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ABSTRACT
We propose a personalized user recommendation framework for
content curation platforms that models preferences for both users
and the items they engage with simultaneously. In this way, user
preferences for specific item types (e.g., fantasy novels) can be
balanced with user specialties (e.g., reviewing novels with strong
female protagonists). In particular, the proposed model has three
unique characteristics: (i) it simultaneously learns both user-item
and user-user preferences through a multi-aspect autoencoder
model; (ii) it fuses the latent representations of user preferences
on users and items to construct shared factors through an adver-
sarial framework; and (iii) it incorporates an attention layer to
produce weighted aggregations of different latent representations,
leading to improved personalized recommendation of users and
items. Through experiments against state-of-the-art models, we
find the proposed framework leads to a 18.43% (Goodreads) and
6.14% (Spotify) improvement in top-k user recommendation.
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1 INTRODUCTION
Content curation platforms are powered by users who surface in-
teresting content – via reviews, pins, boards, ratings and other
actions. For example, Pinterest users curate and comment on links
or images to form thematic “boards” on various topics like Recipes
and Fashion. Similarly, Goodreads provides a platform for users
to curate interesting books via tagging, ratings, and reviews. And
music streaming services like Spotify allow users to create and
share playlists containing combinations of individual tracks. Unlike
content creators in social media who generate new digital artifacts
such as tweets, blog posts, or photos, users in curation platforms,
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Figure 1: In curation platforms, users acting as curators, col-
lect and organize existing content via tagging, reviews, or
ratings. By receiving updates from whom they follow, users
can be exposed to interesting items and curation decisions.

who we refer to as curators, collect and organize existing content,
while often providing additional insights via comments, reviews,
or ratings [11, 21]. In this way, these curators can provide a human-
powered overlay that can link seemingly un-related items (e.g.,
a collection of books that are thematically related though from
different genres).

By connecting to curators, users can discover new items, new col-
lections, and new connections among items built via human (rather
than algorithmic) power. For example, as illustrated in Figure 1, a
Spotify user can follow other users and thus keep track of their
listening activities (like songs, albums, and playlists). In Goodreads,
users will see updates including new bookshelves, ratings and text
reviews from those whom they follow. Indeed, around 50% of Spo-
tify’s 100 million users listen to human-curated playlists [37] and
researchers have shown how the power of human curation can
serve as a significant component of modern recommender systems
to connect users to items [16, 24].

But how can we recommend interesting curators to follow? This
challenge of user recommendation in content curation platforms
is vitally important and yet most existing methods that rely on
traditional item-level recommendation [2, 3, 9, 35, 38] or on expert-
finding approaches [8, 12, 26, 29] may not capture the important
relationships among both curators and the items they curate. Users
in curation platforms are complex amalgamations of the specific
items they interact with (e.g., sci-fi books), their style of curation
(e.g., reflecting personal interests), and the complex interactions
between items and the curated lists themselves. For example, a
specific item type like a fantasy novel may be curated by someone
with an interest in novels with strong female protagonists, while
the same novel may be curated by someone else with an interest in
space warfare. Compared to previous works on friend recommenda-
tion [10, 32], topical user recommendation (e.g., finding other users
interested in fashion) [14, 30], and expert finding [8, 12, 26, 29],
there is a research gap in curator recommendation that carefully
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Figure 2: Similarity between random user pairs and user
pairs where the one follows the other in Goodreads. (Each
user is represented with a binary vector over all books, in
which a "1" indicates that the user has curated the book by
adding it to personal bookshelf, leaving comment or rating.)

balances user preferences for specific item types and preferences
for different curator specialties.

Hence, we are motivated to develop a new model for curator
recommendation that leverages this linkage between user-curator
following relationships and the items they are interested in. Ulti-
mately, this work aims to provide users with improved personalized
recommendation on who to follow (the primary task) and interesting
items (the supplementary task) simultaneously. Such an effort re-
quires careful modeling of these two aspects – curator preferences
and item preferences – in a unified framework. Curator recom-
mendation faces challenges of extreme sparsity in many platforms,
where there is a long-tail of users with limited feedback (say, by
following). The densities of feedback on users and items are usually
unbalanced in content curation platforms. Though the feedback on
items can enrich user profiling in curator recommendation, directly
fusing user preferences on different aspects can introduce noise
during the training process and lead to bad performance for both
tasks. Furthermore, since the preferences for curators and items
can vary by individual users, such an approach should take care to
provide personalization for individual users.

