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ABSTRACT 
 

Strategy for Construction of Polymerized Volume Data Sets. (December 2004) 
 

Prathyusha Aragonda, B.Tech., Sri Venkateswara University 
 

Chair of Advisory Committee: Dr. Bruce H. McCormick   
 
 

This thesis develops a strategy for polymerized volume data set construction. 

Given a volume data set defined over a regular three-dimensional grid, a polymerized 

volume data set (PVDS) can be defined as follows: edges between adjacent vertices of 

the grid are labeled 1 (active) or 0 (inactive) to indicate the likelihood that an edge is 

contained in (or spans the boundary of) a common underlying object, adding information 

not in the original volume data set. This edge labeling “polymerizes” adjacent voxels 

(those sharing a common active edge) into connected components, facilitating 

segmentation of embedded objects in the volume data set. Polymerization of the volume 

data set also aids real-time data compression, geometric modeling of the embedded 

objects, and their visualization.  

To construct a polymerized volume data set, an adjacency class within the grid 

system is selected. Edges belonging to this adjacency class are labeled as interior, 

exterior, or boundary edges using discriminant functions whose functional forms are 

derived for three local adjacency classes. The discriminant function parameter values are 

determined by supervised learning. Training sets are derived from an initial 

segmentation on a homogeneous sample of the volume data set, using an existing 

segmentation method.  

The strategy of constructing polymerized volume data sets is initially tested on 

synthetic data sets which resemble neuronal volume data obtained by three-dimensional 

microscopy. The strategy is then illustrated on volume data sets of mouse brain 

microstructure at a neuronal level of detail. Visualization and validation of the resulting 

PVDS is shown in both cases.  
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Finally the procedures of polymerized volume data set construction are 

generalized to apply to any Bravais lattice over the regular 3D orthogonal grid. Further 

development of this latter topic is left to future work. 
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CHAPTER  I 

INTRODUCTION 
 

The reconstruction and visualization of objects within 3D volumes, as generated 

from a stack of sequential 2D images, has been an emerging and developing field for 

many years.  This field is especially useful for medical imaging where reconstruction of 

human anatomy, tissue microcirculation, and as well as proteins and viruses is desired. 

The work presented in this thesis has been particularly motivated by our attempts to scan 

and reconstruct brain tissue at a neuronal level of detail. To achieve efficient 3D 

reconstruction of neuronal data, a new way of segmenting the volume data using 

Polymerized Volume Data Sets (PVDS) is introduced.  

Given a volume data set defined over a regular three-dimensional orthogonal 

grid, we define a polymerized volume data set (PVDS) as follows: In addition to the 

value assigned to every vertex (voxel), selected edges between neighboring vertices of 

the grid are given a Boolean label.  Active edges are assigned the value 1 and the 

remaining edges, labeled inactive, are assigned the value 0. Edge labeling provides 

information about the likelihood that two vertices sharing a common active edge are 

contained in the same underlying object.  Only local information is used. Boolean 

labeling {0, 1}, as derived from discriminant functions on the values of neighboring 

voxels, is a crude estimate of this co-habitation of the edge termini in the same object. 

This polymerized volume data set aids in efficient compression and subsequent 

segmentation of the volume data set. 

1.1. Goals of the thesis 

This thesis develops a strategy for constructing polymerized volume data sets 

(PVDS). The thesis provides methods for finding Boolean labels for edges in a volume 

data set, constructing a PVDS, and subsequently using that polymerized volumetric data 

set to visualize objects within the three-dimensional volume. 

 
This thesis follows the style and format of IEEE Transactions on Visualization and 
Computer Graphics. 
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The following goals serve as multiposts for a strategy that would construct 

polymerized volume data sets and provide a statistical basis for polymerization: 

i. Establish the local adjacency classes for a volume data set considered as a regular 

three-dimensional grid. 

ii. Formulate a set of discriminant functions (one for each adjacency class) that 

label active edges.  

iii. Construct training sets using a base-line segmentation and train the weight 

vectors of edge-labeling discriminant functions using these training sets. 

iv. Minimize the computational cost of edge-labeling.  

v. Visualize the segmentation achieved by PVDS found using the trained 

discriminant functions.  

vi. Develop criteria for evaluating polymerization-induced segmentation and find 

the degree of agreement/disagreement between this approach and the base-line 

segmentation. 

vii. Test the PVDS construction on synthetic data. 

viii. Demonstrate the PVDS construction on volume data sets of mouse brain 

microstructure at a neuronal level of detail. 

1.2. Background and rationale for the polymerized volume data set (PVDS) 

Usage of volumetric data in 3D medical imaging started in the1970s. Since then 

the field of volume visualization has developed and became a prominent area of research 

within the field of Computer Graphics. Kaufman describes volume visualization as a 

method of interpreting complex volumetric data. It provides for the analysis and 

understanding of scanned or experimental 3D volumetric data and for the synthesis of 

volumetric objects by a computer model [14]. 

The primary source of volume data is the set of 2D images generated by serial 

scanning successive sections of a 3D volume. These 2D images are processed to 
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reconstruct the 3D volume. Due to the high complexity and quantity of volumetric data, 

efficient ways are needed to process the volume data and to reconstruct and visualize 3D 

objects.  

The work presented in this thesis has been particularly motivated by our attempts 

to scan and reconstruct brain tissue at a neuronal level of detail. These volume data sets 

acquired by three-dimensional microscopy have several distinguishing features.  Among 

them are: 

• The full volume data set can be extremely large.  Raw data set sizes can reach 

multiple terabytes. 

• The data of interest within the volume data sets (i.e., the stained neuronal tissue) 

tend to be sparse, taking up only a modest portion of the overall volume. 

• The neurons to be modeled have filamentary, branching structures; alternatively, 

the neurons in a scanned volume can be limited to closely-packed cell bodies. 

• Data is acquired at a high data rate (typically ~100Mvoxels/s), and quick ways 

are needed to compress and store the data in a geometrically meaningful way that 

facilitates future reconstruction. 

The current volumetric representation techniques are found to be deficient in 

addressing at least one of these features [12, 19, 20].  Due to the potential data size, 

methods that keep the entire volume in memory at once are unrealistic.  Several 

representational methods (such as the well-known octree) are poorly suited for modeling 

long, thin structures. Medial-axis methods, while good for representing neurites, tend to 

process too slowly and can require too much data to be stored in memory. Pure image 

and video compression techniques can work well for compression, but fail to give any 

meaningful insight into the geometric structure of the objects to be modeled. 

To circumvent the above limitations, our group introduced a polymerization 

strategy for the compression, segmentation, and modeling of filamentary volume data 

sets [19, 20]. The goals of the polymerization are to: 
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• Allow data compression in real time, in such a manner as to facilitate subsequent 

segmentation of the volume data set; 

• Provide a data compression and segmentation strategy which exploits the 

efficiencies of examining successive  serial images of the volume data set, yet is 

independent of the axis chosen for serial sectioning; and  

• Separate segmentation of embedded objects in the volume data set clearly from 

both their geometric modeling and their visualization.  

The polymerization strategy starts by polymerizing the volume data set. This 

thesis sets forth these polymerization methods. As defined previously, a polymerized 

volume data set (PVDS) labels the edges in the regular three-dimensional grid as either 

active or inactive. In this thesis, discriminant functions are used to assign Boolean labels 

to edges in the volume data set. They define the segmentation process and determine 

whether the segmentation or reconstruction is faithful. These functions can be arbitrarily 

complex; but here to minimize computational complexity, they are limited to be 

quadratic in the gray scale values of neighboring voxels.  

The data volume is created by serially scanning successive sections, typically 

perpendicular to the vertical Z-axis. Here voxels at the same (X, Y) position in two 

successive registered images can be conveniently labeled as likely to be drawn from the 

same underlying physical object by marking their common vertical edge as active  (Fig. 

1). However, as the specimen could have equally well have been sectioned perpendicular 

to the X- or Y- axes, the same edge labeling scheme is extended to all three axes [5]. The 

labeling procedure is then generalized to embrace other rotationally invariant choices of 

edges emanating from a vertex.  

An important application of the PVDS is in forming three-dimensional L-blocks, 

a new data structure introduced for the representation of volumetric data [19, 20]. This 

data structure is introduced to efficiently deal with volume data where the full volume 

data set can be extremely large but the data of interest within it occupies only a small 

percentage of the volume. An L-block is defined as a 3-dimensional isorectangular block  
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Fig.  1. Active vertical edges between successive sectional images denoting the same underlying 
physical object. 

 

of enhanced vertex information. The block must be entirely contained within the uniform 

3-dimensional grid of the PVDS. An (l1, l2, l3) L-block refers to a block of l1 vertices in 

the first dimension, l2 in the second, etc., Each L-block is defined by: (1) its position, e.g. 

(i, j, k), of its least vertex, as indexed within the parent 3-dimensional uniform grid, (2) 

its template (l1, l2, l3), and (3) its vertex array, containing the enhanced vertex 

information (e.g., voxel value(s) and edge labels).  

As seen from the definition of L-blocks, the polymerized volume data set mainly 

supports the implementation of L-blocks. An initial implementation of L-block 

coverings was based on the simple method of using a threshold level for finding active 

edges (Fig. 2). Better methods of forming the PVDS increase the accuracy of labeling 

active edges and hence improve the correctness of 3D volume model reconstructed using 

L-blocks. 



 6 

 

 

Fig.  2. Examples of L-block coverings [11]. 

 
1.3. Overview of the thesis 

This thesis develops a strategy for polymerized volume data set construction. In 

Chapter II, the concept of a lattice defined over a regular orthogonal grid in 3D space is 

discussed. This helps in visualizing three types of adjacency in 3D that are 6, 8 and 12-

adjacency classes. The data representation of  PVDS is defined in this chapter. 

In Chapter III, we derive the discriminant functions for edge-labeling, one for 

each of the 6, 8 and 12-adjacencies. Discriminant functions classify input vectors, drawn 

from neighboring gray-scale values associated with an edge, and assign each vector to a 

class Ck among n different classes C1 to Cn. 
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In Chapter IV, we derive the discriminant functions for boundary edge-labeling. 

This is a special case that requires discriminant functions to be asymmetric in gray scale 

values of the edge termini unlike symmetric functions as in Chapter III. A boundary 

edge is further classified as either an ‘entering’ edge or an ‘exiting’ edge. 

Chapter V discusses an automated algorithm for three-dimensional vector tracing 

of neurons initially presented in [1].  Construction of quasi-planar templates in a paddle-

wheel configuration is presented. A variant of the tracing algorithm is achieved by using 

Frenet frames while tracing. This algorithm has been implemented to trace neurons from 

the stack of images obtained in our laboratory. These vector tracing algorithms are used 

in this thesis to construct training sets [6]. 

Chapter VI explains construction of training sets for the synthetic volume data 

generated to test the PVDS in ideal cases. The different steps involved in generating 

synthetic data, which includes creation of 3D models, sectioning into slices, correction 

for slice thickness, application of point spread function, and anti-aliasing filters are 

explained. Artificial filamentary data and block data are generated for this purpose. 

Chapter VII explains the construction of training sets for neuronal data obtained 

from the knife-edge scanning [21] of mouse brain microstructure. A computationally-

expensive base-line segmentation algorithm is used to segment a sample of the volume 

data. This initial segmentation is used to classify edges throughout the entire volume 

data set into one of the three classes: interior, exterior or boundary edges. Boundary 

edges are then further classified into entering and exiting edge classes. 

Chapter VIII discusses the procedure for training the edge-labeling discriminant 

functions using the training data sets. Approaches to minimize the computational cost of 

edge-labeling are also discussed. 

Chapter IX shows the visualization of polymerized volume data set and evaluates 

the polymerization-induced segmentation with respect to the base-line segmentation. A 

set of criteria is developed to compare both segmentation methods.  
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Chapter X generalizes the concept of a PVDS to Bravais lattices over the regular 

orthogonal grid in three-dimensional space. 

