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ABSTRACT
Modern recommenders usually consider both collaborative fea-
tures from user behavior data (e.g., clicks) and content information
about the users and items (e.g., user ages or item images) for im-
proved recommendations. While encouraging, the uncovered user
preference representations derived from these collaborative and
content-based perspectives can be entangled by intermixing the
influence from each other, leading to sub-optimal performance and
unstable recommendations. Hence, we propose to disentangle repre-
sentations learned from user behavior data and content information.
Specifically, we propose a novel two-level disentanglement genera-
tive recommendation model (DICER) that supports both content-
collaborative disentanglement and feature disentanglement: for
the content-collaborative disentanglement, DICER decomposes the
features by their marginal distributions based on content and user-
item interactions, to ensure the learned features from each type are
statistically independent. For feature disentanglement, by decom-
posing the Kullback-Leibler divergence, we theoretically show that
extracted features within each type are disentangled at a granular
level. Furthermore, DICER utilizes a co-decoder that simultane-
ously decodes the content and user-item interactions to ensure the
high-quality of learned features. Through extensive experiments
on three real-world datasets, results show that DICER significantly
outperforms other state-of-the-art methods by 13.5% in NDCG and
14.4% in hit ratio on average.
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1 INTRODUCTION
One of the fundamental challenges for recommender systems is
to learn user and item representations that can uncover user pref-
erence towards items. Many recent efforts adopt deep approaches
[31, 32] over both collaborative features based on user-item interac-
tions (e.g., clicks or likes) and content information about the users
and items (e.g., user ages or item images) [7, 20, 26, 27, 36] to build
user and item representations, as shown in Figure 1(a). While en-
couraging, the learned user and item features derived from these
collaborative and content-based perspectives can be entangled by
intermixing the influence from each, harming recommendation
quality.

For example, a user, and also many similar users, may prefer a
dress because of its visual appearance, price, and high quality. The
known content information is the dress images. If the user-item
interactions and the dress image are considered separately to learn
the features that influence user preference towards items, the col-
laborative features and content features could be highly correlated.
In essence, both the collaborative and content features could redun-
dantly encode the visual characteristics of the dress, meaning there
is less capacity to focus on learning other features (like price) that
could influence user preference towards items. Hence, learning user
preferences based on both content-based features and collaborative
features could lead to feature duplication and high feature correla-
tion, limiting the representation capability for modeling collections
of users with diverse interests. Furthermore, the feature duplication
and high correlation among features can also result in overweight-
ing these correlated features in learning user preference, leading to
sub-optimal performance and unstable recommendations.

Therefore, we propose to disentangle representations learned from
user behavior data and content information to improve the integrated
user and item representation quality for improved recommenda-
tion. Such disentanglement representation learning – which aims
to learn disentangled features such that any one feature is relatively
not influenced by changes in other features – has recently demon-
strated powerful and robust performance in many areas, especially
in computer vision [6, 12, 18, 19]. However, there is little work
on disentangled representation learning in recommendation [22],
and none on recommendation when both user behavior data and
content information are available. Disentanglement representation
learning poses unique challenges in this context:

• First, most existing disentanglement problems target areas
where the features are explicitly known (e.g., shape or color
features of an image). However, user-item interactions do
not necessarily map to specific apriori collaborative features.
Hence, this heterogeneity between implicit features in user-
item interactions and explicit features in content information
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Figure 1: (a) Both collaborative features learned from user-item interactions and content features learned from content in-
formation (like images) can be used to discover user preference. (b) DICER first disentangles the user implicit feedback xi to
content information ci and content disentangled collaborative information x ′i . Then within each type (either collaborative or
content), we further disentangle learned features at a granular level (feature disentanglement) to improve the capacity of user
and item representations.

makes it extremely difficult to capture the disentanglement
across content and collaborative features.

• Second, disentanglement across content and collaborative
features only ensures that the learned representations from
each type are different. However, the specific features within
the collaborative features could still be highly entangled
with each other, and similarly for the content-based fea-
tures. Hence, we also face the challenge of granular-level
disentanglement, to simultaneously learn both disentangled
and high-quality features within collaborative and content
features for improved recommendation.

With these challenges in mind, we propose a novel two-level
disentanglement approach called DICER – DIsentangling Content-
aware collaborative filtering for Enhanced Recommendation – that
supports both content-collaborative disentanglement and feature
disentanglement based on the structure of a variational auto-encoder.
For content-collaborative disentanglement, DICER decomposes the
features that influence user preference into content features and
content disentangled collaborative features, then utilizes their mar-
ginal distributions to learn disentangled features for each type. For
feature disentanglement, we theoretically show that each extracted
feature in DICER is disentangled with other extracted features by
decomposing the Kullback-Leibler divergence via statistical inde-
pendence properties. Furthermore, DICER is characterized by a
co-decoder that simultaneously decodes the content and user-item
interactions to ensure the high-quality of both learned content and
collaborative features. Through extensive experiments on three
real-world datasets, results show that DICER significantly outper-
forms other state-of-the-art methods by 13.5% in NDCG and 14.4%
in hit ratio on average. We also find that DICER captures relatively
independent features through disentanglement measurement and
visualization.

2 RELATEDWORK
Latent Factor-based RecommendationModels with Content
Information. Latent factor models (e.g., matrix factorization and
recent neural approaches) [5, 11, 14, 16, 25, 33] typically map both

Table 1: Notation.

