
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Visualization of Fibrous and Thread-like Data

Zeki Melek , Student Member, IEEE, David Mayerich, Student Member, IEEE, Cem Yuksel, and John Keyser , Member, IEEE

Abstract— Thread-like structures are becoming more common in modern volumetric data sets as our ability to image vascular
and neural tissue at higher resolutions improves. The thread-like structures of neurons and micro-vessels pose a unique problem in
visualization since they tend to be densely packed in small volumes of tissue. This makes it difficult for an observer to interpret useful
patterns from the data or trace individual fibers.
In this paper we describe several methods for dealing with large amounts of thread-like data, such as data sets collected using
Knife-Edge Scanning Microscopy (KESM) and Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These methods allow
us to collect volumetric data from embedded samples of whole-brain tissue. The neuronal and microvascular data that we acquire
consists of thin, branching structures extending over very large regions. Traditional visualization schemes are not sufficient to make
sense of the large, dense, complex structures encountered.
In this paper, we address three methods to allow a user to explore a fiber network effectively. We describe interactive techniques for
rendering large sets of neurons using self-orienting surfaces implemented on the GPU. We also present techniques for rendering fiber
networks in a way that provides useful information about flow and orientation. Third, a global illumination framework is used to
create high-quality visualizations that emphasize the underlying fiber structure. Implementation details, performance, and advantages
and disadvantages of each approach are discussed.

Index Terms—neuron visualization, GPU acceleration, global illumination, orientation filtering

F

1 Introduction

The segmentation and visualization of structures in large vol-
umetric data sets continues to pose significant problems. New
methods for data acquisition are creating data sets of increasing
resolution, requiring newer algorithms to extract fine details.
Recent data acquisition techniques, such as Knife-Edge Scan-
ning Microscopy (KESM) [12] and Serial Block Face Scanning
Electron Microscopy (SBF-SEM) [5], allow the sectioning and
scanning of high-resolution neural and vascular data. These
datasets contain dense fibrous structures that pose a unique
problem in volumetric visualization. The small radius of in-
dividual fibers makes them difficult to differentiate from high-
frequency noise. In these cases, image processing can be diffi-
cult because low-pass filters are a common technique used to
prepare data for segmentation. Instead, vector tracing algo-
rithms are used to locate and label fibers through a dataset.
These techniques produce large numbers of line segments in
three-dimensional space that represent the trajectories of indi-
vidual fibers.

Interpreting volumetric data requires that the user is able
to display and manipulate the data set interactively. Even
for dense fibrous structures, this could be accomplished using
line segments rendered on modern graphics hardware. Unfor-
tunately, the density of neuronal fibers and microvasculature
makes them difficult to visualize, resulting in an over-lapping
tangle of lines that would be extremely hard for a user to in-
terpret. Of course, one could always display randomly sampled
subsets of thread data, but this would cause the loss of con-
nectivity information between fibrous units, such as neuronal
synapses from brain data.

• Zeki Melek is in Computer Science at Texas A&M University,
E-mail:melekzek@tamu.edu

• David Mayerich is in Computer Science at Texas A&M
University, E-mail:david@quantumkingdom.com

• Cem Yuksel is in Visualization Science at Texas A&M
University, E-mail:cem@viz.tamu.edu

• John Keyser is in Computer Science at Texas A&M University,
E-mail:keyser@cs.tamu.edu

Manuscript received 31 March 2006; accepted 1 August 2006;
posted online 6 November 2006.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Fig. 1. Two visualizations of the neuronal threads, (top) interactive
GPU SOS, and (bottom) hair-like rendering using fake skylight.

Incorporating shading information into on-screen threads al-
lows a user to differentiate between individual fibers, but gen-
erally requires the creation of a polygonal surface. Although
the thread data retrieved from vector tracing can be used to
help create a polygonal isosurface, maintaining the continuity
of the thread information requires a surface that tends to be
extremely triangle-heavy, making it difficult to render a rea-
sonable data set at interactive rates, even on modern graphics
hardware. Furthermore, the basic shading that can be applied
at interactive rates is sometimes insufficient for understanding
the full complexity of the data.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

1.1 Main Results

In this paper, we present a set of practical techniques that im-
prove our ability to visualize dense thread-like structures ex-
tracted from large volumetric datasets. We present two tech-
niques for visualizing such data interactively. First, in Section
3 we describe a way of implementing self-orienting surfaces on
the GPU in order to quickly render individual thread-like paths
at a minimal polygon cost. We also discuss a method for shad-
ing based on thread orientation, allowing us to visualize ori-
ented fiber bundles that are difficult to see within the dense
fiber set. Second, in Section 4 we describe a non-interactive
method of rendering images of a thread-like volumetric data
sets using global illumination techniques that make the trajec-
tories of fiber bundles easier for a user to interpret. We also
provide some brief background (Section 2) and an evaluation
of our approach (Section 5).

