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ABSTRACT
Complementary item recommendation finds products that go well
with one another (e.g., a camera and a specific lens). While com-
plementary items are ubiquitous, the dimensions by which items
go together can vary by both product and category, making it
difficult to detect complementary items at scale. Moreover, in prac-
tice, user preferences for complementary items can be complex
combinations of item quality and evidence of complementarity.
Hence, we propose a new neural complementary recommender
Encore that can jointly learn complementary item relationships
and user preferences. Specifically, Encore (i) effectively combines
and balances both stylistic and functional evidence of complemen-
tary items across item categories; (ii) naturally models item latent
quality for complementary items through Bayesian inference of
customer ratings; and (iii) builds a novel neural network model
to learn the complex (non-linear) relationships between items for
flexible and scalable complementary product recommendations.
Through experiments over large Amazon datasets, we find that
Encore effectively learns complementary item relationships, lead-
ing to an improvement in accuracy of 15.5% on average versus the
next-best alternative.
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1 INTRODUCTION
Complementary items that “go well” with one another abound.
Examples include a camera that requires a specific lens or a laptop
that works well with only certain chargers (see Figure 1). While
these complements are strictly compatible – that is, they have
particular requirements that allow them to work together – other
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Figure 1: Complementary item examples and high-quality
complementary items (with red mark).

complements are more loosely related. For example, an aesthetically
matching shirt and pants outfit. Different from substitutes items
that are interchangeable, complementary items are those that might
be purchased together [23].

And yet, it can be challenging to identify complementary items,
especially considering large and varied item populations (e.g., Ama-
zon boasts around 500 million unique items). For example, one
method is to first find exactly compatible items [8]. However, a
sample of 500,000 items from Electronics on Amazon finds only
20% explicitly mention compatibility with other items [23, 36], with
even rarer occurrences of such mentions in categories like books,
movies, and fashion. Hence, in this paper we aim to create new
methods for complementary item recommendation that can uncover
complementary items across items and categories.

In particular, we identify three critical challenges for accurately
recommending complementary items: First, the dimensions of how
items complement each other vary by item and by category. For
example, previous work has shown how to uncover complements
based on visual style [24], but some items match based on size or
on specific common interfaces. Identifying these features requires
adaptive methods that can integrate multiple (possibly conflicting)
sources of evidence like images and product descriptions. Second,
even if a set of complementary candidate items can be identified,
which ones will actually be preferred by users? For example, dozens
of iPhone adapters may be identified as complements to an iPhone,
meaning that complementary item recommenders must carefully
model item quality to discern user preferences. Third, complemen-
tary relationships among items are complex, with potential non-
linear relationships among item features and item quality. Yet, many
existing methods rely on linear combinations of single source fea-
tures (like visual style) [23, 24, 36], meaning that adapting these
methods to complementary items may lead to poor performance.

With these challenges in mind, we address the problem of un-
covering complementary item relationships through the creation of
a new Neural COmplementary REcommender called Encore. The
proposed model is characterized by three unique features:
• Encore can effectively model both stylistic and functional ev-
idence of complementary items through careful balancing of
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high-level visual features learned by a convolutional neural
network and text-based embeddings of titles and descriptions;

• Encore naturally models latent item quality through Bayesian
inference over user ratings, leading to an item-relationship
based quality-aware ranking method; and

• Encore builds a novel neural item-relationship based model
to learn the complex complementary relationships between
items. That is, the interplay of style, function, and quality can
be learned for different categories of items, leading to more
flexible and scalable complementary item recommendations.
Through experiments over large Amazon datasets, we quantita-

tively and qualitatively evaluate the performance of Encore versus
a suite of state-of-the-art baselines. We find that Encore effectively
learns complementary relationships between items, leading to an
improvement in accuracy of 15.5% on average versus the next-best
alternative across multiple categories of items. We further evaluate
how different aspects of the model (e.g., images, text, ratings, neural
recommendation) impact the final complementary item recommen-
dation in different categories. We also show examples to illustrate
the recommended items by Encore. Ultimately, we find that En-
core’s careful combination of different sources of complementary
evidence is necessary for high-quality recommendation.

2 RELATEDWORK
Item-to-item recommendation. Item recommendation often fo-
cuses on finding related items that are similar to an item of interest,
rather than complements. Such item-to-item recommendation of-
ten uses collaborative filtering [18, 20, 30, 32, 37] with similarity
functions [2, 7, 21] such as Pearson similarity [26], cosine-based
similarity [6], conditional probability-based similarity [12], or si-
multaneous regression [SLIM] [28]. Recently, Kabbur et al. [11]
introduced a model called FISM that uses latent factor matrices
to learn item-item similarity. Shambour [33] used Euclidean dis-
tance to measure item-item similarity and showed such a method
is better than traditional similarity approaches. Li et al. [17] used
the proportion of same users who rated items to measure item
similarity. Moreover, many approaches seek to find similar items
by incorporating user ratings [1, 16, 38] or images [5, 10, 22]. Simi-
larly, context-based recommenders [13] and phrase-level sentiment
analysis [4] have been proposed to capture additional item features
for improved recommendation.