Notation Explanation
zoi representation of learned content disentangled

collaborative features, zoi ∈ RK1

xi item i interactions with users
θ = {θ1,θ2} trainable variables for user-item feedback

θ1/θ2 is the encoder/decode trainable variables
zci representation of learned content features, zci ∈ RK2

ci item i content vector
ϕ = {ϕ1,ϕ2} trainable variables for item content

ϕ1/ϕ2 is the encoder/decode trainable variables

users and items to a latent factor space with a low latent dimen-
sion. However, since only user-item interactions are considered,
these models usually suffer from sparsity and cold-start problems.
Thus, latent factor models for recommendation have been aug-
mented to incorporate additional content information of items and
users [7, 20, 26, 27, 36]. For instance, Li et.al. [15] combined item con-
tent information and user-item feedback into a variational autoen-
coder to learn user preference towards items. Lv et al. [21] proposed
a multimodal item similarity-based framework that learned visual
and textual features for recommendations. However, most of these
existing content-based latent factor models extract the content and
collaborative features independently and then simply concatenate
them to learn representations for users and items, without fully
considering the correlation between user-item feedback and con-
tent information. For example, VBPR [7] directly concatenates the
visual features learned from item images with collaborative features
as the joint item representation and multiplies it with user represen-
tations to predict the user preference. This learned representation
may contain duplicated/highly correlated features between images
and collaborative features, leading to less robust models of user
preference.
Disentangled Representation Learning. Recently, disentangle-
ment representation learning has attracted increasing attention due
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to its robust performance and interpretability [6, 12, 18, 19]. Disen-
tanglement learning aims to identify each feature that is relatively
not influenced by other feature changes. For example, disentangle-
ment learning on a visual dataset might learn the shape, the color,
and the position features of the object [2], where each feature is not
easily influenced by other feature changes. One popular method to
capture disentangled features is based on statistical independence
[4], which has demonstrated good performance in many applica-
tions [13, 29]. For example, β-VAE shows that disentanglement can
be achieved if the KL term in the evidence lower bound (ELBO) is
highly penalized. Based on that, Chen et al. [4] introduced β-TCVAE
which provides a further decomposition of the ELBO to explain
the penalty of KL for feature disentanglement. For recommenda-
tion, Ma et al. [22] learned disentangled latent representations for
users and items based on user-item feedback and showed great im-
provement in recommendation. However, few if any methods have
considered the disentanglement problem in the context of recom-
mendation with both user behavior data and content information,
which is especially important for building robust and high-quality
user-item joint representations for content-aware recommendation
in practice. In this work, we aim to address this gap.

3 METHOD
ProblemStatement. Supposewe have a set of usersu ∈ {1, 2, ...,U }

and items i ∈ {1, 2, , ...I }. To learn user preference, we have two
types of information: (1) User-item interactions capturing the im-
plicit feedback xu,i from user u towards item i , e.g., based on clicks,
likes, or purchases. xu,i = 1 indicates positive feedback, whereas
xu,i = 0 means the corresponding feedback is missing; and (2)
Item content information ci for each item i . This content could
correspond to item images, reviews, descriptive text, or other item-
specific information. Our task is to consider both user-item in-
teractions and item content information to learn their integrated
disentangled representations of users and items for improved rec-
ommendation.1

Approach. As we have argued, evidence from both user-item in-
teractions and content information can lead to entangled repre-
sentations. Hence, we propose a two-level approach called DICER
that first disentangles features between content and collaborative
features – called content-collaborative disentanglement, and then
disentangles each feature within the collaborative features (and
each feature within the content features) – called feature disentan-
glement. Specifically, as shown in Figure 1(b), the proposed DICER
approach contains two key variables: content features zci extracted
from item content ci , and content disentangled collaborative features
zoi extracted from user-item interactions xi .

3.1 Content-Collaborative Disentanglement
We begin by disentangling the information that is learned from
content and user-item interactions, to ensure zci and zoi capture
different aspects of user preference. For example, suppose we have
item images as the content information, and xui = 1 (that user
u likes item i) due to the item’s visual appearance and price. The

1We could also consider user content information alone (instead of item content
information), or both user and item information together in addition to user-item
interactions. We discuss both of these scenarios in Section 3.4.

content-collaborative disentanglement aims to learn the visual as-
pect from item images, leaving price-oriented features (that may be
hard to precisely learn from images) to user-item interactions. In
this way, zoi can discover other useful features that are not captured
by zci .

To model this content-collaborative disentanglement, we pro-
pose to start by modeling the joint distribution of all the item influ-
ence features zi ∈ RK (the features that influence the user prefer-
ence towards items), in order to connect user-item interactions and
item content information. Then we decompose the joint distribu-
tion to extract disentangled features from content and user-item
interactions.

Concretely, we first model the user feedback towards items (e.g.,
click history) xi that is generated from all the features zi with the
following distribution:

pθ (xi ) = Ep(zi )pθ (xi |zi ), (1)

where θ is the set of model parameters for modeling user-item
interactions.

