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ABSTRACT
Recommendation systems typically rely on the interactions be-
tween a crowd of ordinary users and items, ignoring the fact that
many real-world communities are notably influenced by a small
group of key opinion leaders, whose feedback on items wields
outsize influence. With important positions in the community (e.g.
have a large number of followers), their elite opinions are able to dif-
fuse to the community and further impact what items we buy, what
media we consume, and how we interact with online platforms.
Hence, this paper investigates how to develop a novel recommenda-
tion system by explicitly capturing the influence from key opinion
leaders to the whole community. Centering around opinion elicita-
tion and diffusion, we propose an end-to-end Graph-based neural
model - GoRec. Specifically, to preserve the multi-relations between
key opinion leaders and items, GoRec elicits the opinions from key
opinion leaders with a translation-based embedding method. More-
over, GoRec adopts the idea of Graph Neural Networks to model
the elite opinion diffusion process for improved recommendation.
Through experiments on Goodreads and Epinions, the proposed
model outperforms state-of-the-art approaches by 10.75% and 9.28%
on average in Top-K item recommendation.
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1 INTRODUCTION
To alleviate the severe information overload issue, recommendation
systems act as essential components in many online platforms
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helping users find items of interest (e.g. movies, books, or music
tracks). Generally, users leave implicit feedback on items through
different interactions such as views, clicks or purchases [14, 19],
which can be distilled to reveal their preferences. By leveraging
such implicit feedback, a variety of recommendation systems [14,
19, 24, 25] have been proposed and shown great success in providing
personalized item recommendation.

In fact, within many real-world platforms, there also exists a
small group of well-known individuals - Key Opinion Leaders
(KOLs), who can shape our views, and further impact what items
we buy, what media we consume, and how we interact with online
platforms [9, 27]. For example, KOLs on Instagram and Pinterest
could influence shopping decisions by highlighting new fashion
trends [4, 6, 48], while KOLs on Yelp and TripAdvisor could guide
customer restaurant selection by providing explanatory informa-
tion (like photos and reviews) for restaurants [33, 49]. Previous
research has shown the effectiveness of modeling KOLs in different
learning tasks, such as public sentiment analysis [22] and social
event detection [13]. However, the effect of KOLs in recommenda-
tion systems remains largely unexplored, which motivates us to
develop a novel recommendation system by explicitly capturing
the influence from KOLs to the whole platform.

Despite the importance of investigating the influence of KOLs
in recommendation systems, however, it is a non-trivial task due to
two major challenges: (i) Elicitation: Compared to regular users,
KOLs tend to express their opinions on items explicitly rather than
leave implicit feedback. More important, such explicit interactions
are inherently multi-relational: on the one hand, KOLs are able to
express their opinions via different ways (e.g., review, rating or
tagging); On the other hand, the opinions from KOLs could have
distinct meanings (e.g., tag “fantastic” and tag “terrible” are seman-
tically different). However, it is unclear that how to extract the elite
opinions of KOLs from such multi-relational data. (ii) Diffusion:
In online communities, KOLs are able to guide their followers’ pref-
erences and shape how users view the items. For example, users
tend to purchase makeup products with the recommendation of
Beauty-KOLs they are following; a book which was tagged as “For
Teens” by KOLs could attract many teenager readers. Meanwhile,
previous research [12, 37, 44] has shown that user preferences on
items could diffuse through high-order connectivity (e.g., in Figure
1, the latent preference of user A can possibly diffuse via the transi-
tive path A −→ q −→ B −→ w , to items that he/she hasn’t interacted
with). Therefore, the influence from KOLs will also be propagated
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Figure 1: The opinions from Key Opinion Leaders (KOLs)
can diffuse to their followers and items they comment. Fur-
thermore, these opinions diffuse in the community via both
direct and multi-hop connections between users and items.

to those non-direct followers in the community. In this regard, an-
other challenge centers around how to model this elite opinion
diffusion process for improved recommendation?

To tackle the aforementioned challenges, in this work, we pro-
pose GoRec: a novel end-to-end Graph-based neural model to incor-
porate the influence of KOLs for Recommendation. Specifically, we
introduce a translation-based embedding method to elicit the opin-
ions of KOLs, in which the elite opinions are regarded as different
types of translations from KOLs to items. In this way, we are able to
extract the embeddings for both KOLs and items, and use them to
enrich the initial user/item embeddings in the user-item interaction
graph. In order to model the diffusion process of elite opinions, our
model employs multiple Graph Neural Network (GNN) layers to
learn the final user/item embeddings following the neighborhood
aggregation strategy [8, 17]. As such, the final embeddings enriched
with the elite opinions from KOLs can be decoded to accurately
infer users’ preferences on all the items. The main contributions of
this work can be summarized as follows:
• We explore the relationships among users, items and key opin-
ion leaders within real-world online platforms, and uncover
the importance of explicitly modeling the influence of KOLs in
recommendation systems.

• We develop a novel end-to-end item recommendation frame-
work - GoRec, which is able elicit elite opinions from KOLs and
model their diffusion in the community.

