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ABSTRACT
Currently, most sequence-based recommendation models aim to
predict a user’s next actions (e.g. next purchase) based on their past
actions. These models either capture users’ intrinsic preference (e.g.
a comedy lover, or a fan of fantasy) from their long-term behavior
patterns or infer their current needs by emphasizing recent actions.
However, in e-commerce, intrinsic user behavior may be shifted by
occasions such as birthdays, anniversaries, or gifting celebrations
(Valentine’s Day or Mother’s Day), leading to purchases that deviate
from long-term preferences and are not related to recent actions. In
this work, we propose a novel next-item recommendation system
which models a user’s default, intrinsic preference, as well as two
different kinds of occasion-based signals that may cause users to
deviate from their normal behavior. More specifically, this model
is novel in that it: (1) captures a personal occasion signal using an
attention layer that models reoccurring occasions specific to that
user (e.g. a birthday); (2) captures a global occasion signal using an
attention layer that models seasonal or reoccurring occasions for
many users (e.g. Christmas); (3) balances the user’s intrinsic prefer-
ences with the personal and global occasion signals for different
users at different timestamps with a gating layer. We explore two
real-world e-commerce datasets (Amazon and Etsy) and show that
the proposed model outperforms state-of-the-art models by 7.62%
and 6.06% in predicting users’ next purchase.
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Figure 1: Example of Occasion-driven Purchases. User be-
havior in E-commerce is not always related to their recent
actions or long-term intrinsic preferences, as assumed by
many previous sequential recommendation systems. For ex-
ample, a mom who frequently buys clothing for her infant
will look forChristmas decorations nearChristmas. A buyer
who routinely purchases crochet supplies may purchase a
birthday gift for her son every year.
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1 INTRODUCTION
Recommendations act as an important component in e-commerce
helping users discover interesting items that fit their needs. A well-
performing recommendation system needs to infer and recommend
items that are closely related to user preferences at a certain time.
To handle the complex situation where user preferences can develop
and change along time, recent efforts have focused on modeling
users in a dynamic manner, which can adjust the recommendation
based on the sequential behaviors of users [9, 18]. They either
rely on the sequential transition between recent purchases [4, 21]
or model the intrinsic preferences of users with different neural
structures based on their historic sequential behaviors [10, 24, 33].

However, in e-commerce, users’ shopping decisions can also be
influenced by different occasions that lead to behavior which is not
related to their recent actions or long-term intrinsic preferences.
For example, a user who buys a pair of sandals in June would not
want to be recommended an item for “Summer vacation” during
the user’s next shopping session in December. A “boho” style lover
may purchase clothes or accessories that match her style, however,
she may occasionally purchase a birthday gift for a friend whose
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Figure 2: (a) In Amazon, users’ shopping preferences are dynamic and can reflect reoccurring occasions (festivals, holidays,
seasonal activities). We can detect occasion-based shopping trends from crowd behavior. (b) Recommending temporally pop-
ular items works better than recommending general popular items when there is an intense shopping trend for a specific
occasion.

style is not “boho”. Previous works assuming that users’ actions
are coherent or change smoothly along time can not handle such
scenarios where users’ behaviors can also be driven by different
occasions (as illustrated in Figure 1).

Concretely, an occasion is a particular time or instance of an event
that causes or triggers a purchase. There are global occasions which
happen at the same time for a large number of users; examples
include festivals or celebrations (like Christmas, Valentines’ Day,
Mother’s Day) or seasonal events (like buying a snowboard in the
Winter and a surfboard in the Summer). These global occasions are
able to encourage or lead to similar shopping decisions for crowds
of users. On the other hand, there are also personal occasions, which
may happen at different timestamps for different users; examples
include birthdays (for themselves or friends) and anniversaries.
Those occasions usually occur in a periodic and repeated pattern
for a specific user.

It is important to exploit the linkage between different occasions
and shopping behaviors in e-commerce, so that we can: (i) recom-
mend more time or season-aware candidates (like recommending a
surfboard in the Summer while recommending snowboard in the
Winter), which may alleviate the cold-start problem; (ii) reduce the
noise in modeling users’ intrinsic preferences since occasion-driven
purchases (like gifts for others) may show different patterns com-
pared to normal purchases from the same users; (iii) recommend
relevant items to the user for upcoming reoccurring occasions.
(Though the user may not purchase the exact same item for a re-
occurring event, like consecutive Mother’s Days events, the items
purchased for Mother’s Day previously will likely be related.)

There are several key challenges with using occasion signals in
recommendation systems: (i) Are there traceable patterns distin-
guishing different occasions that we can use to holistically model a
user’s preference? (ii) Can we capture reoccurring shopping trends
based on large crowd behavior? (iii) Can we model a flexible time-
window for when occasions may reoccur? (iv) Can we properly
balance a user’s intrinsic preference versus the impact of a partic-
ular occasion in order to accurately predict their next purchase?
Solutions to these challenges lead to a novel recommendation frame-
work. Our major contributions in this work are:

• We uncover the patterns of shopping occasions and explore
how they can change users’ behaviors from both a global and a
personal perspective.