2 Background

The visualization techniques we present here, though they have
more general application, are geared toward a particular type
of data. Note that this data is of a completely different scale
and with very different characteristics than that of prior fiber
visualization work (e.g. [2]).

2.1 Prior Visualization Work

Our data shares many characteristics of field lines, which have
been thoroughly investigated in the flow visualization litera-
ture. Line segments are fast to display, but do not provide suffi-
cient perceptual cues for complex geometric structures. Polyg-
onal tubes can provide shading and radius information but
become too expensive on larger datasets. Stream -polygons,
-ribbons, -tubes, surfaces, and -balls have been proposed to
decrease poly count while providing sufficient visual cues. A
thorough discussion of these methods has been given by Schuss-
man and Ma [16].

Schussman and Ma also present a new representation for field
lines, the Scalable Self-Orienting Surface (SOS). These surfaces
resemble the impostors and billboards commonly used in com-
puter graphics, but are more flexible. SOS consists of polygon
strips along a streamline, where the vertices rotate axially along
a curve and always face the camera. The thickness of the strip
gives a depth cue, and hardware bump mapping using normals
set along the strip yields shading and specular lighting along
the strip. Additional visual cues are provided using textures
and per vertex fog (as provided in OpenGL extensions). SOS
uses far less memory than display lists of polygon cylinders,
and has been reported to work roughly 25 times faster.

An approach similar to SOS, stylized line primitives, has
been implemented for vector field and flow visualization on the
graphics processor unit (GPU) by Stoll et al. [17]. They provide
additional visual cues by adding halo and shadow maps on the
GPU. They propose a hybrid GPU-CPU approach to handle
visual problems around singularity points such as silhouette
vertices. A more detailed comparison to our method could be
found at section 5.2. Kondratieva et al. [10] also make use of
the GPU by using particle tracing to visualize 3D tensor fields.
They demonstrate visualization of volumetric diffusion tensor
images of human brain and canine heart.

Spline techniques [4, 7] are a well-known method for creat-
ing smooth interpolations through sampled data sets. Rossl
et al. [15] use quadric super splines to interactively visualize a
number of well-known volume datasets.

2.2 Data acquisition

The need for efficient methods to visualize thread-like struc-
tures follows from two recent developments in microscopy.

Fig. 2. Diagram of Knife Edge Scanning Microscopy, and a photo of
our machine.

2.2.1 Knife Edge Scanning Microscopy

Knife-Edge Scanning Microscopy (KESM), developed at Texas
A&M, involves an optical microscope/microtome designed to
image thin sections of embedded tissue in order to reconstruct
anatomical information at the cellular level. The use of KESM
produces high-resolution data sets by imaging at 0.6µm x
0.6µm and cutting serial sections less than 1.0µm thick. Imag-
ing and cutting are simultaneous, thereby maintaining regis-
tration between sequential sections.

The KESM consists of an optical microscope mounted per-
pendicular to the cutting surface of a translucent diamond knife
(see figure 2). Light from a fiber-optic illuminator is refracted
through the knife, which acts as both a cutting tool and high-
intensity light source. Light is then transmitted through the
tissue being cut and into the objective for imaging. A high-
speed line scan camera mounted behind the objective images
the tissue as it is being cut. The camera we are currently using
operates at 45kHz, where each sample is made up of a 4096x1
pixel line. This allows us to retrieve data at a maximum rate
of over 200 megabytes/second at a resolution of 0.6µm x 0.6µm
x 0.8µm. KESM currently offers the only feasible method for
scanning an entire mouse brain at such a resolution within a
month, although our experimental datasets are not currently
this large.