Item-relationship based recommendation.Recent research has
focused on detecting relationships between items – such as substi-
tutes or complements [19, 23–25, 36] – that go beyond traditional
item similarity. For example, [34] employed an association rule to
find implicit relationships between items and used it as a regular-
ization term in matrix factorization. [25] used user reviews to find
relationships between items such as “albums that are similar with
Taylor Swift’s 1989”. McAuley et al. showed how complementary
fashion items like dresses and shoes can be recommended by project-
ing item images into a common visual style space [23]. Image-based
recommendations are also discussed to discover substitutable items
in a style space [24]. Another improved model based on images of
items was proposed by He et al. [8], in which a mixtures-of-experts

Notation Explanation
I item set, where I = {I1, I2, ...I |I | }

mi ,ti image/text feature vector for item Ii
rik , qik the kth rating for item Ii and its binary
ηd , ηr the thresholds for distance and ratings
θi the expected value of qik after observing ratings
li j the relationship (link) between two items Ii and Ij
Ci the set of items that are complementary with Ii

EM , ET embedding matrix for image and for text
Wk ,bk neural network weight matrix/bias term in layer k

d(n)j |i (Ii , Ij |θ j ) neural item distance from query item Ii to Ij

Table 1: Notation.

framework is built to model the relative importance of different
image aspects.

Most existing methods are based on a single source of item
information – such as images or textual information. However, in
practice, the item relationships are complex and the interaction of
items in the relationship varies according to different categories.
For example, style-based methods do well for clothing but not for
books. In this paper, we incorporate multiple, possible conflicting
sources of item complementarity into a novel neural-based framework
that can learn the contributions of each source. Moreover, we improve
upon item-relationship based recommendations that have typically
focused on how closely items are related to each other (relevance
ranking) by incorporating latent item quality into complementary
item recommendation (via quality-aware ranking). In the following,
we present the design of our Encore approach.

3 OVERALL APPROACH: ENCORE
We assume we have a set of items I = {I1, I2, ...I |I |} and sets of
links Ci = {lic1 , lic2 , ...lic |Ci | }, i ∈ {1, 2, ...|I |} that describe rela-
tionships between a query item Ii and its complementary items
Ic1 , Ic2 , ..I |Ci | ∈ I. Inspired by [24], our goal is to design a com-
plementary distance function dj |i (Ii , Ij ) that captures a user’s pref-
erences for complementary items given Ii ∈ I. Specifically, we
propose the quality-aware Neural Complementary Item Recom-
mendation framework Encore that decomposes the problem into
three phases (see Figure 2):

• Detect Complementary Items. First, we aim to construct
a distance function d(c)j |i (Ii , Ij ) that assesses how well an item
Ij ∈ I complements the seed item Ii based on stylistic prop-
erties (via the embedding EM ) and functional properties (via
the embedding ET ).

• Quality-Aware Recommendation. Second, we augment
the first distance with a quality-aware distance d(r )j |i (Ii , Ij |θ j )
to capture user preferences. Specifically, We show how to
estimate the latent item quality θ j and then asymmetrically
incorporate it for ranking candidate complementary items
(i.e. given an item Ii , find the nearest high-quality comple-
mentary items Ij ).

• Transform via Neural Model. Finally, to capture the com-
plex relationships between item properties and ratings, we
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Figure 2: Overall EncoreModel Framework.

build a neural-based distanced(n)j |i (Ii , Ij ) that can jointly learn

complementary item relationships (d(c)j |i (Ii , Ij )) and user pref-

erence in d
(r )
j |i (Ii , Ij |θ ), leading to high-quality complemen-

tary item recommendation.

3.1 Detecting Complementary Items
In this section, we focus on detecting complementary items from
two perspectives: style and function. Our aim is to construct a
distance function d

(c)
j |i (Ii , Ij ) that balances these two perspectives

across different categories. For example, complementary fashion
items may mainly match on style (that is, they go well visually with
each other). In contrast, a Mac Pro and its charger need to function-
ally match based on a common interface (that is, the charger needs
to fit specifically with the laptop, regardless of style). In practice,
these notions of style and function vary across categories and can
both be necessary in many cases. For example, while complemen-
tary fashion items may need to be stylistic matches, they also need
to have similar functional sizes (e.g., identifying a woman’s shirt
and not one for a toddler). Ultimately, we propose a joint embed-
ding model that captures both perspectives and the model can be
customized for different product categories.