• We propose to model the repeated personal occasion signals
with attention layers, whilemodeling the global occasion signals
by memorizing the temporal trends of shopping behaviors.

• With a gating component, we balance global and local effects
of different occasions and propose OAR – an Occasion-Aware
Recommender system for e-commerce while centering around
each user’s intrinsic preferences.

We conduct extensive experiments on real-world datasets from
Etsy and Amazon and find that the proposed OAR outperforms the
state-of-the-art approach in sequential recommendation.

2 MOTIVATION
In this section, we motivate the problem by showing evidence
of different personal and global occasions that may influence the
intrinsic purchase behavior of users. We collect data from Etsy and
Amazon, two large, online marketplaces that sell products that are
relevant to different occasions.

2.1 Temporal Shopping Trends
In Amazon [15], we can roughly infer users’ shopping occasions
or intentions with keywords that were mentioned in the reviews.
Thus we summarize the occurrences of different keywords over
different calendar months and show several examples in Figure 2(a)
of possible occasion influences and how they change with time.
For example, in the summer, users are likely to look for sandals
instead of sweaters, while floral items are more popular in the
spring and summer. As for gifting, we find that people tend to
purchase for their mothers for Mother’s Day (happening in May) or
for Christmas. While approaching Father’s Day, purchases peak in
June, at which time people tend to purchase gifts for their fathers.
We can conclude that users have changing preferences within a
year for different occasions (festivals, holidays, seasonal activities)
and crowds of users tend to purchase related items during similar



Figure 3: Time Gap between Purchases for Wedding and An-
niversary within a year. More than 50% of purchases for an-
niversary are near the date of wedding purchase within a
time window less than 30 days.

occasions. This analysis shows that capturing shopping trends as a
function of time and season is useful for understanding purchase
preference.

2.2 Occasion Signals for Recommendation
Next, we turn to Etsy to understand how global, annual occasions
may influence normal shopping trends. Consider a simple Most
Popular (MP) model that ranks products based on their overall
popularity and then recommends the most popular items to users. A
naive improvement to capture some occasion signals is a Temporal
Most Popular (TMP) model, in which items are ranked based on
their popularity within a short, recent time window, aggregated
over all previous years. Here, we set the size of the time window
to be 5 days, meaning that a prediction for January 10, 2018 would
be obtained by ranking items that were most purchased between
the dates of January 5 and January 15 over the course of the last 11
years.

We plot the improvement of TMP over MP for each day in the
test set in Figure 2(b). When this ratio is positive (e.g. TMP is a bet-
ter predictor than MP), it indicates that there is a strong (annually
occurring) occasion-based shopping trend. As expected, we tend to
see this pattern around big American holidays such as Christmas
and Thanksgiving. We also note that the duration of this improve-
ment is variable (e.g., the impact of Christmas lasts longer than
Valentine’s Day), thus indicating that hard-coded time window (5-
days in this analysis) may not be flexible enough to model occasions
with varying time effects. Conversely, in Figure 2(b), there are also
time periods when TMP performs worse than MP, indicating that
the crowd may not have strong time-dependent preferences during
this time. Most of these areas fall during times when there are no
globally celebrated occasions.

Note that recommending globally popular items to new, unseen
users is a general solution for the cold-start problem. This analysis
shows that using an occasion-aware global model can improve the
accuracy of recommendations for new users who come to purchase
for a special global occasion, such as Christmas or Thanksgiving.

2.3 Occasion Signals from Personal Perspective
In addition to global occasions, there may be occasions which may
or may not be related to trending behavior, but can reoccur for

Figure 4: The reasons an infant’s items shopper changes
his/her shopping behaviors.

individual users. For example, a usermay look for birthday gifts for a
parent every year as the birthday is approaching. These reoccurring
occasions may lead to similar shopping behaviors across years,
which we define as personal occasions. We want to explore the
patterns of these personal occasions and whether they are traceable.

First, we sample 7,000 users in Etsy who have one purchase
for “Wedding” and at least one purchase for “Anniversary” in the
following years, which we can assume to be a relevant personal
occasion. (In this exploration, we roughly infer the purchase intents
based on the tags and description for the products.) We calculate the
absolute difference between the date of the “wedding” purchase and
“anniversary” purchase (aggregated over multiple years) of each
user and plot the cumulative density (CDF) in Figure 3. We find
that more than 50% of these users will purchase for “anniversary”
occasions near the date of the original “wedding” purchase with
a time gap of less than 30 days in the following years. So we can
conclude that there are occasions that may reoccur within a certain
period (e.g. annually or monthly) over the course of multiple years
and trigger relevant purchase, revealing the traceable patterns in
these personal occasion signals.