2.2.2 Serial Block Face Scanning Electron Microscopy

Serial Block-Face Scanning Electron Microscopy (SBF-SEM),
developed by Denk and Horstmann [5], is another microscopy
technique for acquiring volumetric data. In this approach, a
scanning electron microscope is used to image the face of a
block of prepared tissue. A microtome located within the mi-
croscope then removes a thin portion of the surface material,
and the process is repeated. The result is a serial set of im-
ages of the tissue block at a much higher resolution (approxi-
mately 10nm x 10nm by 50nm) than available through light mi-
croscopy, however the slower imaging speed and staining tech-
niques limit the size of the tissue sample. Although KESM and
SBF-SEM provide different magnifications, the thread densities
and dataset sizes are similar.

2.2.3 Our Data Sets

We use three different data sets as sources of our fiber-like
data. From the KESM, we use two different staining tech-
niques. With one technique (Golgi), we stain complete neurons,
but only a small fraction of them. The vector tracing recon-
structs the neuron structure. A different stain (Nissl) is used
to stain cell bodies only (without the processes - the axons and
dendrites), and thus does not produce thread-like data on its
own. However, Nissl staining can be used to identify (by lack of
stain) the microvasculature (small blood vessels) in the brain
tissue. When vector tracing is applied, the microvasculature
produces similar data to that of the Golgi stain. Finally, we
use a set of neuronal data scanned by an SBF-SEM method.
Tracing again follows pathways of neuron processes. As this
produces the densest packing of threads, it is also the most

MELEK et al.: VISUALIZATION OF FIBROUS AND THREAD-LIKE DATA

Fig. 3. From left to right, Golgi KESM data, Nissl KESM data, and SBF-SEM data.

dramatic in terms of our visualization. Examples of raw data
of each of these types is shown in figure 3. The Golgi and Nissl
stained volumes are 800x800x300 voxel blocks while the SBF-
SEM dataset is 800x800x500 voxels. These are relatively small
subsets of the available datasets but provide enough density to
show the effectiveness of our visualization techniques.

2.3 Vector tracing

In order to deal with these large volumes of data, the datasets
are split into smaller volumes and processed in parallel. The
data we show is a collection of several such data sets processed
independently.

The initial compression and segmentation of volumetric data
is done using the L-block data structure proposed by Mc-
Cormick et al.[13]. This technique allows us to achieve a high
degree of compression by taking advantage of the thread-like
nature of the structures stored in the volumetric data set. Ini-
tially, a conservative threshold is used to eliminate unstruc-
tured information that is highly unlikely to be of interest.
The remaining information, including the desired threads and
nearby pixels, are stored in 2x2x2 voxel axis-aligned bounding
boxes. Each bounding box is connected to its neighbors on
each side. Next, a greedy approach is used to combine neigh-
boring bounding boxes to achieve the highest compression ratio
for stored voxel information and connection information. This
L-block data can be used as an initial approximation for the
thread structures.

Extracting microvasculature information from Nissl stain
and neuronal processes from Golgi is done using a modifica-
tion of the vector technique originally developed by Can et al.
[3] to trace blood vessels in two-dimensional images. This tech-
nique uses a correlation kernel of the form [1 2 0 -2 -1] in order
to locate the boundary of a blood vessel. Two kernels can then
be used to track both boundaries of a 2D fiber. By averaging
across several pixels, the trajectory of the fiber structure can
be estimated. As small steps are taken along the fiber, the esti-
mated trajectory can be updated, allowing the structure to be
traced. This technique can be extended into three dimensions
as shown by Al-Kofahi et al. [1] for confocal image stacks.

We extend the 3D vector tracing algorithm by using ad-
ditional correlation kernels to extract more accurate 3D ra-
dius information and to better track the individual thread-
like paths. In addition, the algorithm requires the selection
of initial points and direction vectors in order to begin trac-
ing. These seed points are selected using the initial L-block
construction as described by Doddapaneni [6]. Seed points are
scattered through the structure and individually traced. As the
tracing algorithm encounters other seed points, they are sys-
tematically eliminated. Once an entire thread has been traced,
a new seed point is selected from the remaining set. Our im-
plementation of the vector-tracing algorithm does not process
branching or make special exceptions for cell bodies. Thus, the

output of our vector tracing is a set of polylines in 3D that
approximately follow the medial axis of the neuron/vascular
structure, and contain associated radius information. This col-
lection of line segments forms the “track” data our system relies
on.