Style-BasedComplements.As the first step, we exploit the image-
based relationship between complementary items to find stylistically-
related items. Following [24], we first use the high-level visual
features extracted from a convolutional neural network (CNN) pro-
posed by [14]. The CNN is pre-trained by Caffe 1.2 million ImageNet
(ILSVRC12 challenge). Particularly, the features that we use are the
output of the second fully connected layer in CNN based on their
strong performance in previous work [8, 24], and the feature vector
length is fm = 4096. After extracting high-level image features, we
can learn a low-rank Mahalanobis transformation for image em-
bedding [24] (we refer to this method as LMT) and then calculate
the Euclidean distance between the high-level image feature vector
mi and mj in the embedding space. The image distance is used to
represent the distance between items Ii and Ij , that is:

d
(cm)
j |i (Ii , Ij ) = | |(mi −mj )T EM | |22 , (1)

where EM ∈ Rfm×fem is the low-rank Mahalanobis transformation
matrix and fem is the embedding dimension of image. Based on
the distance, a shifted sigmoid function is used to calculate the

Figure 3: Image-Confusing Items.

probability that two items belong to a certain relationship:

P(li j ∈ Ci ) = σ (−d(cm)
j |i (Ii , Ij )) =

1

1 + ed
(cm)
j |i (Ii ,Ij )−ηd

.

Based on this probability, we can use maximum likelihood to train
EM so that it can identify style-based complements [24].

Functional Complements. Such an image-based approach is well
suited for fashion-related items that demonstrate clear visual style.
However, since it relies solely on image-based features, there may
be significant errors introduced for complementary relationship
when it is applied to other product categories. For example, Figure 3
shows several items that can confuse image-only approaches, such
as a Panda USB battery and Baymax flash drive which are comple-
mentary with laptops. If they are mis-classified as toys according
to their visual appearance, they will be deemed complementary
with other toys rather than a laptop. And even when the images
themselves are identical (as in Figure 3), an image-only recom-
mender could mistakenly recommend uncomplementary MacBook
Pro chargers for a MacBook Air.

Since the complement criteria varies across products (recall Fig-
ure 1), instead of using existing methods to find functional topics
of each product, we propose to directly learn the functional com-
plementary features.1 Specifically, we propose to exploit text-based
embeddings which can model these more nuanced relationships.
That is, we aim to find a compatible text distance d(ct )j |i (Ii , Ij ) by ti
and tj , where ti includes the title and description of item Ii .

Based on that, we propose to extract ti by using a distributed
representation [15, 27]. Specifically, we train a representation with
a window size of 20 and learning rate 0.1. The final representation
is a fixed-length feature vector ti ∈ Rft . Through experimental
1One initial idea is to mine mentions of complements directly from the text of each
product description – e.g., to seek phrases such as “this charger is compatible with
MacBook Pro”. However, only 20% of products in Electronics (99,304/498,196) contain
such explicit mentions [23], with even rarer occurrences of such mentions in categories
like Digital Music and Clothing. The method also can not cover all situations for
complementary relationships.
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Figure 4: A “Bella Ladies” hoodie and three complementary
pants (A,B,C) with their ratings (on a 1-5 scale).

validation, we find that different dimensions of the text vector, such
as 4096, don’t strongly impact the overall results, so we use ft = 100.
So the distance between items Ii and Ij is calculated by:

d
(ct )
j |i (Ii , Ij ) = | |(ti − tj )T ET | |22 . (2)

where matrix ET ∈ Rft×fet is the trained text embedding to learn
text features that are related to the complementary relationship
and fet is the embedding dimension of text.

3.2 Quality-Aware Recommendation
By carefully combiningd(cm)

j |i (Ii , Ij ) andd(ct )j |i (Ii , Ij ), we could imme-
diately begin to recommend the nearest complementary items. E.g.,
we could combine the two factors as d(c)j |i (Ii , Ij ) = qd(cm)

j |i (Ii , Ij ) +

ρd
(ct )
j |i (Ii , Ij ), where q and ρ are hyper-parameters. In practice, how-

ever, users may choose a relatively high-rated complementary item
[31], rather than the strictly nearest complementary one. For ex-
ample, Figure 4 shows three complementary pants for a user who
bought a Bella Ladies hoodie. The nearest pants – (A) and (B) –
found by d

(c)
j |i (Ii , Ij ) are from the same fashion line Bella Ladies.

However, the user’s actual choice is (C), a pair of Spandex pants
that are more distant by d(c)j |i (Ii , Ij ) but that are rated more highly
than (A) and (B) (as shown on the right of Figure 4).

Therefore we hypothesize that these complementary items pur-
chase decisions are driven by both perceived match (stylistic and
functional) and by item ratings. However, in practice, item ratings
are noisy and the number of ratings is different across items, which
makes it hard to capture user purchase preference. So we propose
to model each item’s latent quality through careful consideration
of item rating distributions [9, 31, 34]. Concretely, we model item
latent quality as the expectation θ that a user will highly rate an
item, and so it may be easier to capture user purchase preference.
Then based on this θ , we propose a quality-aware distance func-
tion d

(r )
j |i (Ii , Ij ) that can provide rich user preference information.

In the following, we first show an example (Figure 5 and 6) to il-
lustrate why Bayesian inference is preferred to estimate θ here.
Then we discuss details of θi estimation and build a quality-aware
complementary distance d(r )j |i (Ii , Ij |θi ).