Then, to utilize both the item content and user-item interaction
information, and also disentangle features derived from these two
types, we propose to decompose zi to be the content features zci
derived from item content ci and the content disentangled collabo-
rative features zoi derived from user-item interactions xi . Therefore,
the distribution of zi can be expressed as the joint distribution of
zci and zoi , i.e. p(zi ) = p(zci , z

o
i ). More importantly, to capture the

disentangled features from the two types, similar as many disentan-
glement approaches [4, 22], we set the extracted features from the
content and user-item interactions to be statistically independent:

p(zi ) = p(zci , z
o
i ) = p(z

c
i )p(z

o
i ). (2)

That is, based on the disentanglement between zci and zoi , we can
further decompose the joint distribution of zci and zoi to be their
marginal distributions. Then, with the disentanglement, our model
Equation (1) can be rewritten as:

pθ (xi ) = Ep(zi )pθ (xi |zi ) =
∫

pθ (xi |z
c
i , z

o
i )p(z

c
i , z

o
i )d(z

c
i , z

o
i )

=

∫
p(zci )

∫
pθ (xi |z

c
i , z

o
i )p(z

o
i )dz

o
i dz

c
i

= Ep(zci )Ep(z
o
i )
pθ (xi |z

c
i , z

o
i ), (3)

where p(zoi ) = p(zoi |z
c
i ) is based on their statistical independence.

With Equation (3), to predict user preference with the known xu,i
and ci , we discuss the twomain components:p(zci ) andpθ (xi |z

c
i , z

o
i )

in Equation (3), respectively.
For content feature distribution p(zci ), it is modeled based on the

item content information ci :

pϕ (ci ) = Ep(zci )pϕ (ci |z
c
i ), (4)

where ϕ is the model parameters for modeling the content infor-
mation. Thus, we can use this content information to get the zci
distribution, then capture the zoi distribution based on both xi and
zci .

For pθ (xi |zci , z
o
i ), we model it as:

pθ (xi |z
c
i , z

o
i ) =

∏
xi,u ∈xi

pθ (xi,u |z
c
i , z

o
i ).
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which is similar to the VAE-based method [13, 17]. Then the proba-
bility of user u’s preference to item i is pθ (xi,u |zci , z

o
i ), which can

be derived by a user-aware non-linear transformation, such as a
feed-forward neural network. We discuss the details in Section 3.3.
Thus, we can first learn zci and zoi , and use the decoder to capture
the pθ (xi |zci , z

o
i ).

Variational Inference. To estimate the model parameters θ in
Equation (3), we follow the VAE-based paradigm. Note here, dif-
ferent from traditional VAE based methods [17] that can directly
estimate the posterior distribution of p(zi |xi ) for each data point,
or the conditional VAE [28] that knows part of the data information
(i.e., labels of the data), our case is more complex. That is, xi is
related to the joint distribution of latent factors zoi and zci , where
zci is extracted from item content information. Thus, we need to
calculate the evidence lower bound (ELBO) based on both zoi and
zci , their independent relations, and their relations to xi and ci .

Concretely, xi is generated based on the joint distribution of zci
and zoi , where z

c
i can be estimated by item content (such as images

or text-based descriptions). The ELBO of lnp(xi ) can be written as:

lnpθ (xi ) ≥ Ep(zci )[Eqθ (zoi |xi ,zci )(lnpθ (xi |z
c
i , z

o
i ))

− DKL(qθ (z
o
i |xi , z

c
i )| |p(z

o
i ))] ≡ L(xi ;θ ). (5)

Since Eq(zci )[·] and Eq(zoi |xi ,zci )[·] are intractable, we utilize the vari-
ational inference and reparametrization trick [13]. Details are dis-
cussed in Section 3.3.

To estimate ϕ in Equation (4), for consistency, we also use the
VAE-based paradigm. The corresponding ELBO is:

lnpϕ (ci ) ≥ Eqϕ (zci |ci )(lnpϕ (ci |z
c
i ))

− DKL(qϕ (z
c
i |ci )| |p(z

c
i )) ≡ L(ci ;ϕ). (6)

Through Equation (6), we can get an estimation of the item content
features zci . Then we transform it into the user-item space to help
learn user preference towards this item through Equation (5).

3.2 Feature Disentanglement
The content-collaborative disentanglement ensures zci and zoi learn
different information from content and user-item interactions. How-
ever, the extracted features in zci (and in z

o
i ) at a granular level could

also be entangled and confound with each other, making the rec-
ommendation unstable and difficult to generalize. Thus, to ensure
the quality of learned representations, we also aim to disentangle
each extracted feature in zci and zoi at a granular level. For exam-
ple, we might want to learn features like color and shape from an
item image, where changes to each feature (e.g., the color) do not
strongly depend on other feature changes (e.g., the shape). To do so,
considering each latent dimension represents a single item feature,
we disentangle each dimension of the item representation to extract
independent features. That is, we make a feature disentanglement
that forces zci,k ,∀k/ zoi,k ,∀k to be statistically independent. zci,k is
the kth value in the vector zci . Similar reasoning holds for zoi,k . The
user feature disentanglement is jointly modeled with item disen-
tanglement through a decoder of user-item interactions (for details
see Section 3.3).

More importantly, in DICER, the content-collaborative disen-
tanglement ensures the correlation Corri (zci , z

o
i ) = 0 (based on the

Equation (2)). Thus, the feature disentanglement inside zci and zoi

can further ensure all features in zi that are learned in DICER are
independent with each other: Corri (zi,k , zi, j ) = 0, ∀k , j.

Concretely, to enforce feature independence inside zci and zoi ,
we have:

qθ (z
o
i |z

c
i ) ≈

K1∏
k=1

qθ (z
o
i,k |z

c
i ), qϕ (z

c
i ) ≈

K2∏
k=1

qϕ (z
c
c,k ). (7)

Let’s look at each equation separately.