Since the processing of vector data just requires local infor-
mation, the algorithm is highly parallel. In order to process
our large data sets, the volumetric data was broken up into
100x100x100 voxel sections. The vector tracing algorithm can
then be run on each section individually using separate pro-
cessors. The running time of the algorithm on separate blocks
varied with the number of threads but took approximately 10
minutes per 100x100x100 segment on a 1.8 GHz P4 processor.
Additional stitching between inter-block segments is done as
an additional postprocess.

3 Interactive Visualization

The fibrous neuronal data sets we obtain can be large and
complex. Besides looking at local structures and individual
threads, one also wants to explore the larger organizations that
are particularly interesting because of the flow-like behavior of
axonal and dendritic arbors. These arbors often appear to
be tightly bundled, and understanding the “flow” of this bun-
dle throughout the brain can potentially give improved insight
into the organization of neural pathways, and thus better un-
derstanding of neural computation. We describe here a set
of interactive techniques found useful for visualizing our data
interactively.

3.1 Fast Visualization of Threads

We have created an efficient GPU-based implementation for
displaying self orienting surfaces. SOS is a memory efficient
and fast representation, where every vertex needs to be rotated
axially along the curve. Traditional implementations [16] are
CPU bound and vertex data needs to be transferred to the
graphics card every frame after rotation to face to the camera;
furthermore, such an approach does not exploit display lists.
Taking advantage of the advancement of graphics hardware,
we have implemented this process on the GPU using a ver-
tex shader. This enables us to use display lists, and transfer
the vertex data only once to the graphics card. Additionally,
we can add additional visual cues with only a negligible per-
formance loss without the need to retransfer the vertex data.
Note that Stoll et al. have previously developed a similar GPU
extension (stylized line primitives) for visualizing vector fields
and flow lines [17].

We have adapted the SOS approach to be used with neurons.
We start by generating a degenerated triangle strip along the
thread, allocating two vertices of the triangle strip at each ver-
tex of the polyline defining the thread, i.e. for every segment
pq, two vertices are generated at the endpoint p (and a final
pair of vertices is generated for the final point in the polyline).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 4. SBF-SEM dataset with 240000 threads is visualized using (a) lines (b)polygon cylinder (c) SOS (d) GPU SOS (e) GPU SOS with depth
attenuation

The position of the vertices will be set at runtime by the vertex
shader. For each vertex, we need to send the direction of the

segment ~d = q − p, and the radius r at point p, along with a
tag to distinguish these vertices from one another (i.e. we set
one r positive, and the other negative). All this information
can be stored in a single four-channel texture coordinate (i.e.
RGBA is actually dx, dy, dz, r). Note that we do not need to
explicitly send the position of the axis, since the vertices are
initially positioned on the axis. The vertex shader does the
following:

• Transforms vertex to view space

• Finds vector perpendicular to the view direction and local
thread orientation

• Displaces vertex according to the perpendicular vector
and radius at that vertex

• Sets vertex normal according to the perpendicular vector
and direction of radius at that vertex

• Applies shading using distance and orientation filtering

The vertex shader applies a view space transform MV (and
its inverse transpose, MV IT) to the vertex position and thread
direction (note: in OpenGL, MV is the ModelView matrix) as
follows:

p′ = MV p, ~d′ = ~dMV IT (1)

After the transform, the direction, ~d⊥, perpendicular to both

view and ~d′ is found easily using:

~d⊥ =

(
−d′y
d′x
0

)
(2)

and the final position for each of the vertices is then determined

p′′ = p′ + r
~d⊥

| ~d⊥|
(3)

Note that for segments (nearly) parallel to the view direc-
tion, equation 3 is ill-defined. This is a fundamental problem
for any SOS approach. Stoll et al. [17] deal with this problem
(their method uses cross products that are ill-defined as well)
by adding a geometry “patch” in the problematic area during a
CPU pass in their CPU-GPU hybrid approach. In our case, we
use an ad-hoc GPU-based approach. GPU programming lan-
guages such as CG allow normalization of a zero-vector, usually
returning a zero vector. In such a case, the quadrilateral edge
collapses to a point, but this does not create major visual ar-
tifacts, as the quadrilateral is viewed edge-on.

Normals ~n are defined at the vertices facing outward to give
the illusion of curvature to the flat strips after shading.