Figure 5 shows ratings for three items. Item 1 and item 2 have
same average ratings, while item 2 has been rated many more times
(yielding more confidence in its underlying quality). So there is high
probability that users would prefer item 2 than item 1. By Bayesian
inference, the posterior distributions for the three example items
are shown in Figure 6. We find that the posterior rating distribution
for item 2 is more narrow and close to 1 while the distribution

Figure 5: Ratings distributions for three example items.

Figure 6: Posterior distribution for the example items. Ei is
the expectation of the ith item.

of item 1 is more spread out, which means the posterior rating
distribution can properly indicate users have a higher probability
to highly rate item 2 than item 1. So we leverage it to estimate θi .
Concretely, the steps for generalizing d(r )j |i (Ii , Ij |θi ) are:

Ratings-Based Bayesian Inference. First, suppose item Ii has
ratings ri1, ri2 ...ri |Ii | by different users and we treat each rik ∈ Z as
a random variable for product Ii ratings. Since users have different
evaluation scales and there is no big difference between 4-star or
5-star when a 5-scale rating is used [35], we first smooth rik as a
binary random variable qik . Let ηr be a binary threshold to separate
good ratings and bad ratings. If rik > ηr , it means rik is a good
rating; otherwise it means the user thinks there are drawbacks of
item Ii . So the probability (qik ) that “the kth rating of item Ii is a
good rating” can be represented as:

qik =

{
1 if rik > ηr

0 otherwise,

and the p.d.f. of qik for item Ii is:

f (qik |θi ) =
{
θqik (1 − θ )1−qik for qik = 0, 1
0 otherwise.

Thus qik is Bernoulli distributed qik ∼ B(1,θi ). The expectation
that item Ii can get a good rating is E(qi |θi ) =

∑∞
k=1 qik f (qik |θi ) =

θi and θi ∈ [0, 1] for each item Ii . So θi can be used to measure user
expectations (refer as quality) towards item Ii . If the value of θi is
high, it means there is a high probability that the item Ii can get a
good rating (i.e. item Ii has high quality).

But how can we estimate θi? Many previous methods do not
consider ratings for recommendation, so they assume the quality of
each item is randomly distributed, that is θi ∈ U [0, 1] for all Ii ∈ I.
In contrast, we use Bayes’ theorem [3, 9] to estimate the posterior
p.d.f of θi of item Ii based on users’ ratings (as we previously
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illustrated), where this uniform distribution is treated as a prior for
items when we have no rating information:

ξ (θi |qi1,qi2...qi |Ii |) =
fi (qi1,qi2...qi |Ii | |θi )ξ (θi )

hi (qi1,qi2...qi |Ii |)
∝ fn (qi1,qi2...qi |Ii | |θi )ξ (θi ),

(3)

where hi (·) is the marginal joint p.d.f of qi1, ...qini . ξ (θi ) is the
prior p.d.f. of θi . Here it is the p.d.f of uniform distributionU [0, 1].
fi (qi1,qi2...qi |Ii | |θi ) is the likelihood function:

fi (qi1,qi2...qi |Ii | |θi ) =
∏

k ∈[1, ... |Ii |]
f (qik |θi )

= θ
∑|Ii |
k=1 qik

i (1 − θi ) |Ii |−
∑|Ii |
k=1 qik .

(4)

Let Φ(qi1,qi2...qi |Ii |) := Γ( |Ii |+2)
Γ(∑|Ii |

k=1 qik+1)Γ( |Ii |−
∑|Ii |
i=1 qik+1)

, where

Γ(z) =
∫ 1
0 xz−1e−xdx . According to Equation 3, the p.d.f of poste-

rior distribution ξ (θi |qi1,qi2...qi |Ii |) is:

ξ (θi |qi1,qi2...qi |Ii |) = Φ(qi1,qi2...qi |Ii |)θ
∑|Ii |
k=1 qik

i (1−θ ) |Ii |−
∑|Ii |
k=1 qik .

So the posterior distribution of θi is a Beta distribution

θi ∼ Beta(
|Ii |∑
k=1

qik + 1, |Ii | −
|Ii |∑
k=1

qik + 1). (5)

Based on the posterior distribution, the expectation of θi is

E(θi |qi1,qi2...qi |Ii |) =
∑|Ii |
k=1 qik+1
|Ii |+2 , which we can use to estimate

users expectation for item Ii (same as Figure 6 examples).

RecommendationwithAsymmetric Ratings. In practice, users
care more about the quality of a complementary candidate item
Ij , rather than the quality of a query item Ii . So we consider the
latent quality for item Ij in d

(r )
j |i (Ii , Ij ). Given Ij ’s quality estimate,

the recommended item quality should be inversely proportional to
item distances: the lower the quality of the candidate Ij , the larger
the distance from the query item. That is:

d
(r )
j |i (Ii , Ij |θ j ) ∝ E(1 − θ j |qj1,qj2...qj |Ij |) =

|Ij | + 1 −
∑ |Ij |
k=1 qjk

|Ij | + 2
,

when item Ii is queried and Ij is recommended. But how do we
incorporate E(1 − θi |qi1,qi2...qi |Ii |) to item relationship distance
for our complementary recommendation?