• We conduct extensive experiments on two real-world scenarios
including Goodreads (a book sharing community) and Epinions
(an ecommerce review sharing platform). We find that the pro-
posed GoRec model outperforms the state-of-the-art by 10.75%
and 9.28% on average in Top-K recommendation. Meanwhile,
we find that a small set of KOLs is sufficient to hint on the
preferences of a huge amount of users in the community and
thus benefit the recommendation system.

2 MOTIVATION: OPINION LEADERS
To gain insight into the relationships among users, items, and key
opinion leaders (KOLs), we start our discussion with an initial
exploration into the Goodreads community. Goodreads is a book-
based platform with about 80 million registered users in which
users can manage their own book reading habits and also connect
with other readers [32]. Users on Goodreads leave lots of implicit

feedback, which can be treated as positive signals while inferring
users preferences [14, 19] (e.g. a user read both “Harry Potter” and
“Twilight” probably likes paranormal fiction). However, a user who
has not read a book (and hence, left no implicit feedback) may
not because she doesn’t like it but just not knows about the book.
Goodreads are also shaped by explicit feedback, which conveys
positive or negative opinions on items explicitly, e.g., text reviews,
numerical ratings, or semantic tagging. Aside from the bidirectional
“friendship”, users on Goodreads can unidirectionally follow other
users from whom they can receive activity updates. One of the key
features of Goodreads is that some users are experts who provide
detailed reviews and highlight new releases, and thus are followed
by many other users. In our initial analysis, naturally, we ranked
all the accounts based on their numbers of followers and treat the
top accounts as KOLs [41, 45].

A small number of key opinion leaders (KOLs) can pro-
vide sufficient coverage. Before exploiting the influence of KOLs,
we want to examine whether the top accounts that we treat as KOLs
can provide sufficient coverage for the regular users in Goodreads.
In Figure 2(a), we check the percentage of users following at least
one of the KOLs (what we refer to as coverage) by changing the
number of top accounts that we consider as KOLs. We find that
while considering only the top-500 KOLs, there are more than 95%
of the users following at least one of these KOLs. In other words,
the patterns and behaviors of just the top accounts (the KOLs) can
potentially have wide-reaching impact on the community. We can
conclude that a small number of key opinion leaders (KOLs) can
provide sufficient coverage. Next, focusing on the top-500 KOLs, we
explore whether there are patterns in their opinions and how their
opinions can diffuse to the community.

Users are shifted by the KOLs they are following. To exam-
ine whether the explicit opinions from KOLs can influence what
their followers read, we represent each user with a simple binary
vector over all books, in which a “1” indicates that the user has
left implicit feedback on this book. We use five different binary
vectors for each KOL to represent books with different ratings (1
to 5) from the KOL. In Figure 2(b), we list the similarities between
books read by users and books with different ratings from KOLs
they are following. We find that the set of books a user read are
more similar to the books receiving high ratings from KOLs they
follow, while having little overlapping (similarity) with books with
low ratings (1 or 2) from the KOLs they follow. We conclude that
the explicit opinions of KOLs could directly influence what their
followers consume.

Compared to ordinary users, KOLs tend to express opin-
ions on items explicitly. In Figure 2(c), we compare the num-
bers of different kinds of feedback from regular users and KOLs in
Goodreads. We find that ordinary users and KOLs leave implicit
feedback on a similar number of books (that is, they mark a book
as “read” or “to read”), indicating that both are active in their use of
Goodreads, presumably for managing their own book collections.
However, we do find that KOLs tend to leave more reviews, ratings
and tags; that is, KOLs are more engaged in explicitly sharing their
opinions on books. KOLs appear to be capable of providing special-
ized expertise and high-quality opinions in the community. These
elite opinions (including reviews, ratings and tags) are public on the
item pages and can influence how the community views or defines



Explicit
Feedback

Figure 2: (a) Coverage: The percentage of users following at least one of the top (key) opinion leaders. More than 95% of users
follow at least one of the Top-500 accounts. (b) Books read by users are more similar to books with higher ratings from key
opinion leaders they are following. (c) While leaving a similar number of implicit feedback, key opinion leaders prefer to
show their opinions on items via explicit interactions (reviews, ratings, self-defined tags).

the items, illustrating a possible way of how these elite opinions
diffuse in the community. In this work, we will focus on explicitly
modeling the influence of KOLs in recommendation system with
opinion elicitation and diffusion.

3 GOREC: MODEL
With these observations in mind, we propose GoRec, a novel graph-
based recommendation system enhancedwith the influence of KOLs
in the community. Our design is structured around the challenges
we are faced with: (i) Elicitation: How can we elicit the elite opin-
ions of KOLs from the multi-relational data? (ii) Diffusion: How
to model the diffusion process of elite opinions in the community
for improved recommendation?