Feature Disentanglement in zoi . For the first equation in Equa-
tion (7), the aggregated posterior distribution of qθ (zoi |z

c
i ) =∫

xi
qθ (zoi |xi , z

c
i )pf data (xi )dxi , where pf data (xi ) is the user feed-

back distribution. The posterior distribution captures the aggre-
gated structure of the latent variables based on the user feedback
distribution [23]. Therefore, the KL term in Equation (5) can be
decomposed as:

Epf data (xi )[DKL(qθ (z
o
i |xi , z

c
i )| |p(z

o
i ))]

= Iq (xi; zoi ) + DKL(qθ (z
o
i |z

c
i )| |Πkqθ (z

o
i,k |z

c
i ))

+
∑
k

DKL(qθ (z
o
i,k |z

c
i )| |p(z

o
i,k )), (8)

where Iq (xi; zoi ) stands for the mutual information (MI) [3]. A simi-
lar decomposition can be found in [3, 4]. For each term in Equation
(8): (1) the index-codeMI Iq (xi; zoi ) = DKL(qθ (zoi , xi |z

c
i )| |qθ (z

o
i |z

c
i ))

is the mutual information between xi and zoi based on the empirical
user-item feedback distribution qθ (zoi |xi , z

c
i )pf data (xi ). As indi-

cated by many recent studies [1, 4, 12], penalizing mutual informa-
tion through the information bottleneck can encourage feature dis-
entanglement; (2) the second term DKL(qθ (zoi |z

c
i )| |Πkqθ (zoi,k |z

c
i ))

is the total correlation. This penalty can encourage statistical inde-
pendence of the learned latent representation in each dimension of
zoi under the condition of z

c
i ; (3) the third term

∑
k DKL(qθ (zoi,k |z

c
i )| |

p(zoi,k )) ensures the learned latent representations in each dimen-
sion are close to their corresponding priors, which is known as
dimension-wise KL [4].

Thus, based on Equation (8), if we use an independent prior dis-
tribution for each latent dimension of zoi , i.e., pθ (z

o
i ) = Πkpθ (zoi,k ),

the KL penalty term can encourage the disentanglement of the
learned features in zoi from the mutual information and total corre-
lation aspects. At the same time, it also ensures the close distribu-
tion between the posterior distribution and the priors by

∑
k DKL

(qθ (zoi,k |z
c
i )| |p(z

o
i,k )). Hence, the loss function of Equation (5) can

be refined by adding a KL penalized parameter β1 > 1:

Lβ1 (xi ;θ ) ≡ Eqθ (zci )[Eqθ (zoi |xi ,zci )(lnpθ (xi |z
c
i , z

o
i ))

− β1DKL(qθ (z
o
i |xi , z

c
i )| |p(z

o
i ))], (9)

to encourage each feature disentanglement of zoi .

Feature Disentanglement in zci . For the second equation in Equa-
tion (7), the aggregated posterior distribution of qϕ (zci ) =∫
ci
qϕ (zci |ci )pcdata (ci )dci . The pcdata (ci ) is the item content data

distribution. For the disentanglement of the content based repre-
sentation zci , similarly, we decompose the KL term in Equation (6)
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as:

Epcdata (ci )[DKL(qϕ (z
c
i |ci )| |p(z

c
i ))]

= Iq (ci; zci ) + DKL(qϕ (z
c
i )| |Πkqϕ (z

c
i,k ))

+
∑
k

DKL(qϕ (z
c
i,k )| |p(z

c
i,k )). (10)

Thus, by using an independent prior distribution for each latent
dimension of zci and penalizing the KL term in Equation (6), we
can encourage the disentanglement of content features. Similarly,
the loss function of Equation (6) can be refined by adding a KL
penalized parameter β2 > 1:
Lβ2 (ci ;ϕ) ≡ Eqϕ (zci |ci )(lnpϕ (ci |z

c
i )) − β2DKL(qϕ (z

c
i |ci )| |p(z

c
i )),

(11)

to ensure the feature disentanglement of zci .
In sum, with Equations (9) and (11), the final loss function for

DICER is: L = Lβ1 (xi ;θ ) + λLβ2 (ci ;ϕ), where β = {β1, β2} are
parameters used for feature disentanglement. λ is used to balance
the two types of information.

3.3 Implementation
In this section, we provide details of the implementation of DICER
as shown in the Figure 1(b): p(zci ), p(z

o
i ) (the prior), qθ1 (z

o
i |xi , z

c
i )

and qϕ1 (z
c
i |ci ) (the encoder), pθ2 (xi |z

o
i , z

c
i ) and pϕ2 (xi |z

o
i , z

c
i ) (the

decoder), where the parameters θ = {θ1,θ2} and ϕ = {ϕ1,ϕ2}.
Specifically, the θ1 and ϕ1 are parameters for encoders, and the θ2
and ϕ2 are parameters for decoders.
Prior. To encourage feature disentanglement, as illustrated in Sec-
tion 3.2, we set the prior of zoi and zci to be the centered isotropic
multivariate Gaussian distribution:

zoi ∼ N (0, IK1 ), z
c
i ∼ N (0, IK2 ).