3.3 Neural Recommendation
As shown in Figures 3 and 4, complementary relationships vary
greatly across categories. Moreover, users may choose a relatively
high quality complementary item rather than the strictly nearest
complementary one according to previous analysis of Figure 4.
Hence, instead of directly combining three sources of informa-
tion, we propose a neural-based complementary recommender
that can bring some attractive characteristics for complementary
item recommendation: (i) Neural methods may capture the vari-
ability of complementary relationships for different categories;
(ii) Neural models can also offer more flexibility in balancing the
style/functional complementary matches with item quality through

activations; and (iii) Many neural methods may be easily paral-
lelized for scalable computation [29], which can be beneficial for
large item populations with high-dimensional visual and text fea-
tures. Concretely, we transform Encore’s complementary distance
into a non-linear space d(n)j |i (Ii , Ij |θ j ) to capture these complex com-
plementary relationships (see Figure 2).

To calculate d(n)j |i (Ii , Ij |θ j ) between Ii and Ij , we first extract fea-
tures of query item Ii and its candidates complementary item Ij
in each space, then use embedding to learn visual and functional
complementary features separately. Instead of directly using their
distances, we concatenate the embedded features with the expec-
tation quality of candidate item Ij into a multi-modal space. So
Encore can learn complementary relationships by feature differ-
ences in each source:

cj |i (Ii , Ij |θ j ) = [(mi −mj )T EM , (ti − tj )T ET ,E(1 − qj |θ j ))]T ,

where cj |i (Ii , Ij |θ j ) ∈ R(fem+fet+1). We use it as our asymmet-
ric merged layer of our neural network (because we only con-
sider the quality of candidate item Ij ). Then with adding W1 ∈
R(fem+fet+1)×m1 and bias b1 ∈ Rm1 in the layer:

hj |i (Ii , Ij |θ j ) = cj |i (Ii , Ij |θ j ) ×W1 + b1.

Then we add the activation function and now the distance becomes:

d
(n)
j |i (Ii , Ij |θ j ) = | | tanh(hj |i (Ii , Ij |θ j ))W2 | |2, (6)

where tanh(−hj |i (Ii , Ij |θ j )) = e−hj |i (Ii , Ij |θj )−e−hj |i (Ii , Ij |θj )

e−hj |i (Ii , Ij |θj )+e−hj |i (Ii , Ij |θj )
∈ Rm1 .

And W2 in Equation 6 is a weight vector when features are put
into non-linear space. So we can calculate the probability that item
Ii and Ij are complementary when Ii is queried as: P(li j ∈ Ci ) =

1

1+e
d (n)j |i (Ii , Ij θj )−ηd

, where ηd is a learned complementary threshold.

Based on the probability, we use the maximum likelihood func-
tion to find the maximum observed complementary relationship
of set Ci for each Ii . Then the complementary relationship for the
item set I is CI = {C1,C2, ...C|I |}. The log-likelihood function
for all items in I is:

l(E,W, b,ηd |CI , C̃I ) = −
∑
Ii ∈I

∑
li j ∈Ci

lnP(li j ∈ Ci |Ii , Ij ) −
∑
Ii ∈I

∑
li j ∈C̃i

(1 − lnP(li j ∈ C̃i |Ii , Ij )))

= −
∑
Ii ∈I

∑
li j

(yi j lnP(ri j ∈ C|Ii , Ij ) + (1 − yi j )(1 − lnP(li j ∈ C̃|Ii , Ij ))),

(7)
where yi j indicates whether there is a complementary relationship
between item Ii and Ij . If li j ∈ Ci , then yi j = 1; otherwise it is
0. In l(E,W, b,ηd |CI , C̃I ), E represents {EM ,ET }. W represents
{W1,W2}. C̃I = {C̃1, C̃2, ...C̃|I |}. Each C̃i is a randomly selected
negative set of non-complementary items. To train parameters, we
generate C̃i such that |C̃i | = |Ci | [24].

4 EXPERIMENTS
In this section, we evaluate Encore’s complementary item rec-
ommendations over large Amazon datasets in comparison with
state-of-the-art baselines. Especially, we seek to address the follow-
ing key research questions:
• Howwell does Encore perform versus baselines? And does this
performance vary by item types? And also across complemen-
tary relationships (i.e. also-bought versus bought-together)?



RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Y. Zhang et al.