3.1 Problem Setting and Notation

Task. In this work, we aim to provide Top-K recommendation
from a candidate set of M items I = {i1, i2,..., iM } to a set of N
users U = {u1, u2,..., uN }. For each user u, we use a binary vector
yu = {yu1,yu2, ...,yuM } to indicate the implicit feedback u left on
all the items. That is, if u interacted with item i , then yui = 1. And
yui = 0 means u has not left any feedback on i .

User-item Interaction Graph. Based on the (implicit) interac-
tions between users and items, we can construct a bipartite graph
G = (V,W) in which the set of nodesV = U∪ I consists of all the
users and items. The edge (u, i) ∈ W denotes that user u has im-
plicit feedback on item i . Similarly, we can construct an adjacency
matrix A ∈ {0, 1}N×M for graph G by concatenating the feedback
vector of each user, that is A = [y1, y2, ..., yN ]T .

Elite Opinion Graph.We use L = {l1, l2,..., lP } to represent the set
of key opinion leaders (KOLs) we investigate while constructing
the elite opinion graph Go . The explicit opinions can be different
rating levels, words mentioned in the reviews or tags. We consider
Q different types of explicit opinions O = {o1, o2,..., oQ } for the
graph. Thus based on the explicit feedback from KOLs to items,
we can harvest many opinion triplets. Each triplet is denoted as
(l,o, i) representing kol l left opinion o on item i . And we construct
a directed graph Go composed of these kol-opinion-item triplets.

User-KOL Following. To explore how the elite opinions from
KOLs directly influence their followers, we use Fu ⊂ L to represent
the set of KOLs followed by user u ∈ U . And we let U

⋂
L = ∅.

3.2 Translation-based Opinion Elicitation
First, we start by eliciting the opinions fromKOLs toward improving
the quality of recommendation. Recall that KOLs leave explicit
opinions on items via reviews, ratings and tags. These opinions
constitute a large scale of multi-relations from KOLs to items. As
analogous to the data structure of knowledge graph, the resulted
elite opinion graph Go consists of many valid opinion triplets. For
example, a triplet (l1, Review: wizard, Harry Potter) denotes that
KOL l1 mentions the wordwizard in a review for item Harry Potter.
As shown in Figure 3, we can also construct these opinion triplets
based on ratings or tags provided by KOLs, and get triplets like (l1,
Rate: 5, Harry Potter) or (l1, Tag: fiction, Harry Potter).

Our goal is to generate effective embedding for both items and
KOLs in a continuous vector space while preserving the multi-
relations (opinions) between them. In the below, we will list three
features of Go followed by the corresponding design we propose
in the opinion elicitation process:
Feature 1. Multiple relations: Opinions come with distinct mean-
ing, e.g., tag “fantastic” and “terrible” are semantically different.
Translation fromKOL to Item.Adopting the similar idea inmulti-
relational graph embedding [2, 15, 20, 39], we treat opinions as
translations from KOLs to items. That is, given a valid opinion
triplet (kh,or , it ), we want to ensure that the embedding of item it
is close to the embedding of KOL kh plus the embedding of opinion
or . Let s(kh,or , it ) denote the scoring function for the translation
operation, with which larger value means better translation. Given
all the valid (positive) and negative opinion triplets, the objective
is to maximize the translation score for all the positive triplets
while minimizing that for the negative triplets. We formalize this
objective into a task of minimizing the marginal loss below:

Lop =
∑

(kh ,or ,it )∈Go

∑
(kh ,or ,it ′)∈G−

o

[γ + s(kh,or , it
′) − s(kh,or , it )]+

(1)
in which [·]+ ≜ max(0, ·) and γ denotes the margin the model used
to separate the valid (positive) triplets and negative triplets. Here the
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Figure 3: Translation-based Embedding with Elite Opinions.

negative triplet (kh,or , it ′) ∈ G−
o indicates that kh wouldn’t attach

opinion or on it
′. Thus while generating the negative samples,

we randomly select it ′ from the subset of items that kh has left
feedback on excluding or .
Feature 2. Many-to-Many relations: On one hand, the connec-
tions between KOLs and items are not always one-to-one. On the
other hand, KOLs can endow opinions with their personal attitudes.
For example, each KOL has his/her own criteria for tagging a book
with “BestOf2019”.
Dynamic Mapping Matrix. To handle the Many-to-Many rela-
tions, a common strategy is to project KOLs and items to an opinion-
specific space before the translation operation. Additionally, to cope
with the various meanings of the same opinion, while doing projec-
tion, we adopt a dynamic mapping matrix [15] which is determined
by both the opinion and the KOL (or item). In our case, each kol,
item and opinion is represented by two vectors. One vector acts
as its latent representations, while the other vector is used to con-
struct the mapping matrix (as in Figure 3). Given a triple (kh,or , it ),
we will initialize dense vectors keh , k

t
h , o

e
r , otr , iet , i

t
t . First we will

construct the mapping matrices for kh and it on opinion or with
vectors kth , i

t
t and otr :

Mrh = otrk
t
h
T
+ I Mr t = otr i

t
t
T
+ I

in which I denotes the identity matrix. Mrh is used to transfer keh
to the space of or andMr t is for transferring iet . Thus we get the
projected representation of kh and it under opinion or with:

k⊥h = Mrhk
e
h i⊥t = Mr t iet

The score function s(·) used to evaluate the translation distance for
triple (kh,or , it ) is represented as:

s(kh,or , it ) = −∥k⊥h + o
e
r − i⊥t ∥

2 (2)

in which we use L2-norm to calculate the distance empirically.
Larger s(kh,or , it ) means kh and it are close to each other with
translation or , i.e, it is more likely that kh attaches opinion or to it .
Feature 3. Preference Signals: KOLs have preferences on the
items they would interact with, e.g., a romantic book lover may
seldom leave any feedback on horror novels.
Personalized Ranking Model A typical assumption is that the
items with feedback from the user are preferred than those without.