Towards tackling these challenges, we propose the (CuRe) frame-
work for content Curation platform (CuRe) user Recommendation.
In particular, the proposed CuRe has three unique characteristics:
• First, we propose to effectively extract and represent the prefer-

ences of users on curators and items through a multi-aspect au-
toencoder model that simultaneously learns both user-curator
and user-item preferences.

• Second, we develop an adversarial framework to fuse the latent
representations of user preferences on curators and items to
construct shared factors. In this way, CuRe tackles the primary
task of curator recommendation, while also supporting the
supplementary task of item recommendation.

• Third, to capture personal preferences of different users, we in-
corporate an attention layer to produce weighted aggregations
of different latent representations, leading to improved person-
alized recommendation of curators, with the added benefit of
high-quality item recommendation.
With experiments on two platforms (Goodreads and Spotify)

supporting different kinds of curation behaviors, we find that the
proposed model can provide improved curator recommendation.
Comparing with a suite of baselines from simple models to recently

introduced state-of-the art models, we find that CuRe leads to an
18.43% and 6.14% improvement in top-k curator recommendation
for Goodreads and Spotify, and a 27.38% and 9.61% improvement in
the cold-start scenarios.

2 RELATEDWORK
Content Curation Platforms and User Recommendation. Re-
cently there have been efforts to study curation platforms. In [5, 25],
the authors recommend user-generated lists based on the occur-
rences of items among lists and interactions of users on items. Work
in [18, 44] focuses on “board” recommendation in Pinterest. How-
ever, there is a gap in our understanding of finding interesting
users to follow. The connections between users and curators are
amalgamations of curated contents, individual items and personal
style, which pose new challenges compared to traditional friend
recommendation in social networks [10, 32]. Somewhat similar to
our notion of curator is research on finding expertise to improve
search and recommendation, including topical user recommenda-
tion [14, 30, 45, 46] and expert finding [8, 12, 26, 29]. For example,
UserRec [46] models users’ similarity based on the tag-graph and
topic distributions, with which it can help in connecting users shar-
ing similar interest. Yan and Zhou [43] propose to improve friend
recommendation by capturing the relationships among users, their
friends and interest with tensor factorization. However, these and
related methods usually rely on users’ explicit (topical) tags on ex-
perts, or the semantics of tags and content created by users, which
are not always available in content curation platforms. In contrast,
we focus on curation decisions of these users to model users and
the items they curate simultaneously.

Multi-task learning and joint recommendation. CuRe jointly
learns user preferences on curators and items akin to multitask
learning [6], which has been widely adopted in different recom-
mendation scenarios [2, 5, 19, 27, 34, 40]. By sharing feature repre-
sentations across different tasks, it enables the recommender system
to fully leverage hidden signals from the sparse data through regu-
larization. Kang et al. [19] set item correlation prediction and next
interaction prediction as supplementary tasks, to improve the per-
formance of sequential item recommendation. In GRU-MTL [2],
they train the recurrent model with two tasks – tag prediction
and text recommendation, to ultimately improve the text recom-
mendation. Similarly, in [27, 40], they combine personalized item
recommendation with opinionated text content modeling together
to achieve better results in the recommendation. Enhanced with
transferring knowledge between different social media sites, Cross-
fire [34] generates recommendations of friends and items at the
same time. In contrast, our proposed approach combines user rec-
ommendation in curation platforms with the supplementary task
of item recommendation to better model user preferences.

3 CURE: CURATOR RECOMMENDATION
In this section, we propose to tackle the problem of curator recom-
mendation through a novel model that aims to balance user-curator
interactions with user-item preferences. We begin with the problem
statement and then step through the development of our model.



3.1 Problem Setting
Let U = {u1, u2,..., uN } be the set of users in the content curation
platform. Users leave implicit feedback on other users, e.g., through
the “following” action. We refer to users that are followed by others
as curators. Hence, the candidate set of curators that users can
follow is the same as U . By following a curator, that user will
receive updates from them. Of course, if a user does not follow c,
then the user may be uninterested or merely unaware of c. For user
u, we use a binary vector yu = [yu1,yu2, ...,yuN ] to indicate the
users followed by u, in which yuc = 1 denotes u is following c and
yuc = 0 means u does not follow c . At the same time, users are able
to leave (implicit) feedback on items. Let I = {i1, i2,..., iP } denote
the set of items we consider. Similarly, we use binary vector tu to
indicate items user u has left feedback on.