Dataset # Cat. Also-bought Bought-together
# Items # Edges Avg # Items # Edges Avg

Digital Music 198 164,440 6,912,348 42 5,552 9,590 1.73
Movies 345 118,351 5,248,530 44 80,922 130,640 1.61
Cell phones & Accessory 81 122,031 2,985,220 24 100,567 138,815 1.38
Books 2,752 65,024 2,806,544 43 35,638 54,146 1.52
Electronics 786 140,922 4,446,609 32 140,020 194,309 1.39
Clothing 1,993 658,304 20,546,119 31 569,714 1,645,219 2.89

Table 2: Amazon datasets. The second column is the number
of subcategories. The Avg column is the average number of
linked items for each query item. For example, users also-
bought 32 complementary items on average in Electronics
and bought-together 1.39 items on average.

• What impact do the design choices of Encore have? For exam-
ple, is textual-added complement more impactful than image-
driven complement across different categories? What impact
does the neural recommender model have versus a linear model
for complementary recommendation?

Finally, we explore the complementary recommendations of En-
core through several case studies.

4.1 Amazon Dataset
Concretely, we adopt a large real-world dataset from Amazon re-
cently introduced in [8, 24]. The complete dataset contains over 1
million products and 42 million co-purchase relationships across
around 20 top-level product categories. We focus on six main cate-
gories that display different complementary aspects: Electronics,
Cell Phones & Accessories (C & A), Clothing, Books, Digital Music,
and Movies (see Table 2 for details) [24]. Specifically, following with
previous work [8, 24, 36], we adopt two relationships in Amazon
data: the “Bought-together (BT)” relationship, where users bought
item Ii and Ij simultaneously, and the “Also-bought (AB)” relation-
ship, where users who bought item Ii also bought Ij ’ [20].

4.2 Experimental Setup
We make recommendation based on a single category at a time.
We use item title and description for the functional embedding,
and item image for the style embedding (which was collected in
[24]). For non-complementary item, we randomly select a negative
set such that |C̃i | = |Ci |. All experiments are trained using Nvidia
GeForce GTX Tian X GPU with 12GB memory and 3072 cores using
Tensorflow. Since it takes around one week to train a model over
the full dataset, we randomly select 11,000 items from each training
set as query items to do the five fold cross-validation for model
training. We find similar performance between models trained over
the full data and this approach [24]. 2

Baselines. We consider a suite of state-of-the-art baselines. To
evaluate the model structure of Encore, for fairness, we extend
each approach to be trained over the exact same input as Encore –
images, product text, and ratings:
• Logistic Regression with Average Rating (LRA): Our first base-
line is a straightforward application of logistic regression. We
concatenate the differences of images, text, and ratings be-
tween queried item Ii and item Ij as input: f ′j |i (Ii , Ij |θ j ) =

2All code and experimental results are available at: http://people.tamu.edu/~zhan13679/

[(mi − mj )T , (ti − tj )T ,E′(1 − θ j )]T , and calculate the prob-
ability that two items are complementary. Here E′(1−θ j ) is the
average ratings without using Bayesian approach.

• Logistic Regression with Bayesian Rating (LRB ): This variant is
similar to the previous but uses the Bayesian ratings inference
to find E(1 − θ j |qj ) rather than the average ratings. Hence, the
input is fj |i (Ii , Ij |θ j ) = [(mi −mj )T , (ti − tj )T ,E(1 − θ j |qj )]T .

• Weighted Nearest Neighbor (WNN): This method uses a weighted
Euclidean distance to measure complement between items Ii
and Ij : d = | |fj |i (Ii , Ij |θ j ) ◦w| |22 where ◦ is Hadamard product
and w is a weight vector.

• Feedforward Neural Network (FNN): We use a 3-layer neural
network to measure the non-linear relationships of complement,
where the input is the same as in logistic regression LRB . We
use tanh and so f tmax as activation functions for the second
and third layer. We set the hidden and final dimensions to 10 in
keeping with the other methods.

• Low-rank Mahalanobis Transform (LMT) [24]: This state-of-the-
art method uses low-ranked Mahalanobis embedding matrix
parameters [24]. Whereas the original approach in [24] relies
on images only, we adapt it to use images, text, and ratings. The
distance between queried item Ii and item Ij is calculated as d =
| |fj |i (Ii , Ij |θ j )T ×Ef | |22 where Ef is the low-rankedMahalanobis
transform matrix. We set the embedding dimension K = 10.
[24] also further splits top-categories into smaller categories
(such as splitting Clothing into Men’s, Women’s, Boys, Girls).

• Monomer [8]: Another state-of-the-art method – Mixtures of
Non-metric Embeddings method [8] that learns low-rank em-
beddings to uncover different aspects of complementary dis-
tance and uses a mixture of experts to find the final comple-
mentary distance. We adapt the original method to consider
images, text and ratings as input: fTi = [mT

i , t
T
i ,E(1 − θi |qi )]

rather than just images for each item Ii . The distance between
queried Ii and Ij is calculated by d =

∑
P(n)dn with mixture

of weighted experts P(n). dn = | |fTi E0f − fjEnf | |22 where Enf
is the nth embedding matrix. Empirically, we set parameters
K = 10 and N = 3.