We also want to capture these (implicit) preference signals while
modeling both KOLs and items. Following the basic idea in matrix
factorization, we use the multiplication between keh and iet , that
is p(kh, it ) = keh

T iet , to capture the preference of kh on it . Then
given the positive pair (kh , it ) representing kh has left feedback on
it and negative pair (kh ,it ′) meaning kh has not left feedback on it ′,
we adopt Bayesian Personalized Ranking (BPR) [25] to maximize
the difference of preference scores between the positive pair and
the negative pair. With δ (·) denoting the Sigmoid function, the
objective function to model these preference signals is:

LBPR =
∑

(kh ,it ,it ′)∈S
− lnδ (p(kh, it ) − p(kh, it

′)) (3)

Each element in the training data set S is generated by combining
the ground truth interaction pair (kh, it ) with item it

′ that KOL kh
hasn’t left any feedback on.

Joint Tasks. During the opinion elicitation, we combine the task of
modeling explicit opinions and extracting preference signals from
the elite opinions graph Go , leading to the following loss function:

LGo = Lop + βLBPR (4)

Here β is used to adjust the weight of pairwise loss in capturing
the preference signals. By minimizing this joint loss LGo , we will
get the set of embeddings Ke = {ke1 ,k

e
2 , ...,k

e
P } for KOLs and

Ie = {ie1 ,k
e
2 , ..., i

e
M } for items, which inherit both the explicit infor-

mation and preference signals in the elite opinion graph Go .

3.3 Neural Graph-based Opinion Diffusion
As explained in Section 2, the opinions from KOLs can influence
their followers and items they comment, and thus make up part of
their features. Besides the implicit user-item interactions, these elite
opinions should also be exploited while modeling users preferences.
In what follows, we will start from enriching the initial user/item
embeddings with elite opinions. Then we will explain how to model
the elite opinion diffusion process with graph neural networks.

Fusing Layer (Users). Each user is associated with an embedding
eUu ∈ Rd to represent the initial interest, which can be derived from
his/her one-hot index with a fully-connected dense layer. Since
users are directly influenced by whom they follow, aggregating the
embeddings of KOLs whom the user is following can hint on the
user preferences on items. However, we know that a particular KOL
can have different levels of influence on different users. Building
on the recent development of attention mechanisms [5, 35], we can
model the dynamic (personalized) linkage between users and KOLs.
We have the set of embeddings from Section 3.2 for the set of P
KOLs k = {ke1 ,k

e
2 , ...,k

e
P }. Given that Fu is the set of KOLs that u

is following and eUu is a trainable dense representation for u, the
weight of KOL p’s influence on user u can be calculated as:

αup =
edup∑

j ∈Fu e
duj
, dup = zT ReLu(WA[kep ∥e

U
u ] + bA)

Here | | represents the concatenation operation. WA and bA is the
weight matrix and bias for the attention layer. z is a transformation
vector. Then we aggregate the embeddings of all KOLs the user
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Figure 4: Graph Neural Recommendation Incorporating the Influence of Key Opinion Leaders (GoRec).

follows with the attentive weights:

nu =
∑
j ∈Fu

αujkej

Thus nu can be used to characterize influence of elite opinions
to user u from whom he/she follows. Lastly, we fuse nu with the
initial embedding of u with the following operation:

xu = ReLu(WU [nu ∥eUu ])

where WU is a transformation matrix, and the output xu will be
treated as cornerstone for the opinion diffusion.
Fusing Layer (Items). Similarly, each item will start with a train-
able dense representation eIi ∈ Rd , which is associated with its
index. Since the KOLs can influence how the whole community
view an item, we want to complement eIi with the KOL-defined
features iei of item i which we elicit from the the opinions of KOLs.
Thus we adopt the similar fusion operation to generate the enriched
representation of item i:

xi = ReLu(WI [iei ∥e
I
i ])

in which WI is a transformation matrix and iei is the embedding
gained from Section 3.2 for item i .
Opinion Diffusion with GNNs. As suggested by [12, 44], user
preferences on items could diffuse through high-order connectivity,
thus the elite opinions from KOLs will also be propagated to those
non-direct followers in the community. In this paper, we propose
to model this opinion diffusion process by virtue of Graph neural
networks (GNNs) [1, 17, 29, 31].