Since user-curator-item preferences are closely connected in
content curation platform, we propose to capture user preferences
on individual items and curators simultaneously. Ultimately, our
goal is that,∀u ∈ U , we want to recommend a ranked list of curators
to follow lCu ⊂ U (which we refer to as our primary task) and
a ranked list of interested items lIu ⊂ I (which we refer to as
our supplementary task). This dual approach – considering both a
primary and supplementary task – is built around three guiding
research questions: (RQ1) How can we represent user’s preferences
on curators and items simultaneously? (RQ2) How can we integrate
these preferences so that user-curator and user-item preferences
mutually reinforce each other? (RQ3) How can we personalize the
learned latent representations to capture user-specific preferences?

3.2 RQ1: Learning Curator & Item Preferences
Since users leave feedback on both items and curators who collect
and organize items, we first aim to model users based on these
two aspects – preference on items and preference on curators. In
this section, we start from an autoencoder structure to effectively
uncover the latent representations of user-curator preferences. We
then extend this basic model to incorporate user-item preferences.

Curator Preference Representation via Autoencoder. As the
first step, we adopt a basic autoencoder model to build a user recom-
mender. An autoencoder is a one-hidden layer neural network con-
sisting of an encoder and a decoder, which aims to reconstruct the
input from the hidden latent representation. AutoRec [33] demon-
strates how the autoencoder can be generalized to collaborative
filtering and applied for recommender systems. The Denoising Au-
toencoder (DAE) [39] extends the basic autoencoder by corrupting
the original input vector with additive noise (denoising), resulting
in improved performance.

Given the binary vector yu = [yu1,yu2...,yuN ] representing
user u’s implicit feedback on all the curators, we can first corrupt
this original input with some noise. We mask out each dimension
of yu with a probability of η and then we get the corrupted vector
ỹu = [ỹu1, ỹu2, ..., ỹuN ]. We feed this vector into the encoder and
generate the hidden latent representation:

hu = δ (Vỹu + b), (1)

in which V is the weight matrix for the encoder and b is the bias
term. δ (·) denotes the Sigmoid function. Then the decoder will

reconstruct the input from the hidden latent representation with

ŷu = δ (Whu + b’)

whereW and b’ denote the weight matrix and bias of the decoder
accordingly. Then the loss is the reconstruction error calculated
between the output and the uncorrupted input.

L =
∑
u ∈U

(
∑
c ∈SCu

ŷuc − yuc )
2

Practically, while considering the construction loss, besides the
users with positive feedback from user u, SCu also contains negative
samples of curators for whom u has not left any feedback. With
a well-trained DAE model, we can immediately generate person-
alized curator recommendations for u based on the reconstructed
output ŷu , in which ŷuc represents u’s preference on c . Such an
approach, however, builds a representation hu for user u based
solely on historic user-curator interactions, without considering
the importance of user-item preferences as well.
Joint Curator-Item-DAE. Hence, we next enrich the latent repre-
sentation hu with our supplementary task (item recommendation).
From Figure 2, we find that user preferences on items can hint on
whom the user wants to follow. To enrich our curator recommen-
dation with this additional information, we can first use a DAE
to model user preferences on items (since we have user feedback
vectors on items). Let hIu denote the hidden latent factors for user u
generated from this supplementary DAE. We supplement hu with
the user-specific vector hIu from u’s feedback on items to improve
our curator recommendation.

The intuition of joint Curator-Item-DAE is to recover not only
the feedback vectors on curators but also the vectors for user-
item interactions [1]. In this case, the primary goal is to recover
the curator feedback vector while the supplementary task is to
recover the item feedback vector. For clarity, we rename the latent
representation hu embedded from user-curator interactions (with
Equation 1) ashCu . Given the supplementary item feedback vector tu
of user u, we first corrupt them with the mask-out noise (denoising).
And then encode them into hidden representations hIu :

hIu = δ (VI t̃u + bI )

where t̃u is the corrupted version of tu . Then we construct the
enriched version of hu by integrating the hidden representations
hIu and hCu via element-wise addition hu = hCu + h

I
u .

We feed the combined hidden representation hu of user u into
separate decoders for the primary task and supplementary task.