Variations of Encore. In order to evaluate the impact of images,
text, ratings, plus the appropriateness of adopting a neural approach,
we consider several variations of our proposed approach:
• Encore−M : This image-only method is based on [24] and uses
the low-ranked Mahalanobis embedding matrix parameters in
Equation 1. Note that we do not consider this refinement in any
of the following alternatives.

• Encore−MT : This method combines images and text, while
ignoring ratings. The complementary distance between Ii and
Ij is q| |(mi −mj )T EM | |22 + ρ | |(ti − tj )T ET | |22 . q and ρ is decided
by cross-validation with grid search in the range of {0.1, 0.5, 1,
1.5, 10, 100} in each datasets.

• Encore−MTCos : This method is a simplified version of the pre-
vious one, replacing the text-based embeddings with a simpler
cosine-based approach over the original text itself.

http://people.tamu.edu/~zhan13679/
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• Encore−MTR : This method considers images, text, and ratings,
but uses a linearmodel:d(r )j |i (Ii , Ij |θ j ) = [| |(mi−mj )T EM | |22 , | |(ti−
tj )T ET | |22 , E(1 − θ j |q)]Tw, where w ∈ R3 is a model parameter
to leverage the contributions of each source of information.

• Encore: Finally, we consider the full-blown Encoremodel that
incorporates images, text, and ratings in a non-linear model as
shown in Equation 6.

Metrics. For each method, we predict whether pairs of items are
complementary or not, and measure the accuracy as:

ACC :=
∑
i (
∑
j S(P(li j ∈ Ci ) − 0.5) +∑j S(0.5 − P(li j ∈ C̃i )))∑

i (|Ci | + |C̃i |)
,

where S(·) is a thresholding operator defined as: if x > 0, then
S(x) = 1; otherwise S(x) = 0.

We also use Precision@k to measure the fraction of correctly
predicted complementary items for each query item:

P@k :=
1
|I |

∑
i

|GT (Ci ) ∩ Pred(Ci )@k |
k

, (8)

where GT (Ci ) is the ground truth set of items that are complemen-
tary with Ii and Pred(Ci )@k is the predicted top-k recommended
complementary items.

Parameter settings. For all models, the image and text latent fac-
tor dimensions, output dimensions are set to 10 empirically for
a trade-off between performance and computational complexity,
as well as for fair comparison across methods. For ratings, the
threshold is ηr = 3. Other parameters are fine-tuned for all meth-
ods. Particularly, in each experiment, five fold cross-validation
is used. Model parameters are first randomly initialized accord-
ing to truncated normal distributions with mean 0. The standard
deviation is decided by grid search in {0.1, 0.01, 0.001}, and up-
dated by conducting stochastic gradient descent (SGD). The corre-
sponding learning rate is determined by grid search in the range
of {0.1, 0.05, 0.01, ..., 0.000001}. Generally, training for different
categories of items converges within 30 iterations.

4.3 Evaluating Complementary
Recommendation

We begin by investigating the model quality of Encore versus
each baseline. Since each approach is built over the same infor-
mation – images, text, and ratings – we can explore how each
approach models and combines these factors for complementary
item recommendation. We report the accuracy, precision@5, and
precision@10 in Figure 7 for all methods. Table 3 shows the increase
of Encore comparing with the next-best alternative (“AB” means
“Also Bought”. “BT” means “Bought Together”. Again, here we have
modified these original methods to incorporate text and ratings,
beyond their original image-only approaches).

Focusing on accuracy (the top row of Figure 7), we observe that
Encore results in the highest accuracy across both also-bought
and bought-together items for all categories except for Books and
Digital Music, resulting in an average improvement versus the next-
best alternative of 15.5% ( ACC row in Table 3). Since Books and
Digital Music demonstrate a fairly weak notion of compatibility
(e.g., phone chargers match with specific phones, but books of

course can be bought with any other books), we see that Encore
has difficulty, though performing as well as other sophisticated
models like LMT and Monomer. Additionally, Encore outperforms
the next-best alternative of the state-of-the-art LMT and Monomer
by 16.9% on average. Since all methods consider same information,
these results show the structure of Encore introduced via our
neural framework results in an even greater improvement. We also
observe that LRA outperforms LRB , which indicates the number of
ratings closely influences a user’s preference for complementary
items (as in Figure 4).

Next, we focus on precision – see the middle and bottom rows
of Figure 7, and increase of Encore comparing with the next best
baselines in Table 3 row P@5 and P@10.We observe that for all also-
bought categories, Encore results in the highest precision@5 and
precision@10. Encore improves versus the next-best alternative an
average of 18.4% for precision@5 and 17.8% for precision@10, and
versus the best state-of-the-art alternative an average of 27.5% for
precision@5 and 26.9% for precision@10 shown in Table 3. Here,
we see further evidence of the importance of low-rank embedding
and neural transformation in comparison with models like Logistic
Regression and Weighted Nearest Neighbors. And for those models
that do consider those factors, we see the importance of careful
modeling of ratings and integrating each sources information sep-
arately in a lower rank non-linear spaces. Observe that precision
values are low for all methods in bought-together categories – the
data in this case is extremely sparse, with most items having fewer
than three ground truth items in the complementary set.