The priors ensure the extracted features from different types of
information (be they item content or the user-item interactions)
are statistically independent in each dimension.
Encoder. To extract the content features zci and the content dis-
entangled collaborative features zoi , there are two parts in DICER:
the encoder for the user-item feedback and the encoder for the
item content information. Since both the true posterior distribution
pθ (zoi |xi , z

c
i ) and pϕ (z

c
i |ci ) are intractable, here we utilize the vari-

ational inference and reparametrization trick [13]. That is, we use a
Gaussian distribution form with a diagonal covariance qθ (zoi |xi , z

c
i )

and qϕ (zci |ci ) to approximate the true intractable posterior distri-
butions.

Concretely, for zoi , we assume:

lnqθ1 (z
o
i |xi , z

c
i ) = lnN (µu (xi , zci ),diaд{σ

2
u (xi , z

c
i )}),

where the mean and standard deviation are parameterized by a
neural network f nnθ1

:

(µo ,σo ) = f nnθ1
(xi − Uc ·

zci
| |zci | |

). (12)

TheUc ∈ R |U |×K2 here is the user embeddingmatrix that represents
the user preference towards item content features zc . Each row
ucu ∈ RK2 in Uc represents user u embedding. Since xi is related to
the joint contribution of item representation zoi and zci , we extract

information in xi that are not learned from zci by x′i = xi − Uc ·
zci

| |zci | |
. The · is the dot product. Here we first normalize the item

representation and project it to the same space as xi by multiplying
with each user embedding ucu . Thus, the learned representation zoi
can capture the remaining factors in the user-item feedback. The
neural network f nnθ1

is leveraged here to model the complex and
non-linear relationship between x′i and zoi .

For zci , the encoder of qϕ1 (z
c
i |ci ) is similar to other VAE-based

methods by using variational inference and f nnϕ1
(ci ), as shown in

Figure 1(b).
Decoder. In DICER, we use a co-decoder to ensure the learned la-
tent features in each type of information are appropriately encoded:
one decoderpθ2 (xu,i |z

o
i , z

c
i ) is used to predict the user preference to-

wards item i given both zoi and z
c
i ; the other one is the content-based

decoder pϕ2 (ci |z
c
i ) to ensure the quality of the encoded content fea-

ture representation zci .
For pθ2 (xu,i |z

o
i , z

c
i ), we assume the distribution is proportional

to the nonlinear transformation of both zoi and zci :

ln(pθ2 (xu,i |z
o
i , z

c
i )) ∝ ln(д

(u)
θ2

(zoi ) + д
(u)
θ2

(zci )), (13)

where д
(u)
θ2

(zoi ) = exp(cosine(zoi , u
o
u )) and д

(u)
θ2

(zci ) =

exp(cosine(zci , u
c
u )). Here, uou ∈ RK1 is the useru embedding, which

represents the user u preference towards features in zoi . The cosine
similarity is used to connect user and item embeddings rather than
the inner product similarity, since it can prevent mode collapse
[3, 22]. Note here since item features are disentangled, the cosine
also ensures the disentanglement of user features in each dimension
[22].

For pϕ2 (ci |z
c
i ), similar to other VAE-based methods, we use the

normal distribution with a single hidden fully-connected neural net-
work and we found it has good performance. That is: lnpϕ2 (ci |z

c
i ) =

lnN (µ′i ,σ
′2
i I), where µ′i and σ

′
i are calculated based on zci by using

neural network дnnϕ2
[13].

3.4 Variations of DICER
Our presentation so far has focused on a scenario in which we
have user-item interactions and content information associated
with items. In practice, DICER can also be used when only user
content information is available (in place of item information) or
when both user and item information are available. When only user
content information is known, we can simply change DICER from
item-based to user-based by reversing users and items. That is,
instead of encoding each item feedback xi across users, we encode
each user feedback xu towards different items. When both user
and item content information are known, we can do both user- and
item-based DICER, and combine the results together, similar to
many integrated auto-encoder based methods.

4 EXPERIMENTS
In this section, we investigate the following key research ques-
tions: (i) What is the recommendation performance of DICER com-
pared with state-of-the-art methods that do not disentangle content-
collaborative information? How does this performance vary for
different numbers of latent dimensions? (ii) What impact do the
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Table 2: Summary of the three Amazon datasets.

Dataset # Users # Items # Feedback Sparsity
Clothing 2,872 28,586 43,418 0.053%
Beauty 2,513 39,746 91,044 0.091%
Toys&Games 2,771 58,306 106,131 0.066%

disentanglement design choices have on DICER? and (iii) Are the
learned features in DICER really disentangled? Finally, we visualize
the disentanglement learning representation to illustrate how it
facilitates recommendation.

4.1 Datasets
To evaluate the importance of disentangling content-collaborative
information, we require datasets containing interaction data (e.g.,
clicks, purchases) as well as content information. Hence, we adopt
three real-world publicly accessible Amazon datasets [8, 24] which
cover rich and commonly used content information for items –
visual images and text descriptions. Other kinds of content informa-
tion can be easily incorporated into the proposedmodel as discussed
in Section 3.4. For items, we choose three domains that are widely
used: Clothing, Toys&Games, and Beauty. We select users with more
than 10 reviews in Clothing, 20 reviews in Beauty and 25 reviews in
Toys&Games for different levels of feedback sparsity, as shown in
Table 2. We extract UserID, ItemID, and the rating scores to indicate
whether the user purchased the item (1 represents a user purchase,
0 otherwise). For item-based content information, we consider the
images associated with each item (which were collected in [24])
and the text-based descriptions provided by the seller. Note here all
the items are considered. Thus the datasets have a long-tail distri-
bution, which is challenging in recommendation since many items
have very little feedback [34]. We randomly partition the implicit
feedback of each user into 80% for training, and the remaining as
testing, reserving 20% of the training data as validation.