Finally, Chapter XI presents conclusion and future work.   
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CHAPTER II 

LATTICE OF THE CONNECTIVITY-ENHANCED GRID SYSTEM 
 
2.1. Three-dimensional regular grid system 

We assume that a regular three-dimensional grid system has been established in 

the volume to be scanned. A regular three-dimensional grid system can be constructed 

simply by setting values in a rectangular array of position vectors, 

[ ] ( 0,1,..., 1 0,1,..., 1 0,1,..., 1)i j k i I j J k K= − = − = −r and identifying the indices , ,i j k  with 

the three linear coordinates [23]. For simplicity in this thesis, we will normally bypass 

the linear mapping and speak of the vertex (voxel) at ( )i j k . 

2.2. Lattice of the connectivity-enhanced grid system 

The grid system (Section 1 above) can be extended into a three-dimensional 

lattice by adding directed edges at every vertex (Fig. 3).  The number of edges 

emanating from a vertex is constant and the vertices reached are referred to as its 

adjacency set [15]. Directed edges are aligned into orthogonal rays throughout the grid 

system. Rays are assigned a direction common to all parallel rays. Edges sharing a 

common vertex and ray are identified as “incoming” and “outgoing”, respectively.  

 
Fig.  3. Generic vertices with associated edges in 6-adjacency, 8-adjacency and 12-adjacency lattices 

of the grid system. The directed edges represent potentially polymerizable links to neighboring 
vertices (voxels). (From Melek based on [19]). 
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A vertex in the PVDS lattice with 6-adjacency can be thought of as an “atom” 

having “links” that extend to the neighboring vertices along the three coordinate axes 

(see Fig. 2). Thus the atom behaves somewhat like a Lego® block, with connections 

possible along 3 axes. In general, the lattice extension to the regular orthogonal grid 

system can be generated by translating the “atom” (a vertex and its emanating edges) 

throughout the grid system.  

For example, consider an axis-aligned 2 x 2 x 2 cube centered at the 

vertex ( ), ,i j k . If no edges are added to the grid system, we have 0-adjacency.  

Adjoining edges along  three axes to neighboring faces, from vertex ( ), ,i j k  to 

( )1, , ,i j k+  ( ), 1,i j k+  and ( ), , 1i j k +  respectively, gives 6-adjacency. Adjoining edges 

to the corners of the 2 x 2 x 2 cube gives 8-adjacency. Adjoining edges exclusively to 

midpoints of edges in the 2 x 2 x 2 cube gives 12-adjacency [15].  

2.3. Data representation of a PVDS 

The data representation of a PVDS is as follows. First we label all emergent 

(outgoing) edges at a vertex as “active” or “inactive”, and store the Boolean vector of 

these values as <edge labels> at the vertex. Collectively, these edge labels enumerate all 

active edges within the three-dimensional lattice imposed on the orthogonal coordinate 

system. We store the augmented vertex information in a vertex array: 

<vertex array> = array [<vertex value> <edge labels>]  

For example, the data representation of a polymerized volume data set with 6-

adjacency assigns a 4-tuple to each vertex of the grid: its gray-scale value followed by a 

three-dimensional Boolean vector of edge labels for edges emanating from the vertex in 

the positive , ,i j k  directions, respectively (Fig. 3).  
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2.4. Discrete rotation groups in 1D, 2D, and 3D 

 

Fig.  4. A 2 x 2 x 2 cube of 8 neighboring unit cubes. 

 

Our discussion will embrace grids in 1, 2, and 3 dimensions. Consider an interior 

vertex in a uniform grid system. The immediate environment of the selected vertex (here 

called the root vertex) is (1) in 1D: a linear interval of 2 neighboring unit intervals; (2) in 

2D: a square of 4 neighboring unit squares; (3) in 3D: a cube of 8 neighboring unit cubes 

(Fig. 4); and (4), more generally, in nD: an n-cube of 2n unit n-cubes. In this regular grid 

we constrain the set of undirected edges sharing the root vertex to be invariant under 

rotation by 90º about any axis. Once an edge (called the group generator) has been 

specified, all other edges of the set are generated by repeated 90º rotations. The number 

of distinct edges in the set is the adjacency of the vertex. Fig. 5 below exhibits 

generators for all rotationally invariant sets of edges about a vertex in 1, 2, and 3 

dimensions. Table 1 summarizes the results. Edges generated by a common generator 

have terminal vertices at the same radius from the root vertex, as the 90º rotations 

preserve length. These radii are also given in Table 1. 
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                                          (a)             (b) 

                  

                                                                 (c) 

Fig.  5. Generators for rotationally invariant sets of edges about a vertex. (a) In 1-dimension (in 

blue) and 2-dimensions (in blue and yellow). (b) In 3-dimensions (in blue, yellow and red). 

 
Lemma 1. For a given dimension, sets of edges invariant under 90º rotation can be built 

by any combination of generators. Accordingly, in 1D, edge adjacency of 0 and 2 can be 

constructed; and in 2D, edge adjacency of 0, 4 (axis-aligned), 4 (vertex centered), and 8 

(both) can be constructed. Extending to 3D, edge adjacency of 0, 6, 8, 12, 14, 18, 20, and 

26 can be constructed. In particular, in 3D, 26-adjacency implies the root vertex makes 

an undirected connection to every vertex in the 2 x 2 x 2 cube centered at the root vertex 

[4]. The adjacencies in 1D, 2D and 3D are shown in Fig. 6. 
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TABLE 1 

Adjacency in 1, 2 and 3 dimensions 
 

Dimension Adjacency Radius 
1 0-adj (no edges) 0 
 2-adj  (axis aligned) 1 
2 0-adj (no edges) 0 
 4-adj (axis aligned edges) 1 
 4-adj (vertex centered)  2  
3 0-adj (no edges) 0 

 6-adj (axis aligned, face 
centered) 1 

 8-adj (vertex centered) 3  
 12-adj (edge centered) 2  

 

 

                     

                                        (a)    (b)  

Fig.  6. Maximal adjacency in 1, 2 and 3 dimensions (The center voxel is shown in yellow). (a) 2-
adjacency in 1-dimension and 8-adjacency in 2-dimensions. (b) 26-adjacency in three dimensions. 
The six voxels in blue belong to 6-adjacency class, eight voxels in violet belong to 8-adjacency class 

and twelve voxels in red belong to 12-adjacency class. 
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                                        (c) 

Fig.  6. Continued. 
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CHAPTER III 

DISCRIMINANT FUNCTIONS FOR INTERIOR/EXTERIOR EDGE-LABELING 
 

Edges emanating from a vertex are assigned a Boolean label, {0,1}, with one 

label for each edge orientation, l , ( )1, ,l d= � for the d-connected volume data set. Edge 

labeling uses discriminant functions, ( )ly g , one for each edge orientation l.  Here g is a 

vector of gray-scale values from neighboring voxels. An edge is labeled 1 iff ( ) 0ly ≥g . 

The parameters of the discriminant function ( )ly g  are evaluated by supervised learning 

over the training sets lT for a common edge orientation l. Construction of the training sets 

, ( 1, , )l l d=T �  is described in the Chapters VI and VII. 

3.1. Construction of templates 

For given d-adjacency relation, the decision to label an edge “active” (Boolean 

value 1) depends only on the edge and of course, on the gray-scale values of neighboring 

vertices. But which neighbors?  Let the template ( )d
l i j kt  designate the indexed set of 

neighboring vertices to be used in labeling an edge of orientation l emanating from 

vertex ( )i j k . Let the edge orientation l be represented by the discrete vector 1 2 3( , , )l l l , 

where { }0,1il ∈ for 1,2,3i = . We now will impose two constraints upon ( )d
l i j kt such 

that its vertices are uniquely determined and indexed:  

(1). Let ( )oS i j k  be the set of all terminal vertices of outgoing edges from vertex ( )i j k . 

Let ( )1 2 31S i l j l k l+ + +  be the set of all terminal vertices of incoming edges to vertex 

( )1 2 3i l j l k l+ + + . Then the set of neighboring vertices in our template ( )d
l ijkt  satisfies 

( ) ( ) ( )1 2 3
d
l o 1i j k S i j k S i l j l k l= + + +t � . 

(2). Vertices in any one template d
lt can be arbitrarily indexed. This indexing is then 

extended to other templates ,d
j j l≠t by 90º rotations of d

lt into d
jt . By convention, the tail 
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and head terminals of the edge with orientation l will be indexed as the first two vertices 

of d
lt  respectively. 

The grid system of the volume data set is converted to a (directed) lattice L upon 

the imposition of a d-adjacency relation (Section 2 of Chapter II). If the direction of all 

rays in L is reversed, we obtain the (directed) dual lattice DL . Equivalently, outgoing 

edges from a vertex in L are incoming edges to the same vertex in DL . The initial choice 

of imposing the lattice L or its dual lattice DL  upon volume data set is essentially 

arbitrary, but either choice insures that an edge is examined only once. Constraint (1) 

above insures that the vertices associated with an edge are invariant whether we start 

with L  or its dual DL : ( ) ( )1 2 3| |d d
l li j k i l j l k l= + + +

DL Lt t , where we have imposed the 

convention that an edge in L and its dual in DL  are given the same orientation index l.  

For 6-adjacency, the three templates 3 3 3
1 2 3, ,t t t , positioned at root vertex ( ), ,i j k , 

consist of two vertices: the root vertex ( ), ,i j k and a second vertex 

( ) ( )1, , , , 1,i j k i j k+ + , or ( ), , 1i j k +  respectively. For 12-adjacency, ( )oS i j k  and 

( )1 2 31S i l j l k l+ + + overlap more, and share 6 vertices (Fig. 7). 

3.2. Class-based edge labeling with ideal discriminant functions 

Edges can also be labeled with a class label { }, 0,1, , | 1k k K K∈ ≥� , provided 

appropriate labeled training sets are available. For example, we may choose to 

distinguish between edges that are interior, cross a boundary, or are wholly exterior (and 

perhaps noise-related) to objects (such as blobs or filaments) within the volume data set. 

Let class kC  denote a category of edges, equally applicable to edges of all orientations. 

For each object class kC  and edge orientation l , a discriminant function ( ),k ly g  must be 

generated such as to minimize the error of mislabeling l-oriented edges.  Here g  is the 

vector of gray-scale values of vertices in class-dependent template d
lt associated with the 

edge being labeled. 
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The ideal discriminate function, ( ),l ky g , maximizing the likelihood of correct 

labeling, is given by  

( ) ( )
( )

, ln | ,

ln , | ln ( ) ln ( , )
k l k

k k

y p C l

p l C P C P l

=

= + −

g g

g g
. 

Here we have evoked Bayes’ theorem [2]. Henceforth the term ( )ln ,P lg , the 

prior probability of ( ), lg , will be dropped as providing no discrimination among classes. 

The statistics on ( , | )kp g l C and the prior probability ( )kP C must be collected from the 

training set.  We approximate the right-hand side of the equation by quadratic form in g , 

with weights to be determined from the statistics of the training set. Discriminant 

functions are restricted to be no more than quadratic in g  to minimize computational 

complexity, as mentioned in Chapter I. 

For K = 1, let the two classes, kC , ( 0,1k = ) represent the class of edges 

respectively not contained or wholly contained in a common object in the sample 

volume data set. As above, we assign the edge l  the Boolean label 1 if ( ) ( ),1 ,0l ly y≥g g , 

else 0, where  

( ) ( ), ln , | ln ( )k l k ky p l C P C= +g g , 0,1k = . 