4.4 Impact of EncoreModel Choices
Given the good performance of Encore versus baselines, what
impact do the specific design choices have on complementary item
recommendation? Does the functional complement derived from
text improve upon image-only approaches? Does adding a ratings-
based recommender improve the quality of prediction? And what
impact does the neural approach have? To anwser those questions,
we focus here on accuracy as shown in Table 4; note that similar
results hold over precision@5 and precision@10. We additionally
report the relative improvement versus the image-only EncoreM .

Overall, we see the full-blown Encore improves upon all of its
variations across all categories, with an average accuracy of 14.0%.

From column Encore−MT in Table 4, Text-based evidence is
a strong indicator of functional complement in addition to what
images can provide, especially in Books (∆ 22%), Digital Music (∆
32%), and Electronics (∆ 16%) for the bought-together relationship.
For also-bought, the relative accuracy improvement is smaller, with
Electronics being the one category with worse accuracy (∆ -1%).

Our careful modeling of ratings makes a key positive impact for
both also-bought and bought-together items. The accuracy improve-
ment of Encore−MTR shows that Electronics, Cell Phones & Acces-
sories, and Digital Music are all highly influenced by user ratings.
Indeed, we calculate the average rating for predicted complemen-
tary items in Electronics and find that Encore−MTR recommends
items with ratings higher than Encore−M by 4.6%, Encore−MTCos
by 6.1% and Encore−MT by 1.2%.
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Figure 7: Accuracy and Precision of Encore and baselines.

∆
Digital Music Movies C & A Books Electronics Clothing AverageAB BT AB BT AB BT AB BT AB BT AB BT

ACC 23% -7% 10% 17% 29% 19% -8% 9% 18% 40% 19% 16% 15.5%
P@5 46% -5% 24% 2% 17% -22% 76% 33% 20% 12% 13% 4% 18.4%
P@10 27% -1% 18% 2% 18% -22% 76% 42% 13% 12% 21% 6% 17.8%

Table 3: Accuracy and Precision increase of Encore comparing with the next-best alternative.

Dataset Encore−M Encore−MT Encore−MTR Encore
ACC ACC ∆ ACC ∆ ACC ∆

Digital
Music

AB 0.661 0.660 0% 0.755 14% 0.763 15%
BT 0.525 0.693 32% 0.722 37% 0.738 40%

Movies AB 0.686 0.722 5% 0.733 7% 0.746 9%
BT 0.680 0.736 8% 0.748 10% 0.756 11%

C & A AB 0.780 0.791 1% 0.797 2% 0.806 3%
BT 0.722 0.749 4% 0.784 9% 0.791 10%

Books AB 0.702 0.712 1% 0.725 3% 0.738 5%
BT 0.580 0.706 22% 0.726 25% 0.737 27%

Electronics AB 0.713 0.703 −1% 0.712 0% 0.733 3%
BT 0.503 0.583 16% 0.623 24% 0.670 33%

Clothing AB 0.844 0.845 0% 0.855 1% 0.855 1%
BT 0.757 0.810 7% 0.827 9% 0.833 10%

Table 4: Prediction accuracy of Encore variations. ∆ is the
change in accuracy compared with Encore−M . Encore out-
performs the other methods in each experiment for both
also-bought and bought-together relationships.

Finally, we see that the non-linearity of Encore plays a signifi-
cant role to identify complementary relationships. On average, En-
core results in an improvement of 6.29% for also-bought and 21.91%
for bought-together in comparison over EncoreM . The impact is

especially large in the Electronics categories since the complement
relationship is quite complex as discussed.

4.5 Encore Recommendations
We also generate predictions by Encore for several other items
to give additional insights. For a domain like electronics, we see
in Figure 8 that Encore generates different recommendations for
different query items. For example, for the computer in first row,
it recommends a keyboard cover, laptop sleeve, and external DVD
writer. For an iPhone 5 in last row, Encore can recommend iPhone
5 screen protectors and cases.

5 CONCLUSION
In this paper, we have focused on finding “complementary” rela-
tionships of items based on user preferences. We proposed a new
neural item relationship-based recommender – Encore – which
carefully combines multiple sources of complement evidence. We
saw how stylistic complements (via images) and functional comple-
ments (via text-based titles and descriptions) could be combined in a
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Figure 8: Encore predictions examples for a computer, iPad
Air, Camcorder, Camera and iPhone 5. Query items are to
the left of the line. Predictions are on the right.

quality-aware framework for uncovering high-quality complemen-
tary recommendations. Quantitative and qualitative results show
that Encore improves upon a state-of-the-art baseline by 15.5%
on average, even when all models are built over the exact same
input. In our continuing work, we are interested in personalizing
Encore for considering individual user personality, in addition to
the aggregate perspective in the current version. We are also inter-
ested to explore more nuanced models of functional complements
to improve the quality of our recommendations.
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