~N =

(
−d′ysign(r)
d′xsign(r)

1

)
, ~n =

~N
~|N|

(4)

Note that all the equations are applied after view space
transformation, and all the coordinates are in view space coor-
dinates. Shading and specular lighting is applied in the vertex
shader in the usual way [14]. Additional visual cues are also
created in the vertex shader. Depth based attenuation is ap-
plied using p′

z, which is already calculated above. Focus point
centered attenuation is applied using only one additional vector
subtraction operation, requiring only that the focus point be
sent as a uniform variable. Thickness of the segments can be
varied interactively by using another uniform variable. None of
these additional visual cues require rebuilding the display list
or resending vertex data to the graphics card, hence they can

MELEK et al.: VISUALIZATION OF FIBROUS AND THREAD-LIKE DATA

be applied uninterrupted and interactively by sending only a
small number of global parameters to the vertex shader. We
observed that such additional features required only negligible
additional processing that did not significantly affect the fram-
erate. Note that more complex shading, such as a halo effect
[17], could easily be done in the fragment shader.

3.2 Orientation and Radius Filtering

Although the neuronal threads tend to cluster into flow-like
structures, they behave differently from traditional flow pat-
terns, and traditional flow visualizations are not very useful.
Differently oriented groups of threads can pass through each
other or merge into bundles just to separate later. A key mo-
tivation for our work is to provide tools to allow researchers
to investigate these structures and their locality. Note that we
are not interested in individual threads but rather in bundles
of similarly behaving threads. Orientation filtering enables the
viewer to select different orientations and color the threads ac-
cordingly.

Fig. 5. Orientation filtering is used to find a large vascular structure in
a Nissl KESM dataset.

Fig. 6. Orientation filtering through SBF-SEM data shows two separate
dendritic flows in red and yellow. Blue is the base color.

We allow a user to specify an orientation interactively. In-
side the vertex shader, the dot product of the segment direction
and the selected orientation ~o is used to linearly interpolate be-
tween a base color cb and an orientation color co to find the out-
put color C. However, due to imaging and tracing noise, this

scheme did not give satisfying results. Also, neuronal threads
tend to “wander”, such that individual (local) segments may
vary wildly in orientation, even while the thread as a whole
has a well-defined direction. Thus, we use the thread direc-

tion ~dt between the two endpoints of the thread, instead of the
endpoints of the individual segment, to perform the coloring.
This requires the thread direction to be stored at each vertex,
and this is used in the dot product instead of the segment di-
rection. This scheme adds one more per-vertex vector to the
display list.

α = |~dt · ~o| (5)

C = (1 − α)cb + αco (6)

One should note that, once this direction is known, multiple
orientations could be filtered at the same time in the vertex
shader interactively. Using two user defined orientations, one
can easily display the major flow direction and a separate local
flow in our most complex -to date- dataset of 240, 000 segments
from SBF-SEM data.

Following the suggestions from an evaluation by expert neu-
roscientists, we added additional filtering capabilities using ra-
dius and thread length. By adding total thread length and
maximum thickness of the thread into the vertex data the user
can quickly filter out thin or short threads to better understand
the major structures (see Figure 7).

Fig. 7. Orientation filtering using the SBF-SEM data with only longer
threads.

3.3 Smoothing the Axis

Neuronal threads tend to have a very jagged structure. Noise
in the imaging system and our vector tracing algorithms tend
to enhance this. Sharp corners are a challenge in SOS, since
sharp changes in direction can result in a flattened SOS strip
in places. Also, the jagged structures are visually distracting
when trying to understand underlying organization. Although
vector tracing could be arranged to return smoother results,
this might not be desirable since it changes the output of a
lengthy process of tracing. We instead provide smoothing at
the visualization stage.

To make the SOS strip behave smoothly through the cor-
ners we define segments as cubic Bezier curves. The endpoints
are maintained, and two additional points are needed; these
will control the first derivative at the start and end points of
the segment. These derivatives are set at the start point by

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 8. Smoothing through segments

extending the parent segment; at the end point, the segment
direction itself is used. Thus the derivative at each point is al-
ways set parallel to the direction of the previous line segment.
This scheme ensures C1 continuity between segments (Fig. 8)
and even branches (Fig. 9). All sibling segments at a branch
will share the same starting direction.