4.2 Setup
Modeling Item Content. For the content information ci , here we
consider the widely used item images and text-based descriptions
[7, 15, 35]. For fairness, all content-aware baselines use the same
item content as input. Other sources of item content could also
be incorporated into DICER, and other pre-processing steps can
also be adapted here. Concretely, for item images, we apply the
same method as [8, 24, 35] to get the high-level visual feature vector
mi ∈ R4096. For item descriptions, we use the same word2vec-based
method [35] which turns the description paragraph into a fixed-
length feature vector ti . Based on [35], here we set ti ∈ R1000. The
ci ∈ R5096 is the concatenation of mi and ti .

Evaluation Metrics. Following many previous works [10], we
adopt NDCG at top-k (N@k) and hit ratio at top-k (HR@k) for
evaluating personalized ranking. The HR@k measures the fraction
of purchased items that appear in top-k recommendation lists across
all users. The N@k takes the position of correctly recommended
items into account by assigning higher scores to the top hits.

Baselines. We compare DICER with the following competitive
baselines, with particular emphasis on VAE-based methods for
comparison.2 The same content information is used for all content-
based methods.

• POP. Items are ranked by their popularity based on user’s
interactions with items.

• CDAE [32]. Collaborative Denoising Auto-Encoder uses auto-
encoders to find the relationship between users and items
based on implicit feedback. The number of negative samples
is set to q = 100 which is in line with the other negative
sampling methods.

• Multi-VAE [17]. This is a classic VAE-based latent factor mod-
els for recommendation. The implicit feedback from users
is treated as being generated from a multinomial likelihood
for recommendation.

• NGCF [31]. This is a state-of-the-art collaborative filtering
approach based on graph neural networks. It treats use-item
interactions as a bipartite graph and propagates the user
and item embeddings on the graph to explore the high-order
connectivity between users and items.

• CBPR [7]. This is a classic content-based Bayesian Personal-
ized Ranking [7] method, which is widely used for its robust
and strong performance.

• CVAE [15]. CVAE is a content-based VAE model that uses
a Bayesian generative model to first learn the item content
information and then user-item implicit feedback through
an inference network. It adds the item latent content variable
and collaborative latent variable as the joint representation
of each item.

• CNGCF. This is an augmented version of NGCF that incor-
porates item content information [31]. Specifically, we con-
catenate item content information with latent factors as the
joint representation, and then we propagate three layer’s
embeddings in the user-item bipartite graph for the final
recommendation.

Parameter settings. The dimension of latent factors and hidden
dimensions for each method is empirically set to be 40 (for the
impact of such choices, see Section 4.3.2). Regularization terms are
determined by grid search in the range of {0.1, 0.01, 0.001, 0.0001,
0.00001}. β in VAE-based methods are determined from the range
{1.0, 0.9, ...,0.1, 0.01, 0.001, 0.0001, 0.00001}. The drop out rate is also
chosen by grid search in the range of {0.1, 0.3, 0.5, 0.7, 0.9} and
the learning rate is in the range of {0.0001, 0.001, 0.01, 0.1}. Model
parameters are first randomly initialized according to truncated
normal distributions with mean 0 and standard deviation 0.001. All
experimental settings, code, data, and the DICER algorithms will
be released publicly at http://people.tamu.edu/~zhan13679/.

4.3 Top-K Recommendation
We first compare the Top-K recommendation performance of all
methods, and then vary the key hyperparameter – the number
of latent factor dimensions – to further investigate its effect on
recommendation.

2We also experimented with neural machine factorization [9] but the training process
is time consuming and its performance is not good here.

http://people.tamu.edu/~zhan13679/
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Table 3: N@K and HR@K of DICER and baselines. ∆ is the difference between DICER and the next-best alternative (marked
underline).

Dataset Measure% User-Item Interaction User-Item Interaction + Content
POP CDAE Multi-VAE NGCF CBPR CVAE CNGCF DICER ∆

Clothing

N@5 0.423 0.833 0.693 1.311 0.812 1.228 1.380 1.661 20.4%
N@10 0.616 1.111 1.031 1.735 1.109 1.682 1.809 2.177 20.3%
HR@5 0.731 1.462 1.253 1.950 1.288 2.089 2.089 2.646 26.7%
HR@10 1.358 2.228 2.159 3.203 2.089 3.412 3.377 4.039 18.4%

Toys

N@5 0.997 3.139 3.350 3.522 2.612 3.502 4.560 4.984 9.3%
N@10 1.454 4.273 4.490 4.835 3.728 4.991 6.074 7.017 15.5 %
HR@5 1.877 5.485 5.413 5.702 4.186 5.521 7.326 8.156 11.3%
HR@10 3.284 8.697 8.336 9.347 7.434 9.780 11.332 13.389 18.2%

Beauty

N@5 2.354 6.338 6.739 6.556 5.922 7.230 7.054 7.753 7.2%
N@10 3.449 8.567 9.005 9.017 7.755 9.464 9.693 10.477 8.1 %
HR@5 4.338 11.421 10.864 10.744 9.391 11.421 11.779 12.694 7.8%
HR@10 7.402 16.514 15.002 16.076 13.490 16.275 17.589 18.305 4.1%

4.3.1 Overall Comparison. For fair comparison, we set the latent di-
mension K to be the same for all methods. Notice that CBPR, CVAE
and CNGCF all use the same item content information (images and
descriptions) as DICER. We report the N@k and HR@k (for k at
5, 10) for the three datasets in Table 3. Overall, we see that DICER
consistently outperforms the next-best performing baseline for all
datasets and for all metrics. Concretely, we have the following key
observations:

First, methods that incorporate item content information gen-
erally achieve better performance comparing with corresponding
methods that only rely on user-item interactions. For example, the
HR@K and N@k of the content-based latent factor model CNGCF
is higher than NGCF for the three datasets. This verifies the im-
portance of incorporating additional item content information for
improving recommendation performance.