In Figure 4, we focus on users who purchase items for “in-
fants/newborns/toddlers” in more than 50% of their transactions.
We can assume that “buying products for infants” is their intrinsic
preference for shopping, which are not related to occasions. Then,
we summarize the tags/occasions of their “abnormal” purchases, e.g.
the transactions without any infants items. While deviating from
their intrinsic preference, these users tend to shop for Father’s Day
around June and Valentine’s in January. Those occasions may reoc-
cur each year and influence their purchase preference at a similar
timestamp each year. Additionally, we find that preparation time
for different occasions can vary. Users tend to start shopping for
Christmas earlier than Valentine’s or Father’s Day. From a personal
perspective, each user can deviate from their intrinsic preference
and desire for different occasions. It is important to capture these
personal occasion signals and adjust the recommendation when
the reoccurring occasions is approaching.

3 OCCASION-AWARE RECOMMENDATION
In this section, we start with the problem setting and introduce
the attention mechanism as our preliminary. Then we step though
the development of the proposed OAR model by answering several
research questions.



3.1 Problem Setting
Let U = {u1,u2, ...,uN } represent the set of N users and P =
{p1,p2, ...,pC } represent the set of C products in a platform. In
addition, let T = {t1, t2, ..., tM } be the set of timestamps, which
can be days, weeks or months in a calendar year. We sort the set
of products user u has purchased in chronological order as Hu =

((pu1 , t
u
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u
2 , t

u
2 ), ..., (p

u
|Hu |
, tu

|Hu |
)). Each pair (pun , tun ), n ∈ [1, |Hu |]

denotes that useru purchases product pun at time tun . In e-commerce,
we want to predict what a user want to purchase when he/she starts
a (shopping) session at a future timestamp. Following the problem
setting as in [4, 10] for sequential next-item recommendation, the
goal of our work is to generate a list of top-k interesting items for
user u at a future timestamp tu

|Hu |+1.

3.2 Preliminary: Attention Mechanism
To provide accurate recommendation, our goal is to understand
how to aggregate the purchase record of a user in the past to infer
the user’s preferences in a future timestamp. The neural attention
mechanism [2, 14, 25, 31] can be applied to capture the correlation
between the target query (recent purchased items or the future
timestamp for prediction) and the context contents (purchase his-
tory). For different types of attention modules, the input usually
consists of a Query, and Key-Value pairs. The goal is to map the
query with a set of key-value pairs to generate the output (as shown
in Figure 5). An attention module can be divided into two steps.
The first step entails computing the relationship/similarity scores
between the query and a set of keys, which are used as the attention
weights to aggregate the corresponding set of values [25]. Math-
ematically, given the input query q and a set of key-value pairs
P = {(kl , vl ) | l ∈ [1, L]}, the resulted output o is calculated as:

o =
L∑
l=1

αqlvl , where αql =
exp(s(q,kl ))∑L
l=1 exp(s(q,kl ))

(1)

where s(·, ·) is the similarity scoring function used to calculate the
correlation between a query and a key. Based on our analysis in
Section 2, we propose to make use of the attention mechanism
for computing user profiling by taking different types of occasion
signals into consideration, in addition to their intrinsic preferences.
In the following sections, we will explain the details of each com-
ponent in our OAR model (in Figure 6) through a discussion on the
design for query, key-value pair and the appropriate weight scoring
function to answer the following questions:
• RQ1:How to utilize the correlation between recent and historic

purchased items to identify a user’s intrinsic preferences which
are mainly driven by a user’s personal taste and self-desire?

• RQ2: How to model and predict user preferences for reoccur-
ring personal occasions by tracing their personal shopping
history?

• RQ3: How to memorize the crowd behavior at different time
periods and perform dynamicmapping to aggregate the relevant
global occasion signals?

• RQ4: How can we fuse intrinsic user preferences and different
types of occasion signals to obtain a complete user profile that
will inform what to recommend next?
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↵q1
<latexit sha1_base64="KHLFA9dJh8UXBjlmeG4gSSqYavE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCcBwKRRvokDJO4nmEAWSt4Px7cxvP3FtRKwecJJwP4KhEqFggFbq9kAmI+hnj960X664VXcOukq8nFRIjka//NUbxCyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetVRBxI2fzU+e0jOrDGgYa1sK6Vz9PZFBZMwkCmxnBDgyy95M/M/rphhe+5lQSYpcscWiMJUUYzr7nw6E5gzlxBJgWthbKRuBBoY2pZINwVt+eZW0alXvolq7v6zUb/I4iuSEnJJz4pErUid3pEGahJGYPJNX8uag8+K8Ox+L1oKTzxyTP3A+fwBTE5FH</latexit>

↵q2
<latexit sha1_base64="iTEZbT2BAe/Lm+3dV9kMoHumgPI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilbo/KZET72WNt2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+8pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZv+TgdCcoZxYQpkW9lbCRlRThjalkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAQwzO8wpuDzovz7nwsWgtOPnMMf+B8/gBUmJFI</latexit>