The core idea of GNNs is that each layer learns the node em-
beddings by aggregating the features of neighbors. At the initial
GNN layer of our model, for user u and item i , given the sets of
neighbors Nu and Ni which are directly connected with u and i
correspondingly, we formulate the message passing on the edge
(u, i) from i to u as:

c(1)i→u =
1√

|Nu | |Ni |
W(0)

U xi (5)

Here, xi is the representation of i with influnce from KOLs and
W(0)

U denotes a trainable transforming matrix for users at layer 0.
The term 1/

√
|Nu | |Ni | is a normalization constant between u and i .

And then we need to sum up all the message passed tou to generate
its representation x(1)u :

x(1)u = τ (
∑
i ∈Nu

c(1)i→u )

where τ (·) is the activation function and we choose ReLu in this
work empirically. Similarly, we can generate the representation of
item i at this layer with:

x(1)i = τ (
∑
u ∈Ni

c(1)u→i ) = τ (
∑
u ∈Ni

1√
|Nu | |Ni |

W(0)
I xu )

After generating the x(1)u and x(1)i from the first GNN layer, we
can further capture the high-order diffusion by stacking multiple
GNN layers. Specifically, at the Lth layer, we will have:

x(L)u = τ (
∑
i ∈Nu

c(L)i→u ) = τ (
∑
i ∈Nu

1√
|Nu | |Ni |

W(L−1)
U x(L−1)i )

x(L)i = τ (
∑
u ∈Ni

c(L)u→i ) = τ (
∑
u ∈Ni

1√
|Nu | |Ni |

W(L−1)
I x(L−1)u )

Note that x(L)u at layer L inherits embeddings of users and items
from previous layers. That is howwe capture the diffusion of opinions
in multiple-order user-item connectivity with GNNs.

3.4 Preference Inference
With what we have reached so far, our final step is to infer user
u’s preference on all the items. That is the probability that these
items are connected with u. Following the similar idea as in Graph
Auto-encoder [7, 18] and Autorec [26] - a basic autoencoder for
recommendation, we use a fully-connected layer to recover the
graph structure (user-item interaction graph) from the output of



#User #Item User-item
Feedback

User-KOL
Feedback

Opinion
Triplet

Goodreads 15,324 36,645 1.831,826 167,054 2.8M
Epinions 6,334 8,015 81,965 63,939 0.1M

Table 1: Dataset Statistics.

the encoder (the stack of GNN layers). That is, for u, we will decode
x(L)u to reconstruct his/her feedback vector yu :

ŷu = δ (Vx(L)u + b
′)

where V and b′ are the weight matrix and bias term correspond-
ingly. And δ (·) represents the Sigmoid function. The objective is to
minimize the reconstruction loss Lr e between ŷu and yu :

Lr e =
∑
u ∈U

| |yu − Su · ŷu | |
2 (6)

where Su is a binary masking vector with 1 indicating items that
we want to consider while calculating the reconstruction loss for
u. Since the feedback usually is extremely sparse, as in [42, 50],
we don’t consider all the 0s in yu while calculating the loss. We
allocate 1 on all the items that u has left implicit feedback on (posi-
tive) and also on some randomly selected items without feedback
(negative) in Su . And we combine the tasks of opinion elicitation
and diffusion jointly, then the objective function of our final model
(GoRec) becomes:

L = Lr e + λLGo

Thus we reach our GoRec model (in Figure 4 ) which combines both
tasks end-to-end with a hyper-parameter λ to balance the tasks.
Prediction: The reconstructed vector ŷu will be used to infer user’s
preference on all the items, in which larger value means higher
probability that the user is interested in the item. We will rank
those predictions to generate the Top-K recommendations to users.

4 EXPERIMENTS
In this section, we will evaluate the performance of the proposed
GoRec model on two real-world datasets:

4.1 Datasets
We test GoRec and the baselines on both Goodreads and Epinions
(summarized in Table 1). Empirically, we select the Top-500 accounts
in the communities as KOLs. There is no overlapping between
ordinary users and KOLs. We split the user-item interaction data
with ratio 6:1:3 for training, validation and testing.
Goodreads. We randomly sample 2 million user IDs and crawl
all their interactions with books and their following information
until November 2018. We filter out inactive users with fewer than
5 interactions on books. While constructing the opinion triplets,
we utilize the reviews, ratings and tags provided by KOLs. For each
review, we handle it with preprocessing, tokenization, and stop
word removal to extract the words. Each unique word, rating level
(1 to 5), or tag is treated as one type of opinion, based on which we
construct the opinion triplets.
Epinions. This is a public dataset with user reviews and unidirec-
tional user-user relations [30]. Epinions is a review site on which

users can write and read reviews for products. In Epinions, a user
can “trust” another user, which is treated as the “follow” signal in
this platform. By analyzing the “trust” relationships between users,
we can see similar patterns as shown in Figure 2 for Goodreads.
We keep active users leaving no less than 5 feedback. We ranked
all the accounts based on the numbers of their followers and select
the top accounts as KOLs. For KOLs, we treat all the reviews and
ratings as explicit opinions. And we use the same method as in
Goodreads to construct the opinion triplets. For users, we treat all
their interactions with items as implicit feedback.