In practice the discriminant functions, ( )ly g , may only approximate this ideal 

discriminant function. Introducing ( ) ,1 ,0( ) ( )l l ly y y= −g g g , we obtain an equivalent 

labeling of active edges iff ( ) 0.ly ≥g   

3.3. Discriminant functions for 6-adjacency  

The local information contained in a 6-connected template ( )6
l i j kt , centered at a 

vertex ( )i j k , consists of  ( )0g g i j k= and ( ) ( ) ( ){ 1 , 1 , 1 }lg g i j k g i j k g i j k∈ + + + , as 

designated by 1,2,3l =  respectively. The general quadratic discriminant function 
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( ) ( )6 6
, , 0 ,k l k l ly y g g=g  for class , 1, ,kC k K= � , edge orientation l, and symmetric 

in 0 , lg g , is given by: 

( ) ( ) ( )6 2 2
, 0 0 1 0 2 0

2 2
3 0 4 0 5 0

,

( )

k l l k k l k l

k l k l k l

y g g w w g g w g g

w g g w g g w g g

= + + + +

+ + − + −
    (1)       

The weight vector ( )0 1 2 3 4 5, , , , , T
w w w w w w=w is then derived from supervised 

learning over the training set, 6
,k lT , where the target value for an edge is 1 iff 

( ) ( ), 0 , 0, ,k l l j l ly g g y g g≥  for all j k≠ . The training tries to minimize the error of 

misclassification. 

3.4. Discriminant functions for 8-adjacency  

The local information contained in a 8-connected template ( )8
l i j kt , centered at a 

vertex ( )i j k , again consists of 0g and lg , the gray-scale values respectively at vertex 

( )i j k  and head of its emergent l-designated edge. 

For 8-adjacency, the general quadratic discriminant function, 

( ) ( )8 8
, , 0 ,k l k l ly y g g=g ,  restricted to this shared information, ( )0 , lg g g= , and symmetric 

in 0g and lg , is in functional form identical to ( )6
, 0 ,k l ly g g , as developed for the 6-

adjacency case (Section 3 above). The only difference is that l  is allowed 8 values, 

rather than 6, and of course the weights will be different. 

3.5. Discriminant functions for 12-adjacency 

We first construct the vertices of the template ( )12
l i j kt , centered at vertex ( )i j k . 

As identified by geometrical construction (Fig. 7), the template vertices contain the two 

termini of the l-oriented edge and four additional vertices arrayed at the vertices of a 

rectangle passing through the midpoint of the l-edge and whose normal is the l-edge.  
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Fig.  7. Six vertices (two vertices in yellow along with the vertices 1, 2, 3 and 4) are shared between 

( )S i j ko  and ( )1 2 31S i l j l k l+ + +  for 12-adjacency. 

 
 

Alternative verification comes from the listing in Table 2 of the two vertex sets: 

( )0 0 0oS , the set of all terminal vertices of outward edges from vertex ( )000 , and 

( )1101S , the set of terminal vertices of incoming edges to vertex ( )11 0 . Observe that 

the vertices of ( )0 0 0oS correspond to vertices of ( )1101S , apart from two exceptions: 

( ) ( )0, 2,0 0 0 0oS∉  and ( ) ( )1,0, 1 1101S− ∉ . Therefore vertices of the 

template ( )12 000lt are six in number: the origin ( )0 0 0 and the next five entries of the  

leftmost column of Table 2. Translating the template to vertex ( )i j k , we derive the 

result of the geometric construction (Fig. 7). 
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TABLE 2 

Construction of the template ( )12 000lt for ( )1,1,0l =
�

 
 

( )0 0 0oS  Dual edge vectors 
( )1101S = 

( ) ( ){ }1,1,0 , 1,1,0 dualvectors+  

( )0,0,0   ( )1,1,0  

( )1,0,1  ( )1,0, 1− −  ( )0,1, 1−  

( )0,1,1  ( )0, 1, 1− −  ( )1,0, 1−  

( )1,0, 1−  ( )1,0,1−  ( )0,1,1  

( )0,1, 1−  ( )0, 1,1−  ( )1,0,1  

( )1,1,0  ( )1, 1,0− −  ( )0,0,0  

( )1, 1,0−  ( )1,1,0−  ( )0, 2,0  

  
 
 

We designate the gray-scale values of the tail and head of the l-edge as 0g  and 

lg  respectively, retaining the convention used above for 6-adjacency and 8-adjacency. 

The four vertices of the bisecting rectangle, cyclically labeled 1, 2, 3, and 4 (Fig. 7) have 

gray-scale values 1 2 3 4, , ,a a a a respectively. We impose two symmetry constraints on the 

form of the quadratic discriminate function, 12 12
0 1 4( ) ( , , , , )l l ly y g g a a=g � , namely: 

1. 12 ( )ly g is a symmetric function of 0g and lg , as previously evoked for 6-adjacency 

and 8-adjacency. 

2.  12 ( )ly g is a cyclic invariant function of 1, 4,a a� . The rectangle, whose vertices 

have gray-scale values 1, 4,a a� , is not square; in fact the rectangle has an aspect 

ratio of 2 : 2  (Fig. 7). Nonetheless, in the interests of simplifying the form of 

the discriminant function we will evoke cyclic invariance.  
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Table 3 lists the symmetric linear and quadratic terms in 0g and lg , and then 

separately the cyclically invariant linear and quadratic terms in 1, 4,a a� . The first, the 

terms in ( 0g , lg ), contribute to the discriminant function a contribution identical to the 

discriminant function for 6-adjacency and 8-adjacency.  The second, the terms in 

( 1, 4,a a� ), are new. And thirdly are added cross-terms in ( 0g , lg ) and ( 1, 4,a a� ).  

TABLE 3 

Cyclically invariant linear and quadratic terms in the discriminant function 12 ( )ly g  
 

Gray-scale values Cyclically invariant linear 
terms  

Cyclically invariant quadratic 
terms 

( )0 lg g+  2 2
0( )lg g+  

0 lg g−  ( )0 lg g  Terms in ( 0g , lg )  

 2 2
0 lg g−  

( )1 2 3 4a a a a+ + +  ( )2 2 2 2
1 2 3 4a a a a+ + +  

1 2 3 4a a a a− + −  ( )1 2 2 3 3 4 4 1a a a a a a a a+ + +  

( )1 3 2 4a a a a+  
2 2 2 2
1 2 3 4a a a a− + −  

1 2 2 3 3 4 4 1a a a a a a a a− + −  

Terms in 
( 1, 4,a a� ) 

 

1 3 2 4a a a a−  

 
 

We will assume that ( )ly g  is independently invariant under the cyclic 

permutations (0,l), and (1, 2, 3, 4). The quadratic discriminant function 12 ( )ly g , in full 

generality, is then given by: 
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( )
( )

( ) ( )
( )

( )

( )
( )

12 2 2( ) ( )0 1 0 2 0 3 0
2 2

54 0 0

6 0 1 2 3 4

7 0 1 2 3 4

8 0 1 2 3 4

9 0 1 2 3 4

10 1 2 3 4 11 1 2 3 4
2 2 2 2

12 1 2 3 4

13 1 2 2 3 3 4

y g w w g g w g g w g gl l l l

w g g w g gl l

w g g a a a al

w g g a a a al

w g g a a a al

w g g a a a al

w a a a a w a a a a

w a a a a

w a a a a a a a

= + + + − + +

+ + − +

+ + + + +

+ − + − +

− + + + +

− − + − +

+ + + + − + − +

+ + + +

+ + +( )
( )

4 1
2 2 2 2

14 1 3 2 4 15 1 2 3 4

16 1 2 2 3 3 4 4 1 17 1 3 2 4

a

w a a a a w a a a a

w a a a a a a a a w a a a a

+

+ + − + − +

− + − + −
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CHAPTER IV 

DISCRIMINANT FUNCTIONS FOR BOUNDARY EDGE-LABELING 
 
4.1. Characteristics of discriminant functions for boundary detection 

Edges that cross a boundary have one terminal vertex inside and one outside an 

object of interest within the volume data set. This set of edges can be considered 

directed. Edges that go from the exterior of an object to the interior can be labeled 

‘entering edges’. And similarly, edges that go from the interior of an object to the 

exterior can be labeled ‘exiting edges’.  Examples of entering and exiting edges are 

shown in Fig. 8. 

Labeling of boundary edges as either ‘entering’ or ‘exiting’ is not possible using 

the discriminant functions derived in Chapter III, since all those functions are 

symmetrical in the gray-level values of the terminal vertices of the edge. Here, 

asymmetrical discriminant functions are required that identify the classes of entering and 

exiting boundary edges. In this chapter, these asymmetrical functions are derived. Unlike 

discriminant functions derived in the previous chapter, which can be used to classify any 

edge in the volume data set, discriminant functions derived here can be used to classify 

only boundary edges. The recognition of boundary edges in the volume data set should 

be initially done using the functions derived in Chapter III. The discriminant functions 

for boundary-edge classification are also restricted to be quadratic in the gray-level 

values.                                             

4.1.1.  Discriminant functions for 6-adjacency 

Using the same notation as before, the discriminant function for boundary edges 

classification for 6-adjacency is as follows: 

( ) ( ) ( )6 2 2
0 0 1 0 2 0,l l l ly g g w w g g w g g= + − + −  

Only terms that are asymmetrical in the gray-level values are considered since they serve 

the purpose of class-based labeling of boundary edges.  
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Fig.  8. Criteria for labeling edges as interior, boundary, and exterior: An interior edge is shown in 
red, exterior edge in green, entering and exiting edges in yellow and blue respectively.  

 

4.1.2.  Discriminant functions for 8-adjacency 

The discriminant function for 8-adjacency is also dependent on only the gray-

level values of the edge termini. Hence, this has the same form as the discriminant 

function for 6-adjacency. As mentioned in previous chapter, the difference is that l  is 

allowed 8 values instead of 6 and lg  is determined in a different manner.  

( ) ( ) ( )8 2 2
0 0 1 0 2 0,l l l ly g g w w g g w g g= + − + −  

4.1.3.  Discriminant functions for 12-adjacency 

For 12-adjacency, four additional vertices also belong to the set of template 

vertices ( )12
l i jkt , apart from edge termini as shown in Fig. 7 in the previous chapter. 

These template vertices are labeled 1, 2, 3 and 4, with gray-level values 1 2 3 4, , ,a a a a  

respectively. The order of these vertices change when the direction of the edge changes. 

Hence, the edge-labeling discriminant function is considered to be asymmetrical in the 

joint change of gray-level values of these four vertices ( 1 2 3 4, , ,a a a a ) along with that of 

the edge termini ( 0g , lg ). The function, 12 12
0 1 4( ) ( , , , , )l l ly y g g a a=g �  is shown below.  
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( ) ( ) ( )( )
( )( ) ( )( )
( ) ( )
( ) ( )

12 2 2( ) 0 1 0 2 0 3 0 1 2 3 4

54 0 1 2 3 4 0 1 2 3 4
2 2 2 2

76 1 2 3 4 1 2 3 4

8 1 2 2 3 3 4 4 1 9 1 3 2 4

y w w g g w g g w g g a a a al l l l

w g g a a a a w g g a a a al l

w a a a a w a a a a

w a a a a a a a a w a a a a

= + − + − + + − + − +

− + + + + − − + − +

− + − + − + − +

− + − + −

g

 

4.1.4. The edge-labeling procedure 

Boundary edges need to be labeled with a class label k, where k is either 

‘entering edge’ or ‘exiting edge’. This labeling is obtained by training discriminant 

functions of the above forms for the required connectivity using the appropriate labeled 

training sets. For each edge orientation l , a discriminant function ( )ly g  must be 

generated such as to minimize the error of mislabeling l-oriented edges.  Here g  is the 

vector of gray-scale values of vertices in class-dependent template d
lt associated with the 

edge being labeled. 

Let the two classes, kC , ( 0,1k = ) represent the class of boundary edges that are 

entering or exiting. As above, we assign the edge l  to class 0C  if ( ) 0ly <g  and to class 

1C  if ( ) 0ly ≥g . As in previous chapter, separate discriminant functions for each class k 

are not necessary here, as there are only two classes and a single discriminant function 

can classify input vectors into two classes based on thresholding. 