↵qL
<latexit sha1_base64="kkjpS9t58amNksFaPDZ+g+H+llA=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYRCswl0UtAzaWFhEMB9wOcLcZpMs2ds9d/eEcORn2FgoYuuvsfPfuEmu0MQHA4/3ZpiZFyWcaeN5387K6tr6xmZhq7i9s7u3Xzo4bGqZKkIbRHKp2hFqypmgDcMMp+1EUYwjTlvR6Gbqt56o0kyKBzNOaBjjQLA+I2isFHSQJ0PsZo93k26p7FW8Gdxl4uekDDnq3dJXpydJGlNhCEetA99LTJihMoxwOil2Uk0TJCMc0MBSgTHVYTY7eeKeWqXn9qWyJYw7U39PZBhrPY4j2xmjGepFbyr+5wWp6V+FGRNJaqgg80X9lLtGutP/3R5TlBg+tgSJYvZWlwxRITE2paINwV98eZk0qxX/vFK9vyjXrvM4CnAMJ3AGPlxCDW6hDg0gIOEZXuHNMc6L8+58zFtXnHzmCP7A+fwBfBqRYg==</latexit>

↵q3
<latexit sha1_base64="HjnYOqDG+9mWsRnkxKGgT7/tGPs=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0laQY9FLx4r2FZoQ5lsN+3STTbuToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNirVjLeYkko/BGC4FDFvoUDJHxLNIQok7wTjm5nfeeLaCBXf4yThfgTDWISCAVqp2wOZjKCfPdan/XLFrbpz0FXi5aRCcjT75a/eQLE04jEyCcZ0PTdBPwONgkk+LfVSwxNgYxjyrqUxRNz42fzkKT2zyoCGStuKkc7V3xMZRMZMosB2RoAjs+zNxP+8borhlZ+JOEmRx2yxKEwlRUVn/9OB0JyhnFgCTAt7K2Uj0MDQplSyIXjLL6+Sdq3q1au1u4tK4zqPo0hOyCk5Jx65JA1yS5qkRRhR5Jm8kjcHnRfn3flYtBacfOaY/IHz+QNWHZFJ</latexit>
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Figure 5: Attention Module.

3.3 RQ1: Intrinsic Preference Modeling
Users’ intrinsic preferences on items are comparatively stable or
change smoothly [12]. Thus previous works in recommendation
usually model users in a static way with collaborative filtering-
based methods [6, 22, 23, 30], or in a dynamics way by capturing
the behavior patterns with the chronological order of user-item
interactions via Markov Chains [5, 21], RNNs [8, 17, 28], and CNNs
[24, 33]. Recently, self-attention [25], has demonstrated its effective-
ness in sequential recommendation by capturing both the long-term
semantics and relevant items with the recent interactions [10]. In a
similar way, we try to model users’ dynamic intrinsic preferences
based on the correlation between the most recent purchase and the
personal historic purchases.

Given the sequence of items user u has purchased Pu =(pu1 , p
u
2 ,

..., pu
|Pu |) in chronological order, we use the combination mpud

=

epud + xd to represent the item at position d (the dth item in the
sequence). Here, epud is the embedding for item pud and xd is the
positional embedding of positiond , which is used to retain the order
information. Self-attention [25] is designed to match a sequence
against itself and thus uses the same objects as the queries, keys
and values. In our case, we will map the query item pud to the
sequence of items (pu1 , p

u
2 , ..., p

u
d ), which have been purchased by

u no later than pud . Before calculating the attention weights and
aggregation, we conduct linear projections for each mpud

, pud ∈

Pu with matrices WQ , WK , WV to generate embedding m̂Q
pud
=

mpud
WQ , m̂K

pud
= mpud

WK , m̂V
pud
= mpud

WV for queries, keys and
values correspondingly. Thus, we have:

Query : m̂Q
pud

Scoring : s(q,kj ) =
qkTj
√
D

(Key, Value) : (m̂K
pu1
, m̂V

pu1
), (m̂K

pu2
, m̂V

pu2
), ..., (m̂K

pud
, m̂V

pud
)

Here we adopt the scaled dot-product to calculate the score between
keys and queries. D denotes the dimension of the embedding. The
output oIu ,tud+1

based on the most recent item pud can represent the
dynamic intrinsic preference of user u after purchasing pud , and will
be used to infer the user’s next purchase at tud+1.

3.4 RQ2: Personal Occasion Elicitation
Based on our exploration in Section 2, we know that users can
deviate from their intrinsic preferences because of some person-
ally reoccurring occasions. For each user, the shopping behaviors
driven by the same personal occasions are likely to fall into a small
time window. For example, a user will often purchase a birthday
gift two to three weeks in advance of the birthday. Thus while
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Figure 6: The proposed Occasion-Aware Recommendation (OAR) model.

predicting a user’s preference, we also need to elicit the personal
occasion signal by tracing the user’s previous shopping behavior
in the neighboring days. In this component, we want to map the
upcoming timestamp (query) with the timestamps of the user’s pre-
vious purchases (keys) and the corresponding items (values). Given
theHu = ((pu1 , t

u
1 ), (p

u
2 , t

u
2 ), ..., (p

u
|Hu |
, tu

|Hu |
)), we use ttud to denote

the embedding of timestamp tud . As in Section 3.3, the time embed-
ding for queries or keys will be multiplied with the matrices WQ ′

and WK ′

respectively, with t̂Q
′

tud+1
= ttud+1

WQ ′

and t̂K
′

tud
= ttud W

K ′

.