ŷu = δ (Whu + b’) t̂u = δ (WIhu + b′I )

Then the loss function is the weighted sum of reconstruction
loss for the primary task (curator recommendation) and the supple-
mentary task (item recommendation):

Lr ec =
∑
u ∈U

(
∑
c ∈SCu

(ŷuc − yuc )
2 + α

∑
i ∈SIu

(t̂ui − tui )
2), (2)

where SIu includes all the items u has left feedback on (positive)
and a subset of items u hasn’t left feedback on (negative samples).
We use α to adjust the weight for the supplementary task.
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Figure 3: The structure of CuRe. The model generates user’s latent presentations with feedback vectors on curators and items.
While fusing those representations, to force hCu and hIu to live in a shared space, theDiscriminator is trained to discriminatively
predict whether a latent representation is from hI or hC . The attention layer can generate user-specific weighted aggregations
h for user’s preferences on curators and items.

3.3 RQ2: Fusing Latent Representations
In our approach so far, the combined representation h – which is
the element-wise aggregation of samples in hI and samples in hC

– is designed to contain shared information for both tasks (curator
recommendation and item recommendation). Such a shared repre-
sentation would require that the element in the same dimension
of hI and hC should correspond to the same latent factor of users
while forming the shared representation. That is, we would like
samples in hI and hC to have similar distributions and so share
the same space. By doing so, we can improve the effectiveness
of the element-wise fusion for latent representations from differ-
ent aspects. Furthermore, we find empirically that such a fused
space leads to faster convergence, more robustness to noise in user
feedback, and higher-quality recommendation. Thus we adopt an
adversarial learning framework to fuse the latent representations
from the curator and item aspects before aggregating them.

There are prior works on adapting variational autoencoder (VAE)
to collaborative filtering, in which the variational encoder tries to
approximate a standard user-agnostic Gaussian prior (distribution)
[22] or user-dependent priors learned from users’ preference in text
reviews [20]. Recently, adversarial autoencoders [28] have been
proposed and shown to perform better than VAE. Following the
idea of generative adversarial networks (GAN), adversarial encoders
deploy the adversarial loss for distinguishing samples from hidden
layers in an autoencoder and samples from the desired distribution.
As in the work of [23], we supplement the reconstruction loss with
an adversarial loss for distinguishing samples from hI and samples
from hC . By minimizing the adversarial loss, we aim to require hI

andhC to have similar distributions and contain shared information
from different user aspects (reflecting user-item and user-curator
preferences). Then we will be able to maximize the effectiveness of
h as the shared latent representation for both tasks.

Thus we have a discriminator designed to predict whether a
vector is encoded from the curator feedback vector (hC ) or from
the item feedback vector (hI ) (see Figure 3). The discriminator can
be a simple neural network consisting of several fully-connected
layers. This binary classifier is trained to classify samples from hC

as positive (1) and samples from hI as negative (0). We use binary
cross-entropy to train the discriminator.

While training, we follow the minimax strategy. That is, in each
batch, we will first try to optimize the discriminator in classifying
latent representations from different aspects (Max). And then we
minimize the reconstruction loss while also misleading the discrim-
inator (Min). Let θD , e and l denote the parameters, predicted labels
and ground truth labels for the discriminator. In the Max step, the
objective function is to maximize the adversarial loss Ladv :

Ladv = max
θD

1
b

∑
b

((1 − l) ln(1 − e) + l ln e)) (3)

where b is the number of input samples for the discriminator. And
then in the Min step, the encoders need to generate latent repre-
sentations to mislead the discriminator. Thus we supplement the
reconstruction loss Lr ec in Equation 2 with the adversarial loss
Ladv and the total loss of the combined model becomes:

L = min
θR

max
θD

Lr ec + λLadv (4)

in which θR denotes the whole set of parameters for the model
excluding θD . And λ is the hyper-parameter used to adjust the
weight for the adversarial loss.

3.4 RQ3: Personalized Fusing via Attention
So far, by doing a naive addition, we assign the same weight on hC

and hI to generate the shared latent representation h, which may
not reflect the personal preferences of users. For different users, the
correlations between their preferences on curators and preferences
on items could be different. Some users may prefer to follow cura-
tors who share a similar preference for items with them (e.g., a user
who likes science fiction novels follows curators who also focus
on science fiction). Other users may prefer to follow curators with
novel content to gain a wider exposure (e.g., a user who mostly
reads science fiction novels may follow a curator who prefers bi-
ographies). Thus, we need to perform a weighted sum on hCu and
hIu , where the weight on each component denotes its influence in
both tasks for user u. We replace the simple addition between hC

and hI with an attention layer [4, 7, 42] to produce user-specific
(personalized) weighted aggregations of latent representations.