Second, among methods, DICER consistently achieves the best
performance over all datasets, as shown in Table 3 ∆ column. The
improvement demonstrates that by carefully disentangling content-
collaborative features, DICER is able to enhance the learning of
diverse features that influence user preference towards items. Par-
ticularly, comparing with CVAE which considers the same content
information as DICER, the large improvement of DICER further
confirms that the disentangling in DICER can effectively deal with
the complicated relationship between item content information and
user interactions, which strengthens DICER to discover different
features among the two types of information for recommendation
improvement.

Third, among datasets, DICER gives a relatively larger improve-
ment for the sparsest dataset (Clothing). This may be because
DICER not only considers the content information that is help-
ful for sparse data, but also utilizes disentanglement to discover
features that cover a wider space rather than duplicated or related
features. This further shows the importance of disentangling con-
tent and collaborative information. An interesting finding is that
comparing the improvement from NGCF to content-based CNGCF,
the improvement of DICER is higher in VAE-based methods. Such
high improvement may be attributed to the learning of disentangled

features rather than directly concatenating content and collabora-
tive features in CNGCF. This shows the benefit of capturing the
disentangled features for recommendation.

4.3.2 Influence of Latent Dimension. We also analyze the effect of
the key hyperparameter – the number of latent factors – on DICER
and representative baselines. Results for the Toys dataset is shown
in Figure 2. Similar results hold for the other two datasets. We
observe that DICER consistently outperforms the other methods
for different numbers of latent dimensions.

4.4 Ablation Study
Given the good performance of DICER versus baselines, what im-
pact do the design choices have on its performance? Specifically,
does the disentanglement approach in DICER effectively incorpo-
rate item content and collaborative information to enhance rec-
ommendation (encoder in Equation (12) and decoder in Equation
(13))? In this section, we explore several variants to incorporate
item content information compared with DICER and analyze their
effects:

• Original x: zoi is encoded based on the original user-item
interactions xi rather than the content disentangled one.
That is, zoi and z

c
i are separately learned without considering

their disentanglement;
• Nonlinear: In Equation (12), instead of using zci , here we
add a tanh layer to project zci to the same space as xi , then
encode zoi . It may influence the disentanglement relation
between zoi and zci ;

• LatentConcat: We directly concatenate zoi and zci as the joint
latent representation to reconstruct xi . That is, we use ln(д

(u)
θ2

(concate(zoi , z
c
i )) in Equation (13) to formulate

ln(pθ2 (xu,i |z
o
i , z

c
i ));

• LatentAdd: zoi and zci are directly added as the joint latent
representation to reconstruct xi . That is, we use ln(д

(u)
θ2

(zoi +
zci )) in Equation (13).

The results of the ablation study for the Toys dataset are shown
in Table 4. The Default row shows the DICER results. We observe
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Figure 2: Recommendation performance for different latent dimensions in Toys dataset. Similar results hold for the other two
datasets.

Table 4: Ablation study on Toys dataset. Similar results hold
for the other two datasets.

% N@5 N@10 HR@5 HR@10
Default 4.984 7.017 8.156 13.389

Original x 4.071 5.614 6.712 10.682
Nonlinear 4.659 6.206 7.615 11.620

LatentConcat 4.756 6.504 7.470 12.090
LatentAdd 4.828 6.6520 7.795 12.450

that DICER outperforms the other variations that consider the same
item content information, which further shows DICER can more
effectively model the relationship between item content and user-
item interaction information for recommendation improvement.

Concretely, the performance of DICER is superior to Original
x method which uses raw user-item feedback. This demonstrates
that disentangling evidence learned from item content to encode zoi
can bring a large improvement, compared to directly using the raw
xi . This is reasonable since the disentanglement can encourage the
learned features in zoi and zci to cover more diverse independent
features in item representations, and thus enhance the learning of
user preference towards these items. An interesting finding is that
comparing the nonlinear transform (the Nonlinear method), DICER
achieves a better performance. This is probably because the nonlin-
ear calculation may have difficulties maintaining disentanglement
among features and can be more prone to cause overfitting.

Furthermore, DICER outperforms methods that directly concate-
nate or add zci to zoi to jointly reconstruct the user-item feedback,
such as the LatentConcat and LatentAdd. This indicates that explic-
itly decoding item content separately can more precisely capture
item content features to further help model user-item interaction.

4.5 Disentanglement
Since the disentanglement representation learning plays a pivotal
role in DICER, we further explore its influence on the recommen-
dation performance from both the content-collaborative disentan-
glement and feature disentanglement perspective. Following [22],
we measure disentanglement based on statistical independence.
We vary β and plot the relationship between the disentanglement
and recommendation performance, where β is the parameter of
disentanglement for corresponding latent factors.