We also apply linear projection for the item embedding withWV ′

to generate the embedding for values. While predicting for u at a
future time tud+1, the personal occasion preference can be obtained
with the attention operation below:

Query : t̂Q
′

tud+1
(Key, Value) : (t̂K

′

tu1
, êV

′

pu1
), (t̂K

′

tu2
, êV

′

pu2
), ..., (t̂K

′

tud
, êV

′

pud
)

We use the same similarity function s(·, ·) as in Section 3.3. While
generating the output oPu ,tud+1

, items which were purchased a long
time ago but within a small timewindowwith the query’s upcoming
timestamp can also get high attention from the model. In this way,
OAR can capture personally reoccurring occasions.

3.5 RQ3: Global Occasion Memorization
By only tracing the personal purchase history, the model is still
unable to predict upcoming global occasions. However, these occa-
sion signals can be captured from the behaviors of the crowd from
a neighboring time period in the past. Under a global occasion, the
crowd of users tends to have similar purchases, like shopping for
costumes before Halloween or green shirts near St Patrick’s day.
We aim to memorize the shopping behaviors of the crowd under
different global occasions, which can be used to enrich the pref-
erence representation of individual users when a certain occasion
is coming. Following a similar idea as in the key-value memory
network [16], we use the timestamps as keys and pair each of the
keys with a memory slot to represent preferences of the crowd at
the timestamp.

Let T = {t1, t2, ..., tM } denote the set of embedding for each
timestamp. We use t̂i , i ∈ [1,M], which is the projected version of

the embedding for timestamp t̂i = tiWK ′′

, to be the key. Further-
more, we set a separate memory slot ri , i ∈ [1,M] to store global
behaviors. Given a query timestamp, we will multiply its embed-
ding ttud+1

with matrix WQ ′′

to get t̂Q
′′

tud+1
. Then we want to map

it with all the key-value memory slots to get the corresponding
global occasion representation. As in Section 3.3, we use scaled
dot-product as the similarity scoring function s(·, ·) and:

Query : t̂Q
′′

tud+1
(Key, Value) : (t̂1, r1), (t̂2, r2), ..., (t̂M , rM )

The output oGtud+1
of the attention operation can be the representa-

tion of global occasions at tud+1.

3.6 RQ4: Gating Layer
Lastly, we discuss how to balance a user’s intrinsic preferences with
occasion signals for personalization? Here we turn to an attention
(gating) layer which can control how we assign different weights to
each of the components we have developed in the previous sections.
The query will be a user-timestamp pair because the status for a
user at different timestamps will be different. For example, there are
users who have strong personal desire for handcrafted supplies and
seldom purchase other items on a site like Etsy. Or users may tend
to be influenced by their surroundings in December but may stick
to their own intrinsic preference in June (as shown in Figure 2(b)).
While predicting for user u at timestamp tud+1, with embedding u
and tud+1 for u and tud+1:

Query : u| |tud+1 Scoring : s(q,kj ) = aT tanh(W[q| |kj ])

(Key, Value) : (oIu ,tud+1
, oIu ,tud+1

), (oPu ,tud+1
, oPu ,tud+1

), (oGtud+1
, oGtud+1

)

in which | | denotes concatenation, and a and W represent the
transform vector and matrix, respectively, for this additive attention
operation. Thus we get the output ou ,tud+1

, which can be used to
accurately represent u’s preference at future timestamp tud+1.

3.7 Prediction and Loss
After generating ou ,tud+1

as the complete representation of a user’s
current status, we can predict the preference score on item i with
ȳ
tud+1
ui = ou ,tud+1

ei . We adopt the Bayesian Pairwise Loss [20] to



Dataset #Users #Items #Purchases Density Cutting
Time

Amazon 84,191 100,946 1.0M 0.0124% 2013/8/1
Etsy 118,668 80,214 5.3M 0.0561% 2018/1/1

Table 1: Dataset Statistics.

maximize the gap between the ground truth positive user-item pair
and negative sampled pairs. The loss function is:

L =
∑

(u ,t ,i , j)∈D
− lnσ (ȳtui − ȳtu j ) + λ | |θ | |

2

where | |θ | |2 is a regularization term and σ (·) is the Sigmoid function.
Each element (u, t, i, j) in the training data set D is generated by
combining the ground truth interaction pair (u, t, i), which means
u purchased i at t , with a negative sampled item j that u did not
purchase at time t .

4 EXPERIMENTS
In this section, we conduct experiments on two real-world datasets
from e-commerce platforms to answer several research questions: (i)
How does the proposed OAR model perform compared with other
sequential models in real-world e-commerce scenarios? (ii) How
does each component contribute to the user modeling and impact
next-item recommendation? (iii) Does the proposed structure of
OAR successfully capture different occasion signals? and (iv) Can
we visualize the patterns of shopping occasions learned by the
attention mechanisms?