4.2 Experimental Setup

Metrics. To better examine how the personalized recommendation
system works under a real-world scenario, we adopt the Precision
(Pre), Recall (Re), F-1 score (F1) and NDCG of Top-K recommen-
dation as metrics. Pre@k represents the percentage of correctly
predicted items among the Top-k recommendations, and Re@k rep-
resents the fraction of relevant items which are discovered by the
Top-k recommendations. We also consider both recall and precision
with their harmonic mean F1@k = 2·Pre@k·Re@k

Pre@k+Re@k .
NDCG takes the positions of recommendations into considera-

tion. It is the ratio between discounted cumulative gain (DCG) and
ideal discounted cumulative Gain (IDCG):DCG@K =

∑K
i=1

r eli
log2(i+1)

and IDCG@K =
∑Min( |L |,K )

i=1
1

log2(i+1)
, where |L| is the size of the

test set. The relevance score reli equals to 1 if the recommendation
with rank i is in the test set, otherwise, reli = 0. Then NDCG is
calculated as: NDCG@K = DCG@K

IDCG@K .

Baselines.
• ItemPop: This model ranks items based on their popularity
and recommends the most popular items.

• BPRMF: Bayesian Personalized Ranking [25]. It estimates user’s
preference on an item with the multiplication between their la-
tent factors (MF). It is optimized with the Bayesian personalized
ranking (BPR) loss [25] based on user-item interactions.

• CDAE: Collaborative Denoising Autoencoder [42]. This model
is a generalization of collaborative filtering and matrix factor-
ization. It models user-item interactions with the basic Autoen-
coder structure and an additional user node.

• NGCF:Neural Graph Collaborative Filtering [37]. It models user-
item interactions with GNNs and concatenates the embeddings
from different GNN layers to balance the multi-order connec-
tivity in a bipartite graph. It is optimized with BPR loss.
Somewhat similar to our idea of incorporating the influence of

KOLs is exploiting semantic knowledge for recommendation. Be-
low are methods originally proposed to enhance recommendation
with knowledge graph (KG). By treating the opinion triplets in the
same way as the fact triplets in a KG, they can also consider the
interactions between user, KOLs and items for recommendation:
• MKR: Multi-Task Feature Learning [36]. This model proposes

to utilize the cross&compress unit to combine recommendation
with the task of KG embedding. It aims to optimize AUC.



Model
Goodreads Epinions

k=5 k=10 k=5 k=10
Pre Re F1 NDCG Pre Re F1 NDCG Pre Re F1 NDCG Pre Re F1 NDCG

ItemPop 16.95 2.31 4.07 17.78 13.82 3.54 5.64 15.61 2.90 2.62 2.75 3.58 2.36 4.15 3.01 3.94
BPRMF 27.58 4.27 6.13 28.50 24.99 7.27 8.99 27.03 4.33 3.57 3.48 5.04 3.64 6.02 4.01 5.64
NGCF 29.02 4.53 6.41 30.23 26.02 7.57 9.28 28.41 4.73 4.04 3.86 5.53 3.82 6.33 4.21 6.03
CDAE 30.52 4.67 6.69 31.85 27.58 7.94 9.82 30.04 5.02 4.15 4.04 5.94 4.16 6.91 4.60 6.57
MKR 21.80 2.70 4.29 21.43 19.50 4.32 6.28 20.11 4.80 3.94 3.92 4.86 3.10 5.46 3.55 4.97
KTUP 28.70 4.22 6.14 29.76 26.08 7.23 9.14 28.16 4.51 3.79 3.67 5.26 3.87 6.38 4.29 5.94
CKE 30.99 4.43 6.50 32.38 27.82 7.46 9.58 30.28 4.98 4.27 4.08 5.96 4.13 6.86 4.57 6.58

GoRec 34.61* 5.06* 7.50* 35.88* 31.09* 8.58* 11.02* 33.61* 5.45* 4.68* 4.47* 6.50* 4.43* 7.62* 4.97* 7.16*
∆(%) 11.68 8.35 12.11 10.81 11.75 8.06 12.21 10.99 8.56 12.77 9.55 9.06 6.49 10.27 8.75 8.81

Table 2: Comparing Models on top-K Recommendation. All the results are in percentage. ∗ indicates that the improvement of
the best result is statistically significant compared with other methods for p < 0.05.

• KTUP: Unifying KG Learning and Recommendation [3]. It per-
forms item recommendation and knowledge completion simul-
taneously. It enhances the basic BPRMF by transferring embed-
dings for relations and entities learned from KG completion.

• CKE:Collaborative Knowledge Base Embedding for Recommender
Systems [47]. It proposes to combine knowledge of items from
multiple resources to enhance recommendation. It uses TransR
[20] to construct embeddings for the structural knowledge.