Note that one could also use quadratic splines instead of
cubic, however this becomes problematic when dealing with
branching points, and tends to make the spline deviate much
more from the original segmented shape. While a quadratic
spline between two segments can easily be defined by averaging
points, this is not feasible at branching points. If instead we
extend a “parent” (similar to what we propose) to define the
starting derivative, then this information must “cascade” down
to later segments - i.e. the smoothing will become a global
rather than local operation. Furthermore, the quadratic spline
shape will tend to deviate much more from the original polyline
shape. A hybrid quadratic-cubic spline approach might prove
most helpful, but we prefer to go with the simplicity of only
the single cubic approach.

Fig. 9. Interpolating branch segments into a single branch point. (left)
derivatives of the end points of each branch (right) the single derivative
at the branch point guarantees continuity

We subdivide each segment into subsegments using the cubic
Bezier curve formed by these four control points. We also inter-
polate the radius along the curve. The results are smooth and
more visually satisfying. Any error introduced in this smooth-
ing is likely to be minimized, as the majority of each segment
still follows the original thread path. However, note that this
does increase the number of vertices depending on the num-
ber of sub-segments used when rendering. This number can be
minimized by varying the sub segment count according to the
angle between segments.

Note that currently subdivision is performed on the CPU, as
GPUs have not supported vertex creation. This should change
in the near future, making it possible to send the curve directly,
and allow the GPU to subdivide as necessary.

4 Visualizing Thread Data as Hair

The interactive methods described above allow us to display
our 3D data effectively, and obtain some important informa-
tion, such as thread orientation over a large region. However,
we would also like to have a higher-quality rendering (such as
might be obtained by global illumination) that enables us to
better visualize and understand the underlying structure.

However, the dense fibrous data sets we are dealing with do
not lend themselves well to techniques that might work well for
simpler data, such as that from flow lines.

Because of the somewhat similar structure, we have chosen
to treat our thread data as a set of hair strands. Hair is a
structure and material that we all see quite often in our lives.

Therefore, when thread data is visualized as hair, this familiar
form improves the perception of the thread structure. We make
use of high-quality hair illumination and shading techniques to
allow better perception of depth and structure in the image
(see Figure 10).

Fig. 10. Hair rendering on SBF-SEM data. (a) ambient only (b) spot
light with shadows (c) fake skylight (d)fake skylight with spot light

4.1 Illumination and Shading

Using photo-realistic rendering techniques has an important
effect on the visual perception of the thread data. Illumination
and shading are the key elements to achieve this goal. Still, our
concerns about realism are fairly limited - we are not viewing
the data in its “real” form, and the only reason we wish to
use realistic rendering techniques is in order to improve the
perceptual quality of the image.

For our higher-quality images, we use both point lights and
skylight. To compute the self shadows from point light sources
we use the opacity shadow maps [9] algorithm. The illumi-
nation computation is slower for a skylight, which requires a
very expensive occlusion calculation for each shading point, as
we need to determine the amount of light coming from every
direction. To reduce this vast computation, we use an occlu-
sion estimation function to compute the amount of light at
each shading point. In our system, the occlusion estimation
of a point inside the thread volume is a linear function of the
distance of the point to the nearest point outside the thread
volume. This approach yields a simple 3D gradient function
for the rectangular thread volumes that we visualize.

MELEK et al.: VISUALIZATION OF FIBROUS AND THREAD-LIKE DATA

For shading thread lines we use the Kajiya-Kay hair shading
equation [8]. Though Marschner et al.[11] allow a more realistic
shading solution, the Kajiya-Kay equation is widely accepted
by the graphics community and provides enough realism for
our purposes.

4.2 Neuron Visualization as Hair

Unlike opaque surfaces, hair can be effectively illuminated from
behind. This property of hair is very useful for thread visual-
ization, since it makes lighting design easier, and allows us to
target regions that are in the interior of a dense volume. We
used two separate lighting techniques for visualizing both large
sets and small subsections of the data.

When visualizing the whole data set at once, we use a sky-
light and point lights that are outside the thread volume. This
lighting design helps to differentiate the threads that are inside
the thread volume from the ones that are near the surface, and
makes it easier to perceive the volumetric structure of threads.
Figure 10 shows a comparison of this lighting scheme to con-
stant illumination. As can be seen, the proposed lighting model
improves the visual perception of the thread structure signifi-
cantly.