4.2. Invariance under intensity scaling 

Volume data, for which a polymerized volume data set is constructed, is typically 

obtained by 3D microscopy. The images obtained can show large variations in the 

average intensity and contrast. It is highly desirable that the polymerized volume data set 

constructed is largely independent of these changes. The weight parameters of 

discriminant functions should be independent of the average background level of the 

images. Otherwise, usage of the same set of discriminant functions, in spite of the 

variations in brightness in the set of 2D images, can lead to an incorrect PVDS. 
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To make the discriminant functions invariant to the low frequency spatial intensity 

component of the images, the images are pre-processed by using a high-pass filter, 

ensuring that only the very low spatial frequency component is eliminated.  
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CHAPTER V 

VECTOR TRACING USING QUASI-PLANAR TEMPLATES 
 

This chapter discusses an algorithm for automated vector tracing first described 

in [1]. The paper presents a rapid automated algorithm for three-dimensional tracing of 

neurons within a serial stack of images obtained by fluorescence three-dimensional 

microscopy. In this chapter we first explain the original algorithm, as applied to neuronal 

data sets obtained in our laboratory. A variant of this algorithm using Frenet frames is 

presented later. This algorithm has been implemented by Busse [6]. Results from this 

algorithm are used to construct training sets for neuronal data sets, as explained in 

Chapter VII.  

The vector tracing algorithm starts with pre-selected seed points. Given a seed 

point and a hypothesized trajectory direction along the neurite, the neuronal structure is 

traced recursively using a method based on matched filters or templates. The tracing 

algorithm processes only voxels close to neurites being tracked, saving computation 

time. This algorithm is also helpful for quick compression and storage of data sets. Due 

to these advantages, we have adopted this algorithm to trace neuronal structures in our 

data sets, and to extract training sets for the polymerization of the neuronal volume data 

sets. 

5.1. Construction of quasi-planar templates 

Construction of three-dimensional templates for different orientations is 

explained in this section. Let p be any position along the neurite trajectory, where the 

maximum template responses along four directions (left, right, top, and bottom) will be 

calculated. Let us be trial unit vector along the trajectory at that position. Let ups be a 

unit vector representing the direction along which the template response needs to be 

calculated. Using RPI frames, this orientation corresponds to one of the four 

perpendicular shift directions for tracing, as shown in Table 4. Using Frenet frames, this 

orientation depends on normal and binormal vectors for tracing, as shown in Table 5. 
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             Fig.  9. 5 13×  kernel 

 

The basic kernel shown in Fig. 9 is used to construct the three-dimensional 

templates. A 5 13×  kernel is used in our implementation as it worked well for our data 

sets. Let ( , )v i j  represent the value of kernel at position ( , )i j  where 0 4i≤ ≤  

and 0 12j≤ ≤ . Let point (x, y, z) with integer coordinates denote the bottom-most voxel 

where the template is placed. Then, for all combinations of i and j, where 0 4i≤ ≤  

and 0 12j≤ ≤ , voxel positions in three-dimensional space (tx, ty, tz), where ( , )v i j  

occurs are given by:  

 

( * . ) ( * . )tx x round j x round i x= + +us ups  

( * . ) ( * . )ty y round j y round i y= + +us ups  

( * . ) ( * . )tz z round j z round i z= + +us ups  

 

Using these formulae, individual cells from of the templates are placed in a three-

dimensional space at the required orientation and the integrated response of the kernel is 

calculated.  

5.2. Two-dimensional tracing 

Two-dimensional tracing will be explained first. The kernels used in 2D tracing 

are formed by repetitions of the basic template [-1 -2 0 2 1]T . For different trajectory 
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orientations, 5 K×  kernels are constructed for the detection of the left and right 

boundaries. At every centerline point while tracing along the neurite trajectory, these 

templates are moved perpendicular to the left and right boundaries, and the matched 

filter response is computed. That displacement of the template perpendicular to the 

hypothesized trajectory which gives the maximum correlation response defines the 

boundary. The next position along the trajectory is computed based on the boundary 

orientation identified and the previous position. Trial orientations in this algorithm can 

be discretized to a set of values as required, where 16 and 32 are used in [1].  

The tracing process uses a predictor-corrector method. If pi is the centerline point 

and ui is the unit direction at that point, then the equation for finding the next position is 

given below: 

1

1 1 1

i i i i

i i i

α+

+ + +

= +
= +

�

�

p p u

p p v
 

Here, is 1i+v  a correction, or fine-tuning vector, to insure a smoother trace when the local 

curvature is high, ‘~’ indicates approximation, and iα  is the step size [9].  

5.3. Three-dimensional tracing 

For three-dimensional tracing, neurites are approximated by generalized 

cylinders, typically by cylinders with elliptical cross-sections and displaying curvature 

along their trajectory. In three dimensions, sampling is done in two perpendicular planes 

to trace the periphery of the boundary. Corresponding to these two planes, four sets of 

templates labeled ‘top’, ‘bottom’, ‘left’ and ‘right’ are defined. Construction of 

templates has been explained previously. 

In 3-D space, directions are described using spherical coordinates, θ  and φ  in a 

right- handed coordinate system; θ  describes a rotation around the Z-axis, and φ  

describes a rotation around the Y-axis obtained after being rotated by θ  around the Z-

axis (Fig. 10). If θ  and φ  are discretized to N values each, then we get a total number of 

N N×  directions. A template is created for each hypothesized trajectory orientation.          
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Fig.  10. Coordinate system for specifying angular directions [1]. 

 

Hence a total of 24 N×  templates are created. We follow the convention of the 

paper [1], where directions are represented by integer indexes s1 and s2, with s1 and s2 ∈  

{0, … , N-1}. A unit vector u with the orientation [ 1 22 / , 2 /s N s Nθ π φ π= = ] is 

expressed as u = [s1, s2]T. In our implementation, totally 16*9 = 144 directions are 

followed as it worked well for our data sets. During tracing, the angular θ  and φ  are 

constrained to a smaller number of angles (< N N× ), as only a span of 180°  is 

considered for forward trajectory orientations, instead of 360° , which would include 

backward directions also. Horizontally the total span of 360°  is considered. 

As explained in the case of two-dimensional tracing, tracing in three dimensions 

is done by computing the correlation responses of the template kernels and finding their 

maximum responses. Let ( , , )RR ku p  be the correlation response of a right template of 

length k, and direction uR , when the template is centered at the point p. Similarly, let 

( , , ), ( , , ) and ( , , )L T BL k T k B ku p u p u p  be the responses of the left, top, and bottom 

templates respectively. Collectively, these are called “template responses”.  

The procedure for tracing a 3-D generalized cylinder structure is shown in Fig. 

11. The tracing starts at a point pi on the centerline with an initial direction ui. Initially 
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we have estimates of an initial seed point positioned on or near the centerline and of its 

initial direction. Let these estimates be i�p  and � iu  for position and direction respectively. 

These estimates are refined by finding the maximum template responses 

( , , ), ( , , ), ( , , ), and ( , , )i i i i i i i iR k R k R k R kT T B B R R L Lu p u p u p u p  of the top, bottom, right 

and left responses respectively. These four templates are moved along their 

corresponding perpendicular shift directions, as shown in Table 4 for the four templates. 

The position where the template gives maximum response is noted. The top, bottom, left 

and right templates can be considered as “paddle wheels”, as shown in Fig. 11.  

 

TABLE 4 

Perpendicular-shift directions for the templates [1] 

Template Direction 
Perpendicular Shift 

Direction 

Right [ ]1 2
T

R s s=u  1 24

T

R

N
s s⊥
� �= +� �� �

u  

Left [ ]1 2
T

L s s=u  1 24

T

L

N
s s⊥
� �= −� �� �

u  

Top [ ]1 2
T

T s s=u  1 2 4

T

T

N
s s⊥
� �= −� �� �

u  

Bottom [ ]1 2
T

B s s=u  1 2 4

T

B

N
s s⊥
� �= +� �� �

u  

 

The maximum correlation response occurs when the template coincides with the 

neurite boundary.  Let the points on boundary that produce maximum template responses 

be { , , ,i i i i
R L T Bp p p p }. Let { , , ,i i i i

R L T Bu u u u } local direction estimates be the set of template 

orientations that produce these maximum responses. If M is the maximum expected 

axon/dendrite diameter and �  is the set of all possible directions, the selection of seed 
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point and direction is based on the maximum response for the top template that can be 

written as: 

( , ) ( , , )arg max
{( , )| , 1,..., /2, }

i i T kT T T
i m m M andT T T

=
= + = ∈Σ⊥�

p u u p
p u p p u u

 

 

 

 

Fig.  11. Illustration of vector tracing algorithm using RPI frames (frames based on perpendicular 
shift directions shown in Table 4) [1]. 

 

Using these responses estimates of i�p  and i�u  are refined. Let ˆ ( , , )i iR R kR R= u p  

denote the maximal response of the right template and a similar notation be followed for 

other template responses. Then the equations to refine the location and direction 

estimates i�p  and i�u  can be written as: 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ2 2( ) 2( ) 2( )

Ti i i ix y z

Ti i i i i i i i i i i ii R x L x R y L y T z B zR L R L T B
i i i i i iR L R L T B

� �=
� �

� �+ + +
� �= +
� �+ + +� �

�

p

p
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1 2

ˆ ˆ ˆ ˆ
1 1 2 2

ˆ ˆ ˆ ˆ2 2( ) 2( )

Ti i is s

Ti i i i i i i ii R s L s T s B sR L T B
i i i iR L T B

� �=
� �

� �+ +
� �= +
� �+ +� �

� � � ��

u

u
 

 

Based on these estimates, position and direction of the next centerline point is 

given by: 

1i i i iα+ = +�p p u  
 

1i i+ =�u u  
 

Thus, the estimates for the next successive position and orientation at that 

position are obtained. The process as described above is repeated to trace the structure. 

Thus, by recursive procedure, successive positions along the centerline, pi+1, pi+2, …, 

and directions ui+1, ui+2, …, at those positions are obtained. Proceeding in this way leads 

to tracing of the entire neurite structure. The recursive tracing process is continued until 

stopping criteria are met [1]. 

5.4. Vector tracing using Frenet frames 

The previous section discussed the vector tracing algorithm. A modification to 

this algorithm is presented in this section. This algorithm has been implemented by 

Busse [6].  

The original algorithm used perpendicular shift directions shown in Table 4 for 

calculating top, bottom, left and right template responses. The orientations of these 

templates are changed by using a Frenet frame of reference at every position along the 

generalized cylinder trajectory. The Frenet frame at any point along the trajectory curve 

is defined by three vectors T, N, and B, which denote unit length tangent, normal and 

binormal vectors respectively (Fig. 12).  These vectors are given by [25]: 



 34 

Tangent, / | |=T V V   

where V is the derivative of the trajectory curve. 

Normal, / | |=N K K  

where 4/ | |× ×K = V  A V V  and A is the second derivative of the curve. 

Binormal Vector, = ×B T N . 

 

TABLE 5 

Orientations of displacement of templates while using Frenet frames 

 

(a) Top and bottom templates 
 

Condition 
Orientation of displacement of 

top template 

Orientation of displacement of 

bottom template 

. 0<N z  Normal Reverse Normal 

. 0≥N z  Reverse Normal Normal 

 

(b) Left and right templates 
 

Condition 
Orientation of displacement of 

left template 

Orientation of displacement of 

right template 

. 0<B y  Binormal Reverse binormal 

. 0≥B y  Reverse binormal Binormal 
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Fig.  12. Illustration of vector tracing algorithm using Frenet frames (tangent vectors are shown in 
black, normal vectors in blue and binormal vectors in pink). 

 

For implementation a backward difference to the previous center point is used to 

approximate normal vector, N. Since these vectors represent curvature of the trajectory 

more appropriately, using Frenet frames can improve the accuracy of tracing. 
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CHAPTER VI 

CONSTRUCTION OF TRAINING SETS FOR SYNTHETIC VOLUME DATA 
 

The discriminant functions developed in previous chapters must be trained and 

their weight vectors determined. The first step in this training process is the construction 

of training sets from homogeneous samples of the volume data set. These training data 

sets allow the classification of edges first in the sample volume data, and then, by 

generalization, throughout the volume data set.   