4.1 Data
To avoid data leakage while modeling the crowd behaviors in the
global occasion component, we split the datasets for training and
testing with a cutting time. We only use data before the cutting date
to train the model. In both datasets, we keep users who purchased
at least twice after the cutting time, so that we can use the first
purchase of each user after the cutting date as a validation case
and the second purchase as a test case. The detailed information is
summarized in Table 1. In the experiments, we consider each day
in the calender year as a timestamp, that is t1 ∈ T means the first
day in a year (January 1).
Etsy. We collect purchase data from November 2006 to December
2018 in Etsy, which is one of the largest e-commerce platform selling
handmade items. We filter out users with fewer than 5 purchases
before the cutting time. To examine the long-term effects, we keep
only users who are active for at least two years, requiring that the
time gap between their last purchase and their first purchase be
larger than 365 days.
Amazon.We test over a public Amazon review dataset [15], con-
taining product reviews from May, 1996 to July, 2014. We treat
each review as a purchase record and use the time they input the
review to approximate the purchase time. We filter out users who
purchased fewer than 5 items before the cutting time.

4.2 Experimental Setup
Metrics. Following the evaluation strategy as in [6, 10], for each
user u, we randomly sample 100 negative items, with which we rank

the ground-truth items in the test set ofu while generating the top-K
recommendation. We adopt the metrics commonly used for next-
item recommendation task for evaluation, including Normalized
Discounted Cumulative Gain (NDCG@K), Hit Rate (HR@K), and
Mean Reciprocal Rank (MRR).

Since there is only one item in test or validation set for each user
(leave-one-out task), Hit Rate (HR@K) is equivalent to recall, indi-
cating whether the ground-truth item is among the top-K ranked
list of items. Also for each user, the ideal discounted cumulative
Gain (IDCG) is equal to 1. Let ranku represent the predicted ranking
of the ground-truth item in the test for user u. In top-K evaluation,
if ranku ≤ K , then NDCGu@K = DCGu@K = 1

log2(ranku+1) . Oth-
erwise, NDCGu@K = 0. We also use the mean reciprocal rank
MRR =

∑
u ∈U

1
ranku

to evaluate the positions of recommendation.

Baselines.
• MP:Most Popular. It ranks all the products based on their overall
popularity and recommends the most popular products.

• MF-BPR:Matrix Factorization with Bayesian Personalized Rank-
ing [20]. This model predicts user’s preference on a product
based on the multiplication between their latent factors (MF)
and is optimized with Bayesian personalized ranking (BPR) loss.

• Fossil: Fusing Similarity Models with Markov Chains [5]. It im-
proves the method of factorizing personalized Markov Chain
(FPMC) with item similarity-based algorithm (FISM) to capture
the long-term and short-term dynamics of users simultaneously.

• GRU4Rec+: Recurrent Neural Networks with Top-k Gains [7].
It is similar to GRU4Rec [8] in utilizing GRU model to capture
the sequential patterns, but with a modified loss function and
sampling strategy to achieve better performance in the Top-K
recommendation task.

• TCN: A Simple Convolutional Generative Network for Next Item
Recommendation [33]. This is an improved dilated convolution
neural network (CNN) modeling both short and long-range
item dependencies in a sequence to recommend the next item.

• HPMN: Lifelong Sequential Modeling with Hierarchical Periodic
Memory Network [18]. It capture the multi-scale sequential pat-
terns of users in e-commerce with a hierarchical and periodical
updating mechanism. It is able to model users’ periodic behavior
patterns appearing in both long-term or short-term.

• SARec: Self-attentive sequential recommendation [10] With the
self-attention layers, this model is able to balance the long-term
effect of a sequence and from recent products.

Parameters. All experiments are conducted with a single Nvidia
TITANXpGPU. For HPMN, SARec, TCN and GRU4Rec+, we use the
implementations provided in their original papers. We implement
other baselines and the proposed OAR model with TensorFlow.

For fair comparison, we adopt BPR loss [20] and set the negative
sampling rate to be 1 for all the models. The maximum length of
shopping record is fixed on 50 in Amazon data and 100 in Etsy data.
Batch size is set be 128 for all the models. We grid search for the best
size of hidden layer or latent factor over {10, 20, 50, 100, 150, 200}.
The learning rate is searched over {0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1}, the coefficient of L2 regularization (λ in loss function)
is over {10−6, 10−5, 10−4, 10−3, 10−2, 10−1} and the optimization



Model
Etsy Amazon

NDCG HR MRR NDCG HR MRRK=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10
MP 0.1531 0.1919 0.2304 0.3511 0.1673 0.2129 0.2509 0.3020 0.4199 0.2195

MF-BPR 0.4519 0.5001 0.5947 0.7434 0.4376 0.2663 0.3012 0.3619 0.4698 0.2668
Fossil 0.4946 0.5354 0.5511 0.7630 0.4746 0.2160 0.2483 0.2967 0.3969 0.2221
TCN 0.5199 0.5726 0.6698 0.8059 0.5090 0.2632 0.3029 0.3664 0.4893 0.2650

GRU4Rec+ 0.5346 0.5771 0.6830 0.8136 0.5126 0.2763 0.3169 0.3828 0.5087 0.2770
HPMN 0.5480 0.5883 0.6962 0.8201 0.5245 0.2820 0.3216 0.3881 0.5109 0.2819
SARec 0.5665 0.6047 0.7102 0.8278 0.5433 0.3009 0.3385 0.4085 0.5251 0.2984
OAR 0.6078* 0.6415* 0.7425* 0.8462* 0.5847* 0.3200* 0.3580* 0.4301* 0.5476* 0.3165*

Table 2: Comparison of Different Models. ∗ indicates that the improvement of the best result is statistically significant com-
pared with second best result with p < 0.01.