Fig. 11. Point light source inside (a) golgi (b) SBF-SEM dataset

Another technique we used is particularly designed for visu-
alizing a small volume inside the thread data. In this case we
place a point light source with strong falloff inside the thread
volume. The point light illuminates the volume of interest,
while the other areas are kept dark. This visualization tech-
nique is especially useful to analyze low-level thread connec-
tions. Figure 11 shows examples of this technique.

5 Performance and Evaluation

5.1 Domain Expert Evaluation

Our visualization has been evaluated by an expert neu-
roanatomist we collaborate with, as well as one of her experi-
enced graduate students (hereafter referred to as “the users”).
The users said that the vector-traced data visualization pro-
duced the results that they expected for fiber bundles in the
SBF-SEM data and for neuronal processes in the Golgi stained
tissue samples, and furthermore that they could find structures
in the Golgi data more easily by using the interactive 3D sys-
tem. That is, our visualizations allowed the users a 3D visual
representation of what had previously been a conceptual image
of the structures.

The users felt that a major advantage of the visualization
was the ability to visualize the large volume of data at once.
As such, the efficiency of our GPU-SOS implementation seems
critical. The orientation filtering was seen as particularly use-
ful for differentiating the fiber bundles that intersect or change
direction rapidly; this is a common problem in traditional mi-
croscopy. Also, as a direct result of the users’ evaluation, we
implemented radius filtering, to help in identifying anatomical
structure.

As far as we are aware, these datasets are currently the only
such reconstructions of large-scale neuronal data in 3D. Al-
though our current data sets are limited to scans of “normal”

neuronal tissue, the users felt that our visualization approach
would be particularly helpful for understanding differences be-
tween standard tissue and pathological specimens (when they
become available), and for comparing anatomical structures
across multiple specimens.

5.2 Performance Results and Discussion

By moving the SOS computation to the GPU, we offload the
calculations of camera facings. Display lists are also now avail-
able to minimize per frame data transfer. In our measurements,
GPU-based SOS performed around 10 times faster than CPU-
based SOS. Our SBF-SEM dataset consists of 240000 threads;
CPU-based SOS gives 2 fps whereas the GPU implementation
runs at 22 fps (Table 1). Polygon rendering of this dataset
is extremely slow. Note that the GPU-SOS figure includes
depth attenuation and orientation filtering; additional visual-
izations could also be performed interactively on the vertex
shader with negligible cost. Figure 4 compares several results
with our method.

The recent work of Stoll et al. [17] provides a GPU approach
to line drawing that is similar to ours. They apparently use a
double cross product to find the orthogonal direction; our use
of a view space approach provides a significant speedup. The
hybrid CPU-GPU approach they propose to deal with singu-
larities could also be applied to some (though not all) of the
singularities in our data. For our applications, we find that the
additional visual improvement we would get from patching the
data is not sufficient to outweigh the need for additional speed.

Clearly, self-orienting surfaces are particularly effective for
allowing visualization at interactive rates, particularly as they
can easily be adapted to a GPU use. For very large data sets,
such an approach is the only currently feasible approach we
are aware of. However, it should be noted that there are some
drawbacks to using this approach for thread-like data. In par-
ticular, surfaces can potentially twist along the pathway or at
branching points, giving undesirable appearances.

6 Conclusion and Future Work

In this paper, we have described the production of fibrous data,
including smoothing data by approximation by splines, a sim-
ple method for visualizing such fibrous data quickly using GPU-
supported self-orienting surfaces, a simple method for exploring
orientation information in such fibrous data, and a high-quality
rendering approach that allows one to better see the structure
of individual fibers.

There are several avenues open for future work. First, while
the orientation filter has proved useful, a number of other fil-
tering enhancements could be provided, and have been sug-
gested by our evaluators. This includes multi-dimensional color
mapping, individual thread targeting/highlighting, and tools to
support or visualize merging or branching of thread data. In-
tegrating such filters into a GPU-based setting will be critical.
Second, while hair rendering seems an obvious analogy for the
fibrous data structures we render, a different approach to high-
quality global illumination might be even more appropriate.
Third, while our current test data sets are very large by current
standards, it is not clear how well these techniques will scale up
to the massively larger (two orders of magnitude larger) data
sets expected in the next few years. Finally, while the routines
here have been developed for our particular data sets (currently
the only data sets of this type in existence), and evaluated by
our collaborators, it would be useful to get an evaluation over
more samples by a wider range of neuroanatomists.