The PVDS construction process is first illustrated on synthetic neuronal data 

constructed from graphical primitives, prior to the construction of PVDS on real-world 

biological data. For this purpose neuronal data that can occur in real-world brain 

mircostructure were generated synthetically.  Neuronal data can be divided into two 

broad categories: filamentary data and blob data. Filamentary data is generated from 

fibrous neurites, like axons and dendrites. Blob data is generated from neuron cell 

bodies. Both types of neuronal data were synthesized and the PVDS were constructed 

for the synthetic volume data sets so generated. 

Below, we explain the construction of this synthetic data and the design of the 

corresponding training sets. Construction of training sets for real-world neuronal data is 

deferred until the next chapter.  

6.1. Synthetic data generation 

The synthetic data described below resembles mouse brain microstructural data 

obtained from the knife-edge scanning microscope. Generation of the synthetic data can 

be divided into following five steps: 

i. Construction of 3D hard-edge generalized cylinders 

ii. Slicing of each cylinder into successive 2D sections 

iii. Correction for section thickness 

iv. Approximation of diffraction-limited imaging by convolving with a Point 

Spread Function (PSF) 
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v. Anti-aliasing (to compensate for the finite size of sensor pixels) 

i & ii. Creation of 2D images using 3D models 

Generalized cylinders representing neurites, or blobs representing cell bodies, 

were modeled in the software Maya. These three-dimensional models were then 

sectioned into successive two- dimensional images using the same software. The three-

dimensional models are sliced into very thin sections to allow later correction for slice 

thickness. Three-dimensional models for fibers with branching and spheres were 

obtained from Doddapaneni [11]. 

iii. Correction for section thickness 

Neuronal volume data is scanned from serial (physical or optical) sections. In the 

KESM, this section thickness is typically 0.5 mµ . Comparable synthetic images can be 

composited from a number of ultra-thin sections (each bit-mapped as black/white) and 

averaging these subsectional images to form each simulated image. The variation in 

gray-level values obtained when these successive ultra-thin subsectional images are 

composited is shown graphically in Fig. 13. 

 

Fig.  13. Correction for section thickness by compositing subsectional hard-edged images. 
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iv. Point spread function  

The biological neuronal data used in this thesis has been obtained from the knife-

edge scanning microscope developed in our laboratory [21]. Images are captured by a 

scanline camera under diffraction-limited optics. Accordingly, diffraction-induced blur 

occurs in the images. This blur can be modeled by a two-dimensional point spread 

function. To ensure that synthetic data resembles the real-world data, the synthetic 

volume data sets were convolved with a point spread function.  

The point spread function used is given by 

2
1(2* ( ) / )y J x x= , 

where 1( )J x  is the Bessel function of x of the first kind of order 1. This distribution is 

shown in Fig. 14. According to the Rayleigh criterion, two points of light in the image 

plane can be distinguished when in the focal plane the second point lies in the first 

diffraction minimum of the other. Thus, for Nyquist sampling, the spatial sampling  

 

 

Fig.  14. Fraunhofer diffraction at a circular aperture - 2D point spread function [3]. 
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interval should be half the distance between the central maximum and the first zero of 

the diffraction pattern, as shown in Fig. 14.  This first zero (y = 0) of the circular 

symmetric Fraunhofer diffraction pattern occurs at x = 3.83, which corresponds to two 

pixel widths from the central maximum. The PSF is convolved across the 2D synthetic 

images according to this criterion for resolution. 

v. Anti-aliasing 

The images thus created using hard-edged 3D models suffer from aliasing, 

though the PSF filtering helps in removing aliasing. Aliasing in images is eliminated 

before using this synthetic data set. Anti-aliasing is done using a 3 3×  box filter, which 

is considered to be sufficient for this purpose. Application of this technique leads to our 

final synthetic data set. 

6.2. Construction of training sets 

The process of training set construction from the synthetic images is explained in 

this section. The final synthetic volume data set (image stack) is obtained after averaging 

a number of ultra-thin sub-sections to simulate the gray level distribution in sections 

(typically 0.5 mµ  thick) used in the KESM; blurring using PSF; and anti-aliasing, as 

explained above. Edges in these final images are classified based on the corresponding 

initial image. Since the simulated image of a tissue section is obtained from a set of 2D 

images, we select the central image in that set as the reference image (ground truth) for 

classification of edges as interior, boundary or exterior. As the initial images are very 

thin, the displacement of the synthetic fibers/cell bodies from image to image is slight. 

Hence, using a center image in the initial set as a reference image creates a good 

classification of edges for the simulated image. For example, if a set of five images is 

used to obtain each simulated image of a tissue section, then the classification of edges 

in the final image is based on the third image in the set of five ultra-thin images. Since 

the reference image has a sharp gray-level difference between the interior and the 

exterior, edges in this image can be classified based on simple thresholding. An 

illustration of these images in successive stages is shown in Fig. 15.  
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                              (a)                      (b) 

                        
                                  (c)                                                                                            (d) 

Fig.  15. Simulated filamentary data set of fibers with branching. (a) A sub-sectional slice. (b) Blow-
up of a part of image shown in Fig. 15.a. (c) Blow-up of a part of image obtained after averaging five 
successive ultra-thin images (with image shown in Fig. 15.a. as the center one) . (d) Image obtained 

after applying 2D point spread function to the blown-up part shown in Fig. 15.c. (e) Same part of the 
image after applying anti-aliasing filter. (f) Final synthetic image. Training samples from this final 

image are classified in accordance with the image shown in Fig. 15.a. 
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       (e)         (f)  

         

Fig.  15. Continued. 

 
6.3. Filamentary data 

This type of data is generated by neurites like dendrites and axons, especially as 

seen in Golgi-stained tissue. Data sets resembling different kinds of fibers were 

constructed artificially as illustrated in Fig. 16 to Fig. 19. The volume data sets are 

displayed based on classification of edges in training sets.  

6.4. Blob data 

This type of data is generated by neuronal cell bodies, especially as seen in Nissl-stained 

tissue. Data sets resembling spheres, elliposoids and cylinders were constructed 

artificially as illustrated in Fig. 20. Some local views of these training sets are shown in 

Fig. 21. 
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Fig.  16. Fine fibers: This data models thin dendrites and axons that occur in microscopic data of the 
mouse brain. Dendrites and axons are specialized extensions that project from the neuronal cell 

body. 

 

                                        
           (a)      (b) 

Fig.  17. Parallel fibers: Parallel fibers occur when fine fibers extend such that they are all 
approximately parallel to each other. (a) Part of a sagittal preparation through the corpus striatum 

of a several-day-old rabbit. [Figure 326 in Histology of the Nervous System [8]; reproduced with 
permission of the publisher]. (b) Corresponding synthetic data. 
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  (a)                                                                               (b) 

Fig.  18. Fibers with branching: This data set models junctions, evoking points where a dendrite or 
axon branches. (a) ) An image of Glial cells in white matter of the adult human brain [Figure 78 in 

Histology of the Nervous System [7]; reproduced with permission of the publisher]. (b) 
Corresponding synthetic data.  

 
 
 

   
(a)                                                                                               (b) 

Fig.  19.  Neuropil-like mats of fine fibers: Neuropil is a mesh of fine axonal fibers commonly seen in 
Golgi-stained brain tissue. (a) The hypoglossal nucleaus in a near-term  rabbit fetus, generated by 
Golgi method. [Figure 293 in Histology of the Nervous System [7]; reproduced with permission of 

the publisher] (b) Corresponding synthetic data.  
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   (a)                                                                     

           

         
   (b)                                          (c) 

Fig.  20.  Synthetic data sets for blobular data. (a) Spheres. (b) Ellipsoids. (c) Cylinders. 
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     (a) 

  

(b)                 (c) 

Fig.  21. Local views of training sets. (a) 2D view: Interior edges in gray, entering edges in red and 
exiting edges in green. (b) 3D view of filamentary data: Interior edges in yellow and boundary edges 

in black. (c) 3D view of blobular data: Interior edges in yellow and boundary edges in black. 
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CHAPTER VII 

CONSTRUCTION OF TRAINING SETS FOR THREE-DIMENSIONAL  

MICROSCOPY DATA OF MOUSE BRAIN MICROSTRUCTURE 
 

A goal of this thesis is to demonstrate the construction of polymerized volume 

data sets for mouse brain microstructure at a neuronal level of detail. Using a base-line 

segmentation algorithm, training sets were constructed from the neuronal volume data. 

The methods used generalize to volume data obtained from all known forms of 3D 

microscopy. 

Volume data of mouse brain microstructure used in this thesis were obtained 

using a knife-edge scanning microscope, as explained in Section 1 below. Construction 

of training sets for Nissl-stained tissue is then presented. The vector tracing algorithm, 

presented in Chapter V, is used to generate training sets for the real-world biological 

data of mouse brain microstructure. 

7.1. Acquisition of neuronal data 

The mouse brain tissue is stained with Nissl stain[17]. This staining methods are 

explained in successive sections below. The stained tissue is then embedded in a hard 

polymer for sectioning. This embedded tissue is serially sectioned and concurrently 

scanned using the knife-edge scanning microscope (KESM), a new instrument that 

makes possible three-dimensional microscopy of large biological specimens [21]. A 

stack of successive two-dimensional images obtained by scanning the mouse brain tissue 

constitutes the neuronal volume data set.  

7.2. Construction of training sets 

Vector tracing, described in Chapter V, is used to construct training sets for the 

neuronal volume data. The output of vector tracing algorithm is a set of ellipses (Fig. 

22a). Each ellipse is defined by a center point, and lengths and orientations of its major 

and minor axes. Orientations of the major and minor axes correspond to normal and 
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binormal vectors respectively at that position, while the tangent is aligned along the 

neurite trajectory. From this output, training sets are extracted in the following way.  

 
 

(a) (b) 

Fig.  22.  (a) Example of output of vector tracing algorithm. (b) Criteria for labeling edges in an 
ellipse whose major and minor axes are shown in blue. Interior edges are shown in black and 

boundary edges in red. 

 
Given the center point of an ellipse, and lengths of its major and minor axes 

whose orientations are known, we proceed from the center point along each one of those 

axes towards boundary in two directions, axis direction and the direction opposite to it 

(Fig. 22b). Then, all edges along a major/minor axis of the ellipse that lie inside the 

boundary are classified as interior edges and are placed in respective adjacency classes. 

Boundary edges that have one vertex inside and one vertex outside are also identified. 

Exterior edges are obtained by selecting some blocks of the sample volume data that do 

not belong to any ellipse in the set of ellipses obtained by vector tracing. Hence, we 

obtain training set that has edges belonging to interior, boundary, and exterior edges. 
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7.3. Nissl-stained tissue 

Nissl stains only neuronal cell bodies and their nuclei in the brain tissue. 

Dendrites and axons are not stained. The whole brain specimen is dyed with thionine, 

staining the cytoplasmic RNA of all neurons, as well as the DNA in all cell bodies [17]. 

A sample two-dimensional image from the set of Nissl-stained images is shown 

in Fig. 23. These images are obtained by knife-edge scanning microscope using a 40x 

objective. Each pixel in these images is 0.3 0.3m mµ µ× . We can observe that fibrous 

structures are absent in these images, as only cell bodies are stained. This data falls 

under the category of blobular data, as described in the previous chapter.  

Before using these images for PVDS construction, selected parts of these images 

were compressed and preprocessed (Fig. 24). A high-pass filter is applied on these 

images, as explained in Section 2 of Chapter IV and the contrast of the images was 

enhanced. This preprocessing used Adobe Photoshop. Training sets were constructed 

from the preprocessed images using vector tracing, as described above.  