As explained in Figure 3, For user u, we will first pass the one-hot
representation u to a fully-connected embedding layer and generate
a unique latent representation Eu = WEu + bE , in which WE is
the weight matrix and bE is the bias. The user embedding will be
used as a user-aware coefficient to adjust the importance of latent
representations from different components in the attention layer.
Thus for user u, the weights αCu and α Iu for latent representations
hCu and hIu are calculated as:

αCu =
expOC

u

expOC
u + expO I

u
α Iu =

expO I
u

expOC
u + expO I

u

where

OS
u = zT · tanh(PhSu + QEu + b

A), S ∈ {C, I }

in which P and Q are the weight matrices of the attention layer. z
is a transform vector and bA represents the bias. Then for user u,
the latent representation hCu and hIu will be aggregated based on
the weights αCu and α Iu correspondingly. Empirically we find that
this user-specific weighted sum can achieve better results than the
simple addition for both tasks.
Isolated Hidden Layer for Primary Task. We have reached a
personalized-aggregated latent representation h containing shared
information for both primary and supplementary tasks. However,
there is task-specific information which can assist one task but
become noise for another task [23]. Thus in order to further enhance
the performance in our primary task of recommending curators, we
reserve latent factors for information targeting the primary task
only. Thus, we add an isolated hidden layer h accompanying with
the shared layer h for our primary task. h can be generated with
Equation 1 but with a separate weight matrix and bias (V and b). It
is concatenated with the shared latent h before decoding for the
primary task. Then we get our final model as shown in Figure 3.

4 EXPERIMENTS
In this section, we evaluate the proposed CuRe model via experi-
ments over two real-world curation datasets. We seek to answer
the following questions: (i) How does the proposed framework per-
form in the primary task of recommending curators? (ii) What is
the impact of the different components in CuRe on the quality of
curator recommendation? (iii) While CuRe aims to improve curator
recommendation (the primary task), how well does it perform on
the supplementary task of item recommendation? (iv) How does
CuRe perform under the cold-start scenario?

4.1 Datasets
To examine how the proposed framework performs in real-world
scenarios, we conduct our experiments on datasets (summarized in
Table 1) from two curation platforms supporting different curating
behaviors. In Spotify, users curate music into playlists. Goodreads
enable users to not only curate books into bookshelves but also
leave feedback including ratings, reviews, and so on [36]. We split
each dataset and use 60% for training, while using 10% for validation
and 30% for testing.
Goodreads. Since user IDs in Goodreads are consecutive integer
numbers, we randomly select 1 million users and crawl the lists of
users they follow. We keep active users with more than 5 followers

Dataset User Item User-User
Interactions

User-Item
Interactions

Goodreads 48,208 61,848 528,816 10,526,215
Spotify 25,471 70,107 227,024 4,499,741

Table 1: Summary of Datasets

or 5 followees. For each user, we crawl the list of books they have
left feedback on (putting to bookshelves, ratings, reviews or tags).
Further, we consider all books withmore than 50 feedback, resulting
in more than 60,000 books listed by about 50,000 users.
Spotify. Spotify is one of the largest music streaming platforms, on
which users can create and share their playlists. Users can follow
other users or playlists and then get updates from them. To sample
from Spotify, we create a seed list of playlists by issuing 200 keyword
queries representing popular topics on Spotify (e.g., pop, coffee,
trip) and then randomly selecting 0.2 million returned playlists. We
then identify the users who curate these playlists and crawl their
followees, arriving at a list of 5 million valid user IDs. We then
identify active users with more than 5 followers or 5 followees. For
each user, we consider all the music tracks in playlists they curate
as what they have left feedback on. We filtered out all tracks which
have received less than 50 feedback.

4.2 Setup
Metrics. To evaluate the quality of top-k recommendation, we
adopt the F1 score and normalized discounted cumulative gain
(NDCG). F1 is the combination of recall and precision, where recall
is the percentage of relevant curators discovered by the top-k rec-
ommendations, while precision represents the fraction of correctly
predicted curators in the top-k recommendations. Let F1@K, P@K
and R@K represent the F1, precision and recall while consider-
ing the top-k ranked list from each model. Then the F1 score is
calculated as F1@K = 2∗P@K∗R@K

P@K+R@K .
Taking the positions of recommendations into consideration, we

also measure NDCG, which is the ratio between discounted cumula-
tive gain (DCG) and ideal discounted cumulative Gain (IDCG). Here
DCG@K =

∑K
i=1

r eli
log2(i+1)

, IDCG@K =
∑min( |REL |,K )

i=1
1

log2(i+1)
, in

which reli denotes the relevance score the recommendation with
rank i . If the recommendation is in the test set, then reli = 1, other-
wise, reli = 0. |REL| represents the size of the test set. Then NDCG
is calculated as NDCG@K = DCG@K

IDCG@K .
Baselines. We consider a suite of baselines from simple models to
recently introduced state-of-the art models, which can be applied
to generate user recommendation1:
• Most Popular (MP). This model ranks curators (and items) based
on their popularity and recommends the most popular ones.