7 Acknowledgements

This work was supported in part by NIH/National Institute for
Neurological Disorders and Stroke grant #R01-NS54252 and
by NSF grant CCF-0220047. KESM data was obtained in the
Brain Networks Lab, headed formerly by Bruce McCormick,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

threads Wireframe Polygon SOS
GPU-SOS
without

any shading

GPU-SOS using
depth and orientation

filtering
Simple Neuron 29 1250 fps 201 fps 582 fps 1640 fps 1600 fps

Vascular 46513 29.1 fps 1.9 fps 10.4 fps 566 fps 166 fps
Golgi 56690 24.9 fps 1.27 fps 9.1 fps 478 fps 134 fps

SBF-SEM 241407 4.7 fps 0.99 fps 1.7 fps 80 fps 22.3 fps

Table 1. Test results on a 256 MB NVIDIA GeForce 6600

and currently by Yoonsuck Choe. Fiber tracing routines were
developed in the BNL by Brad Busse and Purna Doddapaneni.
SBF-SEM data was obtained by and provided courtesy of Win-
fried Denk[5]. Expert evaluation was provided by Louise Abbot
and Kerry Thuett.

References

[1] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy,
J. Turner, and B. Roysam. Rapid automated three-dimensional
tracing of neurons from confocal image stacks. IEEE Transac-
tions on Information Technology in Biomedicine, 6(2):171–186,
June 2002.

[2] H. Axer, G. Berks, and D. G. V. Keyserlingk. Visualization
of nerve fiber orientation in gross histological sections of the
human brain. Microscopy Research and Technique, 51(5):481–
492, 2000.

[3] A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and
B. Roysam. Rapid automated tracing and feature extraction
from retinal fundus images using direct exploratory algorithms.
IEEE Transactions on Information Technology in Biomedicine,
3(2):125–138, June 1999.

[4] C. De Boor. A Practical Guide to Splines. Springer, 1978. de
Boor.

[5] W. Denk and H. Horstmann. Serial block-face scanning electron
microscopy to reconstruct three-dimensional tissue nanostruc-
ture. PLoS Biology, 2(11):e329, Nov. 2004.

[6] P. Doddapaneni. Segmentation strategies for polymerized vol-
ume data sets. Master’s thesis, Department of Computer Sci-
ence, Texas A&M University, 2004.

[7] G. E. Farin. Curves and Surfaces for CAGD: A Practical
Guide. Morgan Kaufmann Publishers, San Franscisco, CA,
USA, 5th edition, 2002.

[8] J. T. Kajiya and T. L. Kay. Rendering fur with three dimen-
sional textures. In SIGGRAPH ’89: Proceedings of the 16th
annual conference on Computer graphics and interactive tech-
niques, pages 271–280, New York, NY, USA, 1989. ACM Press.

[9] T.-Y. Kim and U. Neumann. Opacity shadow maps. In Proceed-
ings of the 12th Eurographics Workshop on Rendering Tech-
niques, pages 177–182, London, UK, 2001. Springer-Verlag.

[10] P. Kondratieva, J. Krüger, and R. Westermann. The application
of gpu particle tracing to diffusion tensor field visualization. In
IEEE Visualization, page 10, 2005.

[11] S. R. Marschner, H. W. Jensen, M. Cammarano, S. Worley, and
P. Hanrahan. Light scattering from human hair fibers. ACM
Trans. Graph., 22(3):780–791, 2003.

[12] B. McCormick. Development of the brain tissue scanner. Tech-
nical Report 18, Department of Computer Science, Texas A&M
University, College Station, TX, Mar. 2002.

[13] B. McCormick, B. Busse, P. Doddapaneni, Z. Melek, and
J. Keyser. Compression, segmentation, and modeling of fil-
amentary volumetric data. In Proceedings of Symposium on
Solid Modeling and Applications ’04, pages 333–338, 2004.

[14] NVIDIA. CG Toolkit User’s Manual 1.2, January 2004.
[15] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Visu-

alization of volume data with quadratic super splines. In IEEE
Visualization, pages 393–400, 2003.

[16] G. Schussman and K.-L. Ma. Scalable self-orienting surfaces:
A compact, texture-enhanced representation for interactive vi-
sualization of 3d vector fields. pages 1–10. IEEE, Oct. 2002.

[17] C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization with styl-
ized line primitives. In IEEE Visualization, page 88, 2005.