7.3.1.   Nucleus-cytoplasm separation in Nissl-stained tissue 

In Nissl-stained tissue, all cell bodies are visible. In the images obtained from 

Nissl-stained tissue, we observed that the nucleus of the cell body is darker than cell 

cytoplasm. To achieve separation between nucleus and cytoplasm, we introduce further 

classification of interior edges. Since no boundary edges need to be identified, terms 

with absolute value of difference between gray-level values are not included in the          

 

 

Fig.  23. A sample 2D image of Nissl data obtained at 40x objective. 
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Fig.  24. Sample 2D images of Nissl data after preprocessing. 

 
 
discriminant functions for interior edge sub-classification. If the gray-level values of 

interior edge termini used in these functions are normalized by the average gray-level 

value of the corresponding cell body, then we achieve a better identification of nucleus 

in each cell. The average gray-level value of each cell can be found by L-block 

coverings, which are presented in Chapter I. Normalization of gray-level values is left to 

future work. Discriminant functions for interior edge sub-classification into nucleus and 

cytoplasm edges are given below for 6-, 8- and 12- adjacencies: 

( ) ( ) ( )6 2 2
0 0 1 0 2 0 3 0, ( )l l l l ly g g w w g g w g g w g g= + + + + +  
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( ) ( ) ( )8 2 2
0 0 1 0 2 0 3 0, ( )l l l l ly g g w w g g w g g w g g= + + + + +  

( )
( )

( )( )
( )
( )
( )
( )
( )

12 2 2( ) ( )0 1 0 2 0

3 0

4 0 1 2 3 4

5 0 1 2 3 4

76 1 2 3 4 1 2 3 4
2 2 2 2

8 1 2 3 4

9 1 2 2 3 3 4 4 1
2 2 2 2

10 1 3 2 4 11 1 2 3 4

12 1 2 2 3 3 4 4 1

y g w w g g w g gl l l

w g gl

w g g a a a al

w g g a a a al

w a a a a w a a a a

w a a a a

w a a a a a a a a

w a a a a w a a a a

w a a a a a a a a w

= + + + +

+ +

+ + + + +

+ − + − +

+ + + + − + − +

+ + + +

+ + + +

+ + − + − +

− + − + 13 1 3 2 4a a a a−

  

Construction of training sets for this classification is done manually at present. 

More automated methods are left to future work. 
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CHAPTER VIII 

TRAINING OF THE EDGE-LABELING DISCRIMINANT FUNCTIONS 
 

The previous two chapters have discussed the construction of training sets for 

synthetic and neuronal volume data sets respectively. These training sets can be used to 

train discriminant functions to label edges as interior, exterior or boundary. Also, edges 

belonging to the boundary class can further be subdivided into ‘entering’ and ‘exiting’ 

edges. The procedure followed for training these functions is explained in this chapter. 

The discriminant functions formulated in this thesis are single-layer perceptrons, 

and are trained by the perceptron learning algorithm [13]. This algorithm is reviewed in 

the initial part of this chapter. Training procedures for perceptrons used for two-class 

classification, as well as multi-class classification, are discussed. Omission of terms with 

negligible weights from the discriminant functions serves to reduce the computational 

cost of edge labeling. This procedure is discussed in the final part of this chapter.  

8.1. Single-layer perceptron training 

As mentioned above, discriminant functions formulated for edge labeling are 

single-layer perceptrons. A perceptron is a neural network model proposed by 

Rosenblatt [22]. It consists of a single neuron with adjustable synaptic weights and bias. 

The signal-flow graph of a general perceptron is shown in Fig. 25 [13]. In the signal-

flow graph shown, the ‘induced local field’ of a neuron is the sum of bias and all signals 

that enter the neuron weighted by their corresponding synaptic weights. The ‘induced 

local field’, v, is given by: 

1

m

i i
i

v w x b
=

= +Σ . 
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Fig.  25.  Signal-flow graph of a single-layer perceptron. 

 

We consider b as the synaptic weight 0w  for a link from an input node, 0x , to the neuron, 

where 0w b= and 0 1x = . The induced local field of the neuron can be written as: 

0

m

i i
i

v w x
=

= Σ = Tw x . 

Here Tw x  represents the inner product of weight and input vectors, viewed in the m+1-

dimensional real space, Rm+1. The activation function, ( )vϕ , is a threshold function in 

our case. This perceptron is a two-class classifier, which assigns an input vector 

0 1[ , , ..., ]T
mx x x=x into class 1 or class 2, based on the value of the threshold function of 

the induced local field.  That is, x is assigned to class 1 if v < 0 or to class 2 if v ≥ 0. 

This two-class perceptron model applies to the discriminant function, as derived 

in Chapter IV, used to classify boundary edges into entering and exiting edge classes. 

The corresponding signal-flow graph is shown in Fig. 26. Discriminant functions used to 

classify edges into interior, exterior and boundary classes, which are derived in Chapter 

III, are multi-class perceptrons, as they classify edges into more than two classes. The 

perceptron learning algorithms used to train a two-class perceptron and a multi-class 

perceptron are presented below.  

Let 1T  be the set of vectors { (1), (2),...1 1x x } belonging to class 1C  and 2T  be the 

set consisting of vectors { 2(1), (2),...2x x } belonging to class 2C .  The union of 1T  and 

2T  forms the training set.  



 53 

 

Fig.  26. Signal-flow graph of perceptron corresponding to the discriminant function that classifies 
boundary edges. 

 

Let x(n) be an input vector used to train the weight vector at the nth step. Let the 

weight vector at the nth step be represented by w(n). Let (n)d denote the desired response 

of the neuron for a given input, x(n) and, let (n)y be the actual response of the neuron. 

An error signal, (n)e at the output of the neuron at iteration n is defined by [13]: 

(n) = d(n) - y(n)e  

A cost function, (n), Ε defined in terms of this error signal is as follows: 

21
(n) = ( )

2 ke nΕ  

In our case, the goal of training is to minimize the average error energy over all input 

vectors in the training set. Let N denote the total number of input vectors present in the 

training set. Then, average squared error energy is given as follows [13]: 

1

1
(n) = ( )

N

N

avg
n

n
=

Ε Ε�  

The above function is used as an index of performance while training the perceptron. 

The algorithm for training the two-class perceptron is explained here [13]. Let us 

start with a weight vector initialized to zero vector. Then, the weight vector is trained 

according to the following rules: 

i. Weight vector is unchanged if it correctly classifies the current input vector. That is,  

w(n+1) = w(n) if (n) (n)Tw x > 0 and x(n) belongs to class 1C  

w(n+1) = w(n) if (n) (n)Tw x ≤  0 and x(n) belongs to class 2C  
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ii. If the input vector is incorrectly classified, then the weight vector is updated as given 

below: 

w(n+1) = w(n) - ( ) (n)nη x   if (n) (n)Tw x > 0 and x(n) belongs to class 2C  

w(n+1) = w(n) + ( ) (n)nη x  if (n) (n)Tw x ≤  0 and x(n) belongs to class 1C  

Here, ( )nη  is a learning-rate parameter at iteration n and its value gradually decreases 

till a small value ( 0.1≈ ) with increasing number of iterations while training the 

discriminant function. A variable learning-rate is employed to ensure that weight vector 

converges in the mean, since the input vectors are not perfectly linearly separable in our 

case. The training is continued till the weight values converge and reach a steady state. 

Using the algorithm given above, the discriminant function can be trained to classify 

boundary edges into ‘entering’ and ‘exiting’ edge classes.  

8.2. Multi-class perceptron learning 

As the discriminant functions derived in Chapter III classify edges into three 

classes, we require a multi-class perceptron model [16]. Multiple perceptrons are 

employed in parallel as shown in Fig. 27. Each perceptron is similar to the single-layer 

general perceptron discussed above. The number of such perceptrons required in a multi-

output perceptron is equal to the total number of classes into which vectors in the 

training set are divided. Input vectors are classified based on the output of all these 

perceptrons. In our implementation, a function that finds the maximum of all output 

values is used. An edge is classified into the class that corresponds to the perceptron that 

gives the maximum output value (winner-takes-all, WTA). Hence, the multi-output 

perceptron is trained such that when an input vector of gray-level values corresponding 

to an edge is presented, the edge is assigned to the class of the perceptron giving 

maximum response.  

The set of perceptrons used for multiple-class classification is trained by 

reinforced and anti-reinforced learning rules [16]. Let 1C , 2C , …, mC  be a set of m classes 
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Fig.  27. Multi-output perceptron used for multiple class classification. 

 
and  , 1 2 m ,  ... , w  w w be weight vectors of the perceptrons corresponding to these m 

classes respectively. If x represents an input vector that belongs to class iC , then the goal 

of training is to produce weight vectors such that T T
i j>w x w x for all i j≠ . But, as 

mentioned in the case of two-class perceptron, since input vectors are in general not 

linearly separable, finding a weight vector that classifies every input vector in the 

training set without error is not possible. Hence, we train the functions such that the 

average error energy, as defined above, is minimized. 

Rules of the training are given below. Same notation is followed for input vectors 

and weight vectors at nth step as in the case of two-class perceptron. 

i. Weight vectors are unchanged if they correctly classify a given input vector 

x(n). 

ii. If  x(n) belongs to class iC , and (n) (n) (n) (n)T T
j i>w x  w x  for all j i≠ , which 

means that input is misclassified into class jC , then the following updates are 

performed: 

Reinforced learning: ( 1) ( ) ( ) (n)i in n nη+ = +w w x    
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Anti-reinforced learning: ( 1) ( ) ( ) (n)j jn n nη+ = −w w x   

The other weight vectors (n)kw  for k = 1, 2, …, m and k i and k j≠ ≠ are unchanged. As 

mentioned before, ( )nη is a variable learning-rate parameter. 

A signal-flow graph of a perceptron representing the discriminant function for 6-

adjacency is shown in Fig. 28. Only a single perceptron is shown in the figure. Three 

such perceptrons are trained and used together to classify edges into interior, exterior 

and boundary classes. Similar signal-flow graphs can be obtained for discriminant 

functions for 8- and 12- adjacencies. 

 

Fig.  28.  Signal-flow graph model of perceptron for 6-adjacency discriminant function. 

 
8.3. Training the discriminant functions 

Two-dimensional scatter plots of the terminal vertices of an edge, g0 and gl, are 

shown in Fig. 29 and Fig. 30. Fig. 29a and Fig. 29b correspond to training sets for 

synthetic volume data. Fig. 30 corresponds to a training set for Nissl data. These plots 

show the distribution of gray-level values based solely on their base-line segmentation.  

We can observe that these classes are not linearly separable and a quadratic function 

might help in classifying the edges. 
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In Fig. 30, we observe there is no perfect separation between the interior and exterior, 

due to presence of cell bodies in Nissl images that  have high average gray-level values. 

Those cell bodies are light-gray in color and close to the gray-level of exterior edges. 

Also, it can be observed that some of the boundary edges have less difference between 

0g  and gl . This occurs because for some cells gray-level values from cell interior to 

exterior varies smoothly over several pixel displacements. 

The graph shown in Fig. 31 proves the convergence of weight parameters of 

discriminant functions during training. Three terms in the discriminant function for 6-

adjacency are selected and their convergence is displayed graphically. Results presented 

in Chapter IX prove that weight values have converged such that classification due to 

discriminant functions is similar to the classification in training sets. 

 

              
(a)                                                                                                (b) 

Fig.  29. Image showing normalized gray-level values of the edge termini from the training set for 
synthetic data. The X-axis represents ‘g0’ with range 0-1 (corresponding to 0-255) and Y-axis 

represents ‘gl’ with the same range. (a) Points corresponding to edges belonging to three different 
classes are shown in three different colors: interior edges in yellow, boundary edges in white and 
exterior edges in green. (b) Points corresponding to boundary edges belonging to two different 

classes: entering edges in white and exiting edges in red.                
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Fig.  30.  Image showing normalized gray-level values of the edge termini from the training set for 
Nissl data. The X-axis represents ‘g0’ with range 0-1 (corresponding to 0-255) and Y-axis represents 

‘gl’ with the same range. Points corresponding to edges belonging to three different classes are 
shown in three different colors: interior edges in yellow, boundary edges in white and exterior edges 

in green. 

