctions.

8.6 Representation of the Segment

8.6.1 Segment trajectory

An axonal or dendritic segment has two primary properties: a trajectory in
space and a diameter that may vary along the length of the segment. In
Equation 6 a neuron segment is represented with a single symbol S. The �rst
step in re�ning this representation is to add more trajectory information.

The trajectory of a real neuron segment is a continuous path in space.
This may be approximated by a series of straight trajectory micro-segments,
as is illustrated in Figure 4. The symbol u is used to represent such a micro-
segment. Thus, for a trajectory approximation with n micro-segments:

S ! u1u2 : : : un (9)

21

S

Figure 5: A series of spheres approximating segment geometry.

t
r

u’

u

Figure 6: Micro-segment details.

As a trajectory approximation, each micro-segment is equivalent to a
rotation followed by a translation. Thus:

u! rt (10)

The position resulting from the interpretation of a micro-segment may be
thought of as a either a sampled data point or a knot point in a piece-
wise interpolating spline approximating the real trajectory of the neuron
segment. With suÆcient subdivision the use of micro-segments provides a
good trajectory approximation.

8.6.2 Segment Geometry

In N++ a series of small spheres, or micro-spheres, is used to approximate
the smooth tapered cylindrical geometry of the segment, as illustrated in
Figure 5. The symbol u0 represents a micro-sphere. This rede�nes the

22

micro-segment as a displacement followed by a micro-sphere (See Figure 6):

u! rtu0 (11)

8.6.3 Spines

One other feature of segments is visible at optical resolution. Small protru-
sions, called spines, may be seen stochastically distributed along the length
of the segment. Where they exist spines are dealt with as a further elabo-
ration of the micro-segment. A spine is represented by the symbol s.

u! rtu0s (12)

Note that except for stochastic weights, Equation 11 and Equation 12 are
equivalent to productions pu� and pu+ of Table 3.

As a matter of practice, segments are represented as generalized cylin-
ders, with spines added by applying a displacement map to the smooth
surface of the cylinder.

8.7 Representation of the Junction

A junction is the intersection of a single segment and a soma (in the case
of a soma-arbor junction) or the branching point where a single segment
bifurcates or multifurcates. The �rst type of junction has been discussed
in Section 8.5. The second type of junction, a bifurcating or multifurcating
junction, is discussed here.

8.7.1 Bifurcation

Bifurcation is the process of a single parent segment dividing into two new
daughter segments. This process may be represented as:

J ! [S1][S2] (13)

To aid subsequent statistical analysis, a junction marker symbol J 0 is intro-
duced. Like J 00, this symbol has no geometric interpretation. Thus Equa-
tion 13 becomes:

J ! J 0[S1][S2] (14)

Because the two segments do not start with the same orientation, an initial
junction rotation is needed to orient them. This is handled by introducing
a junction rotation symbol H:

J ! J 0[H1S1][H2S2] (15)

23

Figure 7: A bifurcation junction.

In Equation 15 the initial orientation of both segments depends only on the
orientation of the junction, which is to say on the �nal orientation of the
parent segment. It is also possible that the initial orientation of S2 could
depend on S1 as well. Thus, there are two possibilities for a bifurcation:

J
fJ0

00�! J 0[H1S1][H2S2] (16)

J
fJ0

01�! J 0[H1[H2S2]S1] (17)

In Equation 16 the initial orientation of the two segments are independent,
and in Equation 17 the initial orientation of S2 depends on H1 as well as H2.
These two equations are equivalent to productions pJ00 and pJ01 of Table 3.

8.7.2 Multifurcation

The process of multifurcation is similar to bifurcation, except that a single
segment divides into more than two segments. In N++ , it is assumed that
all multifurcation are trifurcations. The syntax for multifurcation is the
same as for bifurcation except that there are more possibilities for the inter-
dependence of the initial orientation of segments. For the sake of simplicity
Table 3 lists only the simple dependency case as production pJ000 . The full
list of multifurcation dependency possibilities is as follows:

J
fJ0

000�! J 0[HS][HS][HS] (18)

24

J
f
J0
010�! J 0[H[HS]S][HS] (19)

J
f
J0
011�! J 0[H[HS][HS]S] (20)

J
f
J0
012�! J 0[H[H[HS]S]S] (21)

25

9 Summary

The N++ language is an open, stochastic L-system developed for the stochas-
tic modeling of neuron morphology. The N++ language is both a parallel-
rewriting grammar and a string-based model representation language. The
N++ language grammar is designed to mirror the growth and development
of neurons in the matrix of neural tissue. As a string-based model descrip-
tion language, the N++ language is designed to accurately represent the
morphology of neurons as viewed at the limit of optical resolution.

In this paper a general introduction to L-systems, both as grammar and
as modeling tool, is presented. The purpose of the N++ language and how it
�ts into the N++ system is discussed. A simpli�ed N++ language grammar
is presented along with a detailed description of how this grammar works to
produce models of developing or mature neurons.

The next paper in this series, The Statistical Model , is an overview of the
probability density functions governing the stochastic modeling of neuron
populations.

10 Acknowledgments

The authors would like to thank Kishore Mulchandani for laying the ground-
work for this project. The N++ language described here owes much of its
structure to his work on neuron morphology modeling. The authors would
also like to thank Sandeep Tewari for his contributions to modeling neuron
development in space-�lling structures, including the use of implicit function
modeling for neuron morphology.

26

11 Literature Cited

References

[1] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, parts i and ii. Journal of Theoretical Biology, 18:280{315,
1968.

[2] A. Lindenmayer. Developmental systems without cellular interaction,
their languages and grammars. Journal of Theoretical Biology, 30:455{
484, 1971.

[3] R. Mech and P. Prusinkiewicz. Visual models of plants interacting with
their environment. In Computer Graphics Proceedings, Annual Confer-

ence Series, 1996, pages 397{410, August 1996.

[4] K. Mulchandani. Morphological modeling of neurons. Master's thesis,
Texas A&M University, College Station, TX, 1996.

[5] P. Prusinkiewicz, M. James, and R. Mech. Synthetic topiary. In Com-

puter Graphics Proceedings, Annual Conference Series, 1995, pages 351{
358, August 1995.

[6] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

27