4.5.1 Content-Collaborative Disentanglement. The Content-
Collaborative disentanglement is measured by

Averaдek, j (1 −Corri (z
c
i,k , z

o
i, j )),

where zoi,k represents the kth dimension of zoi . Similar notation
holds for zci, j . Corri (z

c
i,k , z

o
i, j ) is the correlation between each di-

mension in the corresponding zci and zoi across items. The results
are shown in Figure 3(a). Note here since DICER outperforms the
other methods in N@10, the lines for the other methods stop earlier
than the line for DICER.

From Figure 3(a), we observe that (1) For the content-collaborative
disentanglement, DICER achieves a good disentanglement when
N@10 is high. This indicates that DICER can effectively capture the
relatively statistically independent features between item content
and user-item interaction information; (2) The figure also demon-
strates that good recommendation performance is related to a rel-
atively high disentanglement, which is consistent with [22]. This
makes sense since the disentangled features are more stable [4, 12]
and can cover a variety of user preferences.

4.5.2 Feature Disentanglement. Similarly, the item and user feature
disentanglement are measured based on:

Averaдe1≤k1<k2≤K1 (1 −Corri (z
o
i,k1
, zoi,k2

))

+Averaдe1≤j1<j2≤K2 (1 −Corri (z
c
i, j1 , z

c
i, j2 ))

+Averaдek, j (1 −Corri (z
c
i,k , z

o
i, j )),

Averaдe1≤k1<k2≤K1 (1 −Corru (u
o
u,k1
,uou,k2

))

+Averaдe1≤j1<j2≤K2 (1 −Corru (u
c
u, j1 ,u

c
u, j2 ))

+Averaдek, j (1 −Corru (u
c
u,k ,u

o
u, j )),

respectively. The calculation of Corru (·, ·) is similar as Corri (·, ·)
but across users instead of items. Figure 3(b)(c) shows the disentan-
glement results.

We have the following key observations: (1) Similar to the content-
collaborative disentanglement finding, when N@10 is high, DICER
achieves high feature disentanglement. This indicates DICER can
also capture good statistically independent features at a granular
level. (2) For CVAE, though it has a good disentanglement for item
and content-collaborative features, the disentanglement for user
features is much lower than the other two methods. This may be
since DICER and LatentAdd jointly model the disentanglement
of user and item features, the user representation can capture the
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Figure 3: Disentanglement Results for N@10 on Toys dataset. We vary the disentanglement parameter β and plot the rela-
tionship between the disentanglement and recommendation performance. The higher the disentanglement score, the more
disentanglement between corresponding features.

Figure 4: The 2-D visualization (with t-SNE [30]) of items in Clothing datasets by using (a) zci (b) z
o
i .

disentangled features based on item features, while CVAE considers
them separately. (3) Another finding is that the item feature disen-
tanglement is lower than content-collaborative disentanglement.
One possible reason is that content and collaborative representa-
tions are calculated from different types of information.

4.6 Case Studies of Disentanglement
In this section, we illustrate how the disentangled representation
approach facilitates recommendation.

First, we visualize the content-collaborative disentanglement
representations zci and zoi , as shown in Figure 4(a)(b). We observe
that (1) Comparing Figure 4(a) and (b), zci can nicely separate differ-
ent categories of items even without knowledge of the ground-truth
categories. That is, items are separated mainly based on item con-
tent oriented information. For example, as shown in Figure 4(a),
the accessories, shoes, tops and bottoms are in different clusters.
Different from zci , in Figure 4(b), z

o
i separates items by user-oriented

information, e.g., items used by male (left bottom) and female (right
top). Items that can be bought together (e.g., bottoms and shoes) are
also close to each other. This indicates zci and zoi can capture item
features in very different aspects (item content and user aspects)
by disentanglement. (2) Furthermore, in each cluster of (a), items
with similar content information are relatively close to each other.

For example, items in similar colors are close to each other, and
items with dark colors are far from the light color items, such as for
shoes and tops. This demonstrates that zci can capture reasonable
content features. In sum, by using content-collaborative disentan-
glement, zci and zoi are complementary in how they discover item
features based on different aspects to enhance the prediction of
user preference towards items.

Next, we illustrate the features that DICER learns in each di-
mension at the granular level. We vary the target dimension and
list the items that have similar values in the target dimension.
Some representative examples are shown in Figure 5. Each row
shows items that have similar values in a target dimension. For
each row, we see DICER is able to capture very different features
in each dimension without item category information, and some
of them may be interpretable. For example, in Figure 5, the first
target dimension likely captures the circle-based characteristic of
items. The second target dimension captures the shoe features.
The clothing items in the third row have similar styles. For the
fourth row, all the items have colorful patterns. This highlights how
DICER can capture independent and interpretable features in each
dimension.
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Figure 5: Each row shows items that have similar values in
one target dimension of item representations.

5 CONCLUSION
In this paper, we focus on disentangled representation learning
from both content information and user-item interactions to en-
hance recommendation. By disentangling the content-collaborative
features and each feature at a granular level, the proposed method
DICER learns features that are relatively statistically independent
and diverse, leading to a more powerful recommender. Through
extensive experiments, DICER outperforms the next-best baseline
by 13.5% and 14.4% on average in NDCG and hit ratio. In our contin-
uing work, we are interested in extending DICER to other scenarios,
e.g., where a user’s social network is available.
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