 

                  
                                    (a)                    (b) 

 

Fig.  31. Graph showing the convergence in mean of weights of selected terms in the discriminant 

function for 6-adjacency for synthetic data.  (a) and (b) Terms l0g g and 2 2
l0 -g g  in the function 

corresponding to interior edge class.  
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8.4. Validating feature selection in the multi-term discriminant functions and   

minimizing edge-labeling cost 

Discriminant functions derived for interior/exterior edge-labeling consist of 

multiple terms. The discriminant functions for 6- and 8- adjacencies derived in Chapter 

III have five terms apart from bias. The discriminant function for 12-adjacency has 

seventeen terms apart from bias. These functions are initially formulated to include all 

terms that are symmetrical in the input gray-level values.  

In our implementation, gray-level values are normalized to lie in between 0 and 

1, before using them in discriminant functions. Hence, insignificant terms in the trained 

discriminant functions can be identified by examining their weight values. The terms 

whose weights have negligible values are then deleted from the discriminant functions. 

As these terms do not play a major role in classification of edges, deletion of these terms 

helps in minimizing the cost of edge-labeling without affecting the results.  

Weight values of discriminant functions for 6-adjacency trained on Nissl data are 

shown in Table 6. From this table, we observe that the discriminant function for 

boundary class has comparatively high weights for the terms with gray-level value 

difference, which is as expected. The term with absolute difference of gray-level values  

 

TABLE 6 

Final weights of discriminant functions for 6-adjacency trained on Nissl data 

Weights  

Class 

0kw  

( )
1

0

k

l

w

g g+
 ( )

2

2 2
0

k

l

w

g g+
 

3

0( )
k

l

w

g g
 4

0

k

l

w

g g−
 

5

2 2
0

k

l

w

g g−
 

Interior (k = 0) 1.448 -1.815 -0.689 -0.389 0.087 0.246 

Exterior (k = 1) -3.723 2.801 1.294 0.784 -2.419 -2.337 

Boundary (k = 2) 0.608 -0.986  -0.605 -0.395 2.332 2.091 
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is less significant  in the function for interior class when compared to other terms. In the 

function for exterior class, almost all the terms look significant. 
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CHAPTER IX 

VISUALIZATION AND VALIDATION OF PVDS 
 

Construction of training sets for synthetic and real-world neuronal data sets have 

been presented in Chapters VI and VII respectively. Algorithms for training the 

discriminant functions for edge-labeling were presented in Chapter IX. This chapter 

summarizes the results obtained using the trained discriminant functions. PVDS 

construction for different volume data sets presented in previous chapter is displayed in 

the sections below. Finally criteria for evaluating the PVDS-induced segmentation 

against a base-line segmentation are discussed.   

9.1. Global and local views of the segmentation 

Global views of the PVDS obtained for filamentary and blobular synthetic data 

sets are shown in Fig. 32 and Fig. 33 respectively. Two-dimensional and three-

dimensional local views of selected parts of PVDS are shown in Fig. 35 respectively. 

These images were obtained using OpenGL [26]. 

Global and local views of PVDS obtained for Nissl data are shown in Fig. 35. In 

the results for Nissl data, further classification of interior edges is shown. In the figures, 

blue colored edges represent nuclei. As gray-level values are not normalized with respect 

to average gray-level value of the corresponding cell body, identification of nuclei in 

different cells is not similar, as discussed in Chapter VII.  

9.2. Scatter plots for PVDS 

The scatter plot showing the classification of edges by PVDS for one of the 

synthetic volume data sets is shown in Fig. 36. We observe that the classification of 

edges by the trained discriminant functions is nearly as good as the classification in the 

training set shown in Fig. 29.  
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   (a)         (b) 

 

                                                           
  (c)                                                                                (d) 

Fig.  32. Global view of PVDS for filamentary synthetic data sets. (a) Fine fibers. (b) A neuropil-like 
mat of fine fibers. (c) Parallel fibers. (d) Fibers with branching.  
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(a) 

   
 

  (b)      (c) 

 

Fig.  33. Global view of PVDS for synthetic data sets simulating blob data. (a) Spheres. (b) 
Ellipsoids. (c) Cylinders. 
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(a) 

   
               (b)              (c) 

Fig.  34. Local views of PVDS for a synthetic data set. (a) 2D view: Interior edges in gray, entering 
edges in red and exiting edges in green. (b) 3D view of filamentary data: Interior edges in yellow and 
boundary edges in black. (c) 3D view of blobular data: Interior edges in yellow and boundary edges 

in black. 
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       (a)                                          (b) 

Fig.  35. 2D views of PVDS for Nissl-stained data. Interior edges are shown in white and blue with 
blue representing nuclei of cell bodies, entering edges in red and exiting edges in green.  (a)  Global 
view of PVDS for an image from Nissl-stained data (This result corresponds to the image shown on 

the left side in Fig. 24). (b) A local view of PVDS.  
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  (a)      (b) 

Fig.  36. Image showing gray-level values of the edge termini from the PVDS. The X-axis represents 
‘g0’ with range 0-1 (corresponding to 0-255) and Y-axis represents ‘gl’ with the same range. (a) 
Points corresponding to edges belonging to three different classes are shown in three different 

colors: Interior edges in yellow, boundary edges in white and exterior edges in green. (b)  Points 
corresponding to boundary edges belonging to two different classes: Entering edges in white and 

exiting edges in red.  

 

Similar scatter plot for PVDS obtained from Nissl data is shown in Fig. 37. We 

observe that the classification of edges between interior and exterior classes resembles 

the classification shown in training set in Fig. 30, though the training set has more 

overlap of interior edges with exterior ones. There is a clear separation between edges 

belonging to different classes in the result shown, as the discriminant functions are 

limited to be quadratic, as explained in Chapter III. Boundary edge classification is 

observed to be good. 

9.3. Criteria for evaluation of polymerization-induced segmentation  

Except for synthetic volume data sets, there exists no absolute criteria for real-

world biological data for what constitutes a “good segmentation”. We can resort only to 

relative criteria that evaluate how the obtained segmentation compares to a given base- 

 



 67 

 

Fig.  37. Image showing normalized gray-level values of the edge termini from the training set for 
Nissl data. The X-axis represents ‘g0’ with range 0-1 (corresponding to 0-255) and Y-axis represents 

‘gl’ with the same range. Points corresponding to edges belonging to three different classes are 
shown in three different colors: Interior edges in yellow, boundary edges in white and exterior edges 

in green. 

 

line segmentation.  A measure of mutual information between base-line and PVDS-

induced segmentations can be used as criterion for evaluation. 

Additional criteria specific to neuronal data that can be used to evaluate 

polymerized-induced segmentation Vs. base-line segmentation are given below: 

• Ability to separate juxtaposed neurons 

• Tracing of faint and gap-ridden axonal tracing 

• Coping with neurite branching  
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9.4. User interface for viewing agreement/disagreement between base-line and 

polymerization-induced segmentations 

Based on experience gained in preparing this thesis, I believe the following user 

interfaces will be helpful for PVDS construction: 

• Display of the scatter plot for the training set and the scatter plot for the PVDS 

labeled set side-by-side and an interface that flags misclassified points.  

• Display of overlap of scatter plots of training sets and PVDS labeled sets with 

one of them rendered semi-transparent. This helps in identifying misclassified 

points and those points can be flagged for editing. 

• Display of overlap of original image and PVDS image and/or overlap of training 

image and PVDS image with one of them rendered semi-transparent. This helps 

in identifying segmentations of the images that do not match. 

• Successive display of a set of PVDS images, one after another, to visualize the 

continuity of data between successive images. Successive image would be 

displayed after each click by the user.  

• Visualization of two-dimensional and three-dimensional views of PVDS with 

features like zoom-in, zoom-out, and selection of various image parts for added 

attention. 

The implementation of these user interfaces will be left to future work.  
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CHAPTER X 

PVDS CONSTRUCTION GENERALIZED TO BRAVAIS LATTICES 
 

In Chapter I the volume data set was defined over a regular cubic three-

dimensional grid, with voxels centered on the vertices of the grid.  Then in Chapter II the 

grid was transformed into a lattice by introducing edges from any vertex to the vertices 

of its adjacency set. Explicitly, 6-, 8-, and 12-adjacencies were considered. Here we 

recognize that alternative lattices, called Bravais lattices, can be superimposed on the 

regular cubic lattice. These lattices permit indexing the periodic array using lattice 

translation vectors with integer coefficients, generalizing integer indexing within the 

cubic lattice. Furthermore, these Bravais lattices support 6-, 8-, and 12-adjacencies, that 

is, these sets of edges are readily identified in a Bravais lattice. Accordingly edges 

within the Bravais lattice can be labeled “active” or “inactive” using discriminant 

functions, generalizing the analysis of previous chapters of this thesis. In summary, a 

Bravais lattice allows a different visualization of the same volume data set, but one 

emphasizing a different local connectivity.  

We proceed below by first defining Bravais lattices and Bravais nets, followed 

by defining the 6-, 8-, and 12-adjacency sets of a vertex in a Bravais lattice. Next we 

enumerate all Bravais nets, and then Bravais lattices. Finally, as an illustration of the 

potency of generalizing PVDS construction to Bravais lattices and nets, we consider the 

construction and enumeration of perfectly planar templates, all of whose vertices 

(voxels) lie precisely in a common plane. Further applications of generalizing PVDS 

construction is deferred to future work.  

10.1. Bravais lattices and Bravais nets  

Bravais lattice: Let us choose three vectors a, b and c in such a way that: |a| is the 

shortest period in the lattice (or one of several equal ones), b is the shortest vector not 

parallel to a, and c is the shortest one not coplanar to a and b. If a periodic array has 

exactly the same arrangement and orientation at positions r and r’ such that, r’ = 

r+la+mb+nc where l,m,n are integers, then the set of points r’ defines a lattice (Fig. 38). 
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The vectors a, b and c are called ‘lattice translation vectors’. This lattice is called the 

Bravais lattice of the crystal [24], or in our case, the underlying cubic lattice, to which it 

belongs.  

 

Fig. 38.  Bravais lattice with lattice translation vectors a, b and c [24]. 

 

Bravais net: A Bravais net is two-dimensional planar lattice with the smallest repeatable 

unit being the unit cell defined by vectors a and b, chosen as above for a Bravais lattice. 

Hence a Bravais net is a two-dimensional planar lattice over the cubic grid, which can be 

expanded into a Bravais lattice by introducing a third non-coplanar lattice vector. Such 

planar arrays are a natural substrate for the construction of planar templates for kernel 

functions defined over the volume data set. And example is developed below, where 

extended planar templates are developed, each class embedded in its own distinct 

Bravais net.  

10.2. Adjacency sets in a Bravais lattice 

Given the Bravais lattice vectors a, b, and c, we form the 6-, 8-, and 12-

adjacency sets of a vertex r as follows:  

6-adjacency: r ± {a, b, c}; face-centered. 

8-adjacency: r ± a ± b ± c; vertex-centered. 



 71 

12-adjacency: r ±  {a ± b, b ± c, c ± a}; edge-centered. 

For the special case where the Bravais lattice is the simple cubic lattice, these adjacency 

definitions reduce to the face-, vertex-, and edge-centered definitions respectively of 

Chapter II. 

10.3. Classification of Bravais nets 

Bravais nets in a 2*2*2 cube can be classified into five distinct groups. These 

groups are analogous to the five unique and distinct Bravais nets found in the literature 

[10]. Other forms of Bravais nets are obtained by various symmetry operations that map 

any given lattice onto itself. In this case, reflection and rotation operations constitute 

these symmetry operations. We define each Bravais net in a 2*2*2 cube in terms of a 

“signature line”. This line, along with the center vertex of the cube, defines a planar 

Bravais net. The five groups of Bravais nets are described below. The magnitudes of two 

unit vectors forming the plane are defined by |a| and |b|, and angle between these vectors 

is given by γγγγ. 