Model Etsy Amazon
NDCG@5 MRR NDCG@5 MRR

Global (G) 0.1816 0.1953 0.2238 0.2294
Intrinsic (I) 0.5665 0.5433 0.3009 0.2984
Personal (P) 0.5791 0.5582 0.3069 0.3047

I + G 0.5885 0.5642 0.3099 0.3063
I + P 0.5916 0.5677 0.3136 0.3108

Remove Gate 0.5859 0.5618 0.3074 0.3039
OAR 0.6078 0.5847 0.3200 0.3165

Table 3: Ablation Test Results.

methods is over {Adam, Adagrad, SGD}. We also fine-tune all the
model-specific hyperparameters and report the best performance
in the following sections.

4.3 Model Comparison
We summarize the best performance of all the baseline models and
the proposed model in Table 2. We can see that OAR achieves the
best performance under different metrics in both datasets. It gains
7.62% and 6.06% MRR improvement in Etsy and Amazon compared
with the state-of-the-art.

Compared with the basic general MP, we can see that MF-BPR
which represents users and items with static latent factors can
achieve a 177.43% and 39.67% improvement on average in Etsy and
Amazon. Then by introducing the Markov Chains to capture the
transition of users among different items, we find that Fossil works
better than MF in Etsy but performs worse in Amazon. Presumably
it is because the Amazon data is extremely sparse and results in an
unstable factorized Markov Chains component in Fossil.

Comparing the recent neural-based sequential models, we find
that GRU4Rec+ works slightly better than TCN, which is based on
dilated CNN. And HPMN utilizing hierarchical multi-layer memory
networks outperforms GRU4Rec+ in both data, which proves that
there are periodic pattern in users’ shopping behaviors. However,
HPMN model assumes that the period of shopping behavior is
constant for all the users along the time and thus lack of flexibility
to handle the real-world scenarios. We find that SARec, which is
utilizing self-attention to model users’ intrinsic preference, works
even better than HPMN. This shows that attention mechanisms
are a good fit for modeling sequential behaviors. And by carefully
eliciting the occasion signals and combining them with the intrinsic

Figure 7: Similarity between different calendar days.

preferences, OAR achieves the best performance in the next-item
prediction via an accurate user model.

4.4 Evaluation of OAR
To examine whether each component in OAR achieves its goal
and to understand how it contributes to the recommendation, we
analyze their impacts with an ablation test (in Table 3).

The Global occasion component (G), in which we set up a certain
number of memory slots to record the crowd behavior in different
occasions, does not provide personalized recommendation individ-
ually. It can outperform the general Most Popular (MP) model by
17.17% and 4.89% in Etsy and Amazon, which demonstrates that
it can capture the temporal global occasion signals hidden in the
crowd behavior. Additionally, we can infer that the users in Etsy
are more likely to follow the temporal global trends in shopping.
Both Intrinsic and Personal components can provide personalized
next-item recommendation. In Intrinsic (I), it maps the most re-
cent purchase to the items purchased before to infer the “relevant”
items in the future. While in Personal (P), the main idea is to trace
back to the previous behaviors in the related time periods. We can
see that P performs slightly better than I, which means that in e-
commerce, it is important to predict the shopping occasion and pay
more attention to the items purchased around similar occasions
while inferring the next purchase. While combining the I and G
or I and P, we can see the joint models can improve each of the
individual components. Thus we find that in e-commerce platforms,



Figure 8: The average preferences predicted by OAR.

Figure 9: The attention weights by different components.

it is necessary to take the occasion signals into consideration while
making recommendations.

To examine the impact of the gating component, which is de-
signed for a personalized and temporal-aware fusing of intrinsic
preference and the occasion signals, we replace it with a simple
addition layer. That is we use oIu ,tud+1

+ oPu ,tud+1
+ oGtud+1

as a repre-
sentation of user u at time tud+1 while removing the Gating Layer.
We find that there is a large drop in recommendation quality, which
supports the assumption that the influence of different occasions
does vary for different users at different timestamps. Thus, it is im-
portant to take the personalization and temporal information into
consideration simultaneously while utilizing the occasion signals.

4.5 Case Study
4.5.1 Temporal Information and Occasions. To examine whether
the proposed model is able to capture the occasions by linking the
neighboring time periods to the relevant occasions, we plot out the
attention weights (or similarity scores) between each timestamp
(in Figure 7). Near the diagonal (similarity between the exact same
timestamp), we can see there are many dark regions, indicating
the strong correlation between nearby time periods. For some of
the regions, the dark color diffuses to a large area (like around
March and April), meaning that the occasions at that time have a
continuous lasting influence. Since the occasion calendar is a loop,
there is high correlation between dates in December and dates in
January, which results in the dark region at the left bottom and
right top corner. Thus we find that OAR is capable in modeling the
occasion signals along time.