Parameters. All of the experiments were conducted with a 12 GB
Nvidia TITAN GPU. For CDAE, NGCF, MKR and KTUP, we use
the implementations provided in their original papers. We use the
implementation provided in [3] for CKE.

For all the baseline models, we did a grid search for the sizes
of embeddings over {5, 10, 20, 50, 100, 200, 250, 500}. We also fine-
tune their learning rates over {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1} and the coefficient of L2 regularization over {10−6, 10−5, 10−4,
10−3, 10−2, 10−1}. For NGCF, following the paper, we set its depth
to be 3 to capture the 3-order connectivity in the graph. And the
embedding size is 100 for each layer. We follow the settings as in
the original paper for the other parameters.

We use Adam to optimize the proposed model. The batch size is
set to be 256 for both datasets. We fine-tune the parameter λ and
β over {0.01, 0.05, 0.1, 0.5, 1, 5} for both datasets. Empirically, for
fair comparison with NGCF, without specification, we use 3 GNN
layers with embedding size of {100, 100, 100} for the Graph-based
encoder. The dimension of the embeddings for the elite opinion
elicitation process is also set to be 100. The node dropout rate is
set to be 0.1. While calculating the reconstruction loss in Equation
6, the negative sampling rate is set to be 10. That is for each item
with positive feedback, we randomly select 10 items that the user
has left no feedback on as negative samples. We train the model for
100 epochs or stop until it achieves the best performance on the
validation set.

4.3 Baseline Comparison
As an overall comparison, we summarize the results of Top-K rec-
ommendation at K=5 and K=10 in Table 2. And ∆ represents the
improvement of GoRec over the best baseline methods. GoRec
achieves the best performance under different K for both commu-
nities on all the metrics (Precision, Recall, F1 and NDCG).

Starting from ItemPop of recommending the most popular items,
with matrix factorization, BPRMF can improve ItemPop by 56.61%.
Then, NGCF extends BPRMF by concatenating the embedding gen-
erated from multiple GNN layers and achieves 8.13% and 4.82%
improvement on Goodreads and Epinions, which shows the signifi-
cance of paying attention to the high-order connectivity between
users and items in recommendation.

Comparing GoRec with the baseline models which are designed
to enhance the recommendation utilizing the semantic information
from knowledge graphs (MKR, CKE and KTUP), we can see GoRec
outperforms all of them, which indicates the proposed model is
a good fit for eliciting the elite opinions and incorporating them
to infer user preferences. Among those models, we find that MKR
performs worst because it is designed to optimize the AUC and thus
may not be a good fit for the Top-K recommendation task. KTUP
improves BPRMF by transferring embeddings learned from the
relational structured data. And we can see it outperforms BPRMF
by 2.14% and 5.59% in recommendation for Goodreads and Epinions,
which shows the effectiveness of treating the opinion triplets similar
as the fact triplets in structured knowledge graph. In CKE, it encodes
the structured data with TransR [20], which can provide more
flexibility and is more powerful in handling the many-to-many
relationships between KOLs and items.

4.4 Ablation Analysis of GoRec
GoRec provides improved recommendations by modeling the influ-
ence of KOLs in the community. In this section, we want to evaluate
how each component of GoRec impacts the recommendation qual-
ity by comparing it with its variants (in Table 3). Note that GARec
represents the Neural Graph-Autoencoder model, which can be
treated as a variant of the proposed GoRec without considering the
influence of KOLs.
Diffusion via High-order Connectivity. Compared to the basic
autoencoder for recommendation (Autorec) [26], GARec comprises
multiple GNN layers to encode also the high-order connectivity of
users and items. The collaborative denoising Autoencoder (CDAE)
[42] is an advanced version of Autorec with an additional embed-
ding vector to characterize user preferences. In GARec, we use
GNN layers to capture multi-order connectivity in the user-item
interaction graph and a fully-connected layer to reconstruct the
feedback vector. We find that by taking the high-order connectivity
into consideration, GARec can outperform CDAE by 4.46% and



Goodreads Epinions
F1 NDCG ∆(%) F1 NDCG ∆(%)

CDAE 9.82 30.04 - 4.60 6.57 -
GARec 9.99 32.20 4.46 4.70 6.62 1.47

GARec+User 10.75 32.72 9.20 4.87 7.00 6.21
GARec+Item 10.69 32.80 9.02 4.90 6.91 5.84

GoRec 11.02 33.61 12.05 4.97 7.16 8.51
Table 3: Ablation Analysis of GoRec (K=10). All the results
are in percentage.

1.47% in Goodreads and Epinions correspondingly. Thus we can
conclude that it is necessary to model the high-order proximity be-
tween users and items in a sparse scenario. The proposed structure
is capable in capturing the opinions and signals diffusion in the
community, leading to improved item recommendation.