Square net [|a| = |b| and γ = 90°]:  Bravais nets in this group are defined by a signature 

line formed by joining two edge centered points such that the plane defined by the line 

along with the center vertex gives rise to a plane parallel to one of the XY-, YZ- or ZX- 

planes (Fig. 39a). 

Rectangular net [|a| � |b| and γ = 90°]: This group includes diagonal planes. The 

Bravais nets in this group can be defined by a signature line that forms a corner edge of 

the 2*2*2 cube (Fig. 39b).  

Hexagonal net [|a| = |b| and γ = 60°]: This group is defined by signature lines that 

connect two edge-centered vertices that lie on the same face of 2*2*2 cube (Fig. 39c).  

Oblique net [|a| � |b| and γ � 90°]:  Oblique Bravais nets are obtained by a plane 

passing through center vertex and the signature line connecting a vertex-centered vertex 

with an edge-centered vertex (Fig. 39d). 



 72 

          
             (a)         (b)  

       
             (c)            (d) 

 
(e) 

Fig.  39. Examples of Bravais nets. (a) Square net. (b) Rectangular net. (c) Hexagonal net.                
(d) Oblique net.  (e) Centered rectangular net. 
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Centered rectangular net [|a| � |b| and cos γ =|a|/2|b| (or diamond net) with |a'| = |b'| 

and γ � 90, 60, 120°]: This group is defined by signature lines formed by connecting two 

edge-centered vertices that do not lie in the same face (Fig. 39e). 

10.4. Enumeration of canonical forms of Bravais nets  

With the five distinct groups of Bravais nets defined, let us enumerate the total 

number of canonical Bravais nets that can be obtained. For the sake of enumeration, let 

us consider the 2*2*2 cube figure shown in Fig. 40. The edges of back faces are not 

shown for clarity. Among the 26 neighboring vertices of the center vertex, we can see 19 

vertices. But, 13 of the 26 vertices can be considered as mirror images of the other 13. 

Considering all of them to count the number of Bravais nets will give rise to 

duplicate planes. Hence, six vertices of the 19 vertices that can be seen, whose mirror 

images are also included in the set of vertices seen, are not considered in the 

enumeration. These six vertices are shown in violet.  

 

 
Fig. 40. 2*2*2 cube with only front faces seen. Six vertices which are mirror images of other six seen 

in the image are shown in violet. Rest of the vertices is shown in blue. 

 
Total number of two-dimensional plane lattices obtained in each group is given 

below: 
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Square net: In this group, 3 planes can be obtained, corresponding to XY-, YZ- and ZX- 

planes.  Signature lines of these planes are shown in Fig. 41a. 

 

 

             
                                                               (a) 

 

            
                                                                         (b) 
 

       
 
(c)      (d)        (e)                          
 

Fig.  41. Canonical forms of Bravais nets. Signature lines are shown in green. 



 75 

Rectangular net: 6 diagonal Bravais nets are obtained. Three of these are shown in Fig. 

41b. 

Hexagonal net: 8 corner planes whose signature lines are shown in Fig. 41c are 

obtained. 

Oblique net: 12 vertex oblique planes are present. Signatures for three of these are seen 

in Fig. 41d. 

Centered rectangular net: 4 planes are obtained. Signatures of two of these are seen in 

Fig. 41e. 

Thus, a total of 33 canonical forms of Bravais nets are obtained. 

10.4.1. Proof that all possible planes are considered  

Here, let us prove that with the five groups defined constitute all possible Bravais 

nets in a 2*2*2 cube. 

With 13 vertices, we can define the “signature” of a plane in 78 (13*12/2) ways. 

We shall prove that the five groups considered include all these possibilities as shown in 

Table 7. 

TABLE 7 

Number of planes and Bravais nets in five different groups 

Group Number of Bravais nets   Possible ways of 

obtaining 

Total number of 

planes that can be 

obtained 

Square net 3 6 18 

Rectangular net 6 6 36 

Hexagonal net 8 1  8 

Oblique planes 12 1 12 

Centered 

rectangular net 

4 1  4 
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Thus, total number of planes in these five groups sum to 78, which is equal to the 

number of Bravais nets possible. This proves that no Bravais net is omitted in the above 

enumeration. 

10.5. Enumeration of Bravais lattices 

A Bravais lattice is defined by a tetrahedron defined by the center plus 3 

admissible surface points such that the four points do not lie in a common Bravais net, as 

seen in Fig. 42. Bravais lattices are enumerated by considering the number of such sets 

of three vertices or triplets on the 2*2*2 cube. Each such tetrahedron gives rise to a 

Bravais lattice and is unique. This is because the plane containing these three points is 

unique.  

The number of distinct triplets that can be obtained from 13 vertices is 13*12*11 

/ 3*2 = 286. But, some of these triplets do not give rise to a tetrahedron as they might be 

coplanar with the center vertex. Hence, eliminating collinear triplets from the total 

number of possible three vertices set, we get the total number of Bravais lattices.  

 

 
Fig.  42. Bravais lattice defined by a tetrahedron containing the center vertex and three non-

collinear vertices on the 2*2*2 cube. 
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Collinear triplets are counted for each group of Bravais net described above. For 

square net group, there are 12 such triplets as there are 4 triplets in three ways. For 

rectangular net group, since there are 6 sets of 4 collinear triplets, we obtain 24 collinear 

triplets. Thus, eliminating these 36 collinear triplets, we obtain 250 Bravais lattices. 

10.6. Extended templates for edge-labeling 

Segmentation of the volume data set has been based in Chapters II-IV on 

classifying individual edges as members of the interior, exterior, and boundary classes. 

We considered one edge at a time to see if it is active or not (for each class).  In this 

section, the templates that aid us in segmentation are extended to include a larger 

number of edges. These extended templates can then tiled to form matched filters for 

boundary detection, analogous to those discussed in Chapter V [1].  

A two-edge pattern consists of two vectors, c and d, which are restricted to be 

non-parallel and form an acute angle: c.d > 0. Each two-edge pattern can be iterated to 

form a ‘ray’, which can be thought of as a jagged line. Each ray can be associated with a 

direction, called the ‘orientation of the ray’. For this purpose, the centers of the fixed 

edges of the repeated patterns are joined to form a line and the direction of that line is 

considered as the ray orientation. Below, a set of basic two-edged patterns are 

developed, and the spatial orientation of these rays is exhibited. 

Vectors c and d define a plane, and by translation in this plane, a two-

dimensional net. This net, in general, is not a Bravais net, but rather is a sublattice of a 

Bravais net.  

A segment of a ray can be translated in the plane. By this means, extended 

templates can formed by iterations of two-edge patterns as explained below. These 

extended templates can then form the basis for matched filters used in vector tracing of 

neurites.   
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 10.6.1. Two-edge patterns  

As mentioned earlier, two-edge patterns are used to form extended templates. 

One of these two edges can be labeled the ‘fixed edge’ and the other one ‘winged edge’. 

We develop the patterns by retaining the fixed edge in one constant position and 

changing the positions of the winged edge to all valid positions. In the three-dimensional 

grid as described in Chapter II, the length of the fixed edge can be 1, 2 , or 3 . The 

positions of the winged edge are explored for fixed edges of each of these lengths. 

When fixed edge is of length 1, it can be oriented in three directions, along the 

X-, Y- or Z-axes, respectively.  Let us consider the case where it is oriented along X-

axis, as shown in Fig. 43. To the right vertex in the Fig. 43, we can add winged edges in 

25 ways. However we shall consider only winged-edge positions which give rise to two-

edged patterns that approximate a smooth boundary in real-world volume data set. Using 

this basis, the 8 neighbors that are in the left perpendicular plane to the fixed edge are 

not considered. Similarly, the neighbors in the plane on which right vertex lies and that 

are perpendicular to fixed edge are eliminated for the same reason. The remaining nine 

neighboring vertices give rise to nine winged-edge positions as shown in Fig. 43.  

 
Fig.  43. Fixed edge of length 1 (red color) and nine corresponding positions of the winged edge 

(yellow color). 
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Similarly, fixed edge of length 1 aligned along Y and Z axes give rise to 18 more 

patterns. In total, 27 patterns are obtained for a fixed edge of length 1.  

When fixed edge is of length 2 , the positions of the winged edge are shown in 

Fig. 44. We see that nine positions are obtained for the fixed edge lying in XY-plane. 

The other positions are eliminated due to same argument as before. Thus, considering 

fixed edges lying in YZ- and ZX- planes also, we totally obtain 27 winged edge 

positions in this case.  

Similarly, when fixed edge is of length 3 , we obtain nine positions for winged 

edge as shown in Fig. 45. This case gives rise to 27 patterns. Thus totally we obtain 81 

two-edge patterns.  

 

 

Fig.  44. Fixed edge of length 2  (red color) and nine corresponding positions of the winged edge 
(yellow color). 

 

10.6.2. Forming planar templates from two-edge patterns 

When two-edge patterns are given, these can be iterated to form extended planar 

templates, as shown in Fig. 46. For the template shown in Fig. 46, the orientation of the 

ray is shown in red color.  
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Fig. 45. Fixed edge of length 3  (red color) and nine corresponding positions of the winged edge 
(yellow color). 

 
 

 
Fig.  46. Example of an extended planar template (thin black lines) formed by iteration of a two-

edge pattern(thick black lines).  Orientation of ray is shown in red color. 
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CHAPTER XI 

CONCLUSION AND FUTURE WORK 
 
11.1. Summary 

A strategy for constructing Polymerized Volume Data Sets (PVDS) using 

discriminant functions for edge labeling has been presented. Different adjacency classes 

in a regular three-dimensional grid are described. Discriminant functions for edge-

labeling for 6-, 8- and 12-adjacency classes are derived. These discriminant functions 

label an edge in a volume data set as interior, exterior, or boundary. A discriminant 

function to further classify boundary edges into entering and exiting edges is also 

derived. Construction of training sets from a homogeneous sample of volume data and 

algorithms for training the discriminant functions are discussed.  

This strategy is first illustrated on synthetic volume data and then on biological 

volume data. The process of generating synthetic data that resembles real-world 

biological data obtained from three-dimensional microscopy is explained. Synthetic data 

was constructed for filamentary as well as blobular data. Training sets were constructed 

and discriminant functions for edge-labeling were trained. The strategy worked very 

well with synthetic data and the results obtained were good. 

The strategy was then illustrated on neuronal data. Here, an image stack of 40x 

Nissl-stained tissue obtained by a knife-edge scanning microscopy was used. Training 

sets for this volume data were obtained using vector tracing algorithm [1]. Segmentation 

identified by PVDS are compared with the initial segmentation defined by vector tracing 

and the results are discussed.  

Finally, construction of PVDS is generalized to Bravais lattices. Bravais nets and 

Bravais lattices are enumerated. Extended templates, an application of Bravais nets, are 

presented.   
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11.2. Future work 

Future work in this area should include, in approximate order of priority: 

 

• Testing the strategy on volume data sets obtained from other forms of three-

dimensional microscopy, such as confocal and two-photon microscopy and from 

other brain tissue stains, both fluorescent and absorbing.  

• Training the discriminant functions using Support Vector Machines (SVMs), a 

neural network procedure that finds optimal hyperplanes of separation between 

different classes.  

• Deriving discriminant functions for edge-labeling for a volume data set whose 

voxels are assigned a vector of values (e.g., output of a color camera). 

• Using multi-layer perceptrons for edge-labeling and evaluating their efficiency. 

• Modifying discriminant functions to exhibit more dependence on shape. One way 

this can be done is by including more global information, as with the use of 

extended templates. These larger templates give better noise suppression. 

• Developing a good user-interface that helps in visualizing, evaluating, and 

editing polymerized volume data sets. 

• Studying further applications of generalizing PVDS construction to Bravais 

lattices. 
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