4.5.2 Visualization of Occasion-driven Purchases in Etsy. To explore
whether OAR captures the occasion signals to adjust the recommen-
dation at different timestamps, we predict users’ preferences on
several items every day in the test year. We calculate and plot out

the average predicted preference scores for all the users in Figure 8.
We find that the preferences for the hooded scarf drop down when
the weather gets warmer and increases in Fall and Winter time,
while the preferences for shorts are in a totally opposite pattern.
And for the Christmas decoration tab (red line), the preferences on
it reach the peak in early December but drop down rapidly after
Christmas, meaning the product is sensitive to the occasion. How-
ever, for items which are fit for occasions that can happen all year
round (like birthdays), the average preference on it is flat during
the year.

4.5.3 How Occasion Signals compensate the intrinsic preference.
We show the results for an Etsy user as an example (in Figure
9) to examine how the occasion signals supplement the intrinsic
preference for improved recommendation. In intrinsic preference
modeling, a high score will be assigned to the most recent purchase
(shorts for the 6-month) and items relevant to that (baby’s clothing).
Thus, while predicting for August 31 with the intrinsic preference
individually, we will keep recommending similar items. However, in
personal occasion elicitation, it traces the history and assigns high
score to items which are purchased in the related time windows. So
that in this case, though the user purchased lots of baby clothing, by
capturing the occasion signals, the “leather bag for man” purchased
on August 29 two years ago still receives high attention. We can
see that OAR is able to recall the purchase for the leather bag and
thus recommend some related items for the upcoming occasion.

5 RELATEDWORK
Sequential Recommendation. Recently there is an increasing
attention on predicting the next interesting items based on users’
sequential actions in the past [8, 13, 29]. Previous efforts have ex-
plored various methods to model the sequences of users’ behaviors
with or without user identification information. By placing users
and items on the same embedding space, TransRec [4] treats users
as “translation vectors” that transit between items (points on the
space). And in [24, 33], they propose to utilize a CNN to aggregate
the sequential behaviors of users. SR-GNN [29] constructs a graph
for each behavior sequence based on the transition of items and
predict for the next item with the embedding resulted from graph
neural networks (GNN). GRU4Rec [8] consists of GRU layers to
learn the pattern from users’ feedback sequences to generate recom-
mendation. NARM [13] enriches RNN with the local information
generated from an attention network which aggregates the hidden
output of RNN at each timestamp. Based on the success in replacing
RNN with attention networks and transformer [25], SARec [10] is
proposed to use a self-attention based model to infer relevant items
based on users’ action history, which outperforms various state-of-
the-art sequential models in recommendation. However, none of
these models take the occasion signals into consideration and are
not a good fit for the occasion-driven scenarios in e-commerce.
Temporal Effects & Dynamic User Modeling in E-commerce.
There are works which have been done on dynamic user modeling
considering the temporal effects. Koren proposes to divide the long
time series into slices and training for different latent representa-
tions at each slice in TimeSVD++ [11]. Utilizing the explicit time
stamp, in [27, 28], they use parallel RRN structure to model the dy-
namics of users and items simultaneously. The work in [9] explores



how users’ shopping decisions can be influenced by the life-stage
along time, and proposes to select corresponding recommendation
model after labeling consumer’s life-stage.

While focusing on the sequential behavior patterns of users in
e-commerce, there are previous works assuming that a user would
behave centering around the intense shopping intent and tend to
interact with the exact same items repeatedly [1, 3]. RepeatNet [19]
predicts the probability of being repeated for a user at each times-
tamp, and then decide whether to recommend from the purchased
items or new items. In [26], they model the repeat consumption of
different products with Hawkes Process and integrate the resulting
signals into Collaborative Filtering to generate recommendations.
However, these models can not be generalized to many shopping
platforms where a user seldom purchases the exact same item re-
peatedly (like clothes, accessories and books).

There are also works trying to capture both the long-term dy-
namics and short-term effects simultaneously building on top of
hierarchical structures. HRNN [17] consists of a two-layer hierar-
chical RNN, which learns the representation for each short-term
session with a lower layer RNN and then aggregates the resulting
outputs from the same user with a higher layer RNN. The work
of [32] achieves a similar goal with hierarchical attention layers.
HPMN [18] is proposed to model the periodic patterns of users
with a hierarchical recurrent memory network. Although these
methods can model the dynamic users preferences, they do not
take the influence of different occasions into consideration.

6 CONCLUSION
Shopping decisions can be influenced by different occasions, lead-
ing to purchases that deviate from a user’s intrinsic preferences.
Over Amazon and Etsy, we gain insights into the traceable pat-
terns of personal and global occasion signals. We propose to utilize
different attention mechanisms to elicit different occasion signals
for recommendation. Through experiments, we find the proposed
Occasion-Aware Recommender model can outperform the state-of-
the-art model in two real-world e-commerce datasets. Next, we are
interested in introducing more context information to characterize
the occasions explicitly and provide explainable recommendations.
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