Fusing Elite Opinions into Diffusion Process. KOLs can di-
rectly influence their followers, starting from which their opinions
diffuse in the whole community. While modeling user preferences,
GARec+User extends GARec by fusing the initial user embedding
with the attentive aggregation of all the KOLs the user is following,
and thus outperforms GARec in both Goodreads and Epinions. This
confirms the importance of capturing and modeling the influence
of KOLs to their followers in such a direct process. Additionally,
KOLs can change how the community views an item by publish-
ing reviews, ratings and tags. In this way, they add community-
specific/KOL-defined features to items. In GoRec, we model this
process with a fusing layer to enrich the initial embeddings of
items. Thus extending from GARec, we add in the item embed-
dings generated from elite opinion elicitation, and then end up
with GARec+Item. We find that in both Goodreads and Epinions,
by modeling the influence of KOLs on how users view the items,
we can further improve the quality of our recommendations. Also
we find that the improvement from GARec+User is larger than that
of GARec+Item, which indicates that the influence from whom the
user is following is more direct and more significant. And the combi-
nation of both diffusion processes leads to even better improvement
in both communities.

4.5 Visualization of Elite Opinions
Finally, we want to gain insight into the elite opinions we obtain
with the translation-based embedding model in Section 3.2. Based
on the opinions embedding oer from Equation 2, how do the KOLs in
Goodreads view or define items in several ambiguous book genres?
A tag left by the KOL indicates the genre to which the KOL believes
the book should belong. Thus in Figure 5, after deducing their di-
mensions with t-SNE [21], we plot the embeddings for 5 ambiguous
tags and the neighboring elite opinion words. This figure indicates
how the Goodreads community defines these genres. We find that
in Goodreads, “Sherlock”, “detective” or “hacker” related contents
are likely to be categorized as Mystery. Books talking about “diet”,
“biography” or life of “youtubers” are nonfiction. KOLs describe hor-
ror contents and paranormal contents closely which cover topics
like “zombie”, “ghost”, “werewolf” and “reaper”. And the Goodreads
community pays attention to “historic” books for various countries
like Scotland and Germany.
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Figure 5: Visualization of Elite Opinions in Goodreads. We
show 5 ambiguous tags (“Tag: nonfiction”, “Tag: mystery”,
“Tag: horror”, “Tag: paranormal”, “Tag: historical”) and their
neighboring elite opinions (words in black).

5 RELATEDWORK

Graph-based Recommendation. There are previous works on
exploiting graph structure in recommendation [11, 12, 28, 38, 40, 43,
44]. PsiRec [12] and HOP-Rec [38] employ randomwalk to generate
pseudo linkage between users and items to alleviate the sparsity
in feedback data. These models are sensitive to a separate random
walk process and thus produce unstable results.

Building on GNN [17], PinSage [46] is proposed to generate em-
beddings of items (pins in Pinterest), considering both the graph
structure (item-item graph) and item features (text and image fea-
tures), which can be applied for downstream recommendation tasks
(e.g. recommend items whose embeddings are the nearest neigh-
bors of the query item’s embedding). In this work, we focus on
utilizing user-item interactions to model users and items simultane-
ously for direct recommendation. GCMC [1] is proposed for rating
prediction, which handles user-item interaction on different rating
levels with separate GNN layers. NGCF [37] improves neural CF
[11] utilizing high-order connectivity in the structure of user-item
bipartite graph. Different from the Graph-Autoencoder component
(GARec) in our GoRec, NGCF concatenates the embedding of mul-
tiple graph layers to generate the final latent representations and
trains with pair-wise loss. All these methods ignore the impact of
KOLs in the communities.
Knowledge and Content Enhanced Recommendation. There
is a growing interest in incorporating various auxiliary information
into recommendation to deal with the challenge of sparse interac-
tions between users and items. One direction is to extract content
information of items to enrich the latent representations, like vi-
sual features from images [10, 23], topical information from text
descriptions [16, 47] or audio features from multimedia [34].

On the other hand, there are also works on transferring semantic
knowledge learned from the relational graph of many knowledge
bases (e.g., DBpedia, YAGO, Freebase) for item recommendation
[3, 36, 47]. KTUP [3] and MKR [36] combine the tasks of item rec-
ommendation and Knowledge Graph (KG) completion, and thus
transfer information of entities to items. However, there are chal-
lenges in utilizing the KG in recommendation systems. Update and



maintenance of the semantic databases highly depends on the con-
tributors. It takes effort to find the correct mapping between items
and entities in the KG. An incorrect mapping will introduce noise
and hurt the recommendation. Thus, in our work, instead of relying
on externally managed KGs, we focus on eliciting elite opinions
from KOLs in the community itself, to characterize items and users.

6 CONCLUSION
We propose a novel recommendation system to provide improved
item recommendation by taking the influence of key opinion lead-
ers into consideration while exploiting user preferences. It is able to
elicit the elite opinions from key opinion leaders with a translation-
based embedding method. Meanwhile, building upon multiple GNN
layers, the proposed framework can efficiently model the opinion
diffusion process. Through experiments on Goodreads and Epin-
ions, the proposed model outperforms state-of-the-art approaches
in Top-K recommendation. In the future, we are interested in fur-
ther exploring how the influence of KOLs can be transferred cross-
platform. We also want to develop a flexible model to support some
newly-emerging types of opinions (like video blogs).
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