• User-based Collaborative Filtering (UCF). The similarity between
users is defined by the cosine similarity of their feedback vectors.
The recommendation for a user is generated by the weighted
aggregation of similar users’ feedback vectors.

1In our preliminary experiments, we also tested graph-based link prediction (like
DeepWalk, node2vec [13]). We find that they perform much worse than the basic
collaborative filtering (UCF), which indicates that graph-based methods are not well-
suited for this curator recommendation task.



Goodreads Spotify
F1 NDCG Ave ∆ F1 NDCG Ave ∆K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10

MP 0.0559 0.0641 0.0678 0.0884 276.87% 0.0957 0.0809 0.1224 0.1316 40.33%
UCF 0.1536 0.1455 0.1925 0.2181 45.89% 0.1028 0.0936 0.1313 0.1472 26.93%

Implicit 0.1744 0.1680 0.2151 0.2466 28.62% 0.1029 0.0964 0.1229 0.1420 29.28%
BPR 0.1700 0.1653 0.2122 0.2416 31.09% 0.1078 0.0975 0.1363 0.1525 21.91%
EMJ 0.1736 0.1729 0.2129 0.2485 27.99% 0.1069 0.1016 0.1283 0.1495 23.44%
AMF 0.1807 0.1739 0.2251 0.2552 23.89% 0.1127 0.1036 0.1417 0.1599 16.22%
DAE 0.1893 0.1819 0.2353 0.2668 18.43% 0.1240 0.1124 0.1560 0.1749 6.14%
VAE 0.1910 0.1819 0.2386 0.2708 17.31% 0.1223 0.1099 0.1530 0.1715 8.16%
CDAE 0.1894 0.1822 0.2357 0.2673 18.26% 0.1266 0.1131 0.1583 0.1761 4.86%

Joint-DAE 0.2142 0.1998 0.2693 0.3022 5.10% 0.1259 0.1138 0.1577 0.1768 4.84%
CuRe 0.2252∗ 0.2089∗ 0.2840∗ 0.3181∗ - 0.1317∗ 0.1191∗ 0.1656∗ 0.1858∗ -

Table 2: Comparing Models on Top-K Curator Recommendation for K=5 and K=10. ∗ indicates that the improvement of the
best result is statistically significant compared with other methods for p < 0.01.

• Bayesian Personalized Ranking with Matrix Factorization (BPR).
This model [31] conducts matrix factorization with pairwise
ranking from implicit feedback.

• Implicit Matrix Factorization (Implicit). This model [17] extends
the basic matrix factorization (MF) to fit the implicit recom-
mendation scenarios. It assumes that users’ preference can be
inferred from the frequency of interaction.

• Adversarial Matrix Factorization (AMF). This model [15] utilizes
adversarial training to enhance the robustness of latent factors
in the matrix factorization component of BPR.

• Denoising Autoencoder (DAE). DAE is a generalization of collab-
orative filtering and explained in detail in Section 3.2.

• Collaborative Denoising Autoencoder (CDAE). This model [41]
extends DAE by adding a user node with each feedback vector
input to form a more flexible structure.

• Variational Autoencoder for Collaborative Filtering (VAE). This
model [22] extends DAE by adopting multinomial likelihood
and using Bayesian inference for parameter estimation.
We also consider two additional approaches that can be applied

for user recommendation by considering both user-user interac-
tions and user-item interactions:
• Embedding FactorizationModels for Joint Recommendation (EMJ).
This model [5] can jointly recommend curators and items by
combining the factorization model for user-item interactions
and the factorization model for user-user interactions.

• Joint Curator-Item-DAE (Joint-DAE). This is a simplified ver-
sion of CuRe without the adversarial learning process and the
attention layer. This model (in Section 3.2) enhances basic DAE
with a supplementary task to recover the feedback on items.

Parameter Settings. All the experiments were conducted on a
server machine with Intel i7 CPU and a 12 GB Nvidia GeForce Titan
XP GPU. For BPR and AMF, we use the implementation provided
by [15]. We use the implementation in [5] for EMJ. We do a grid
search for latent factor size over {50, 100, 150, 200, 300, 400, 500}
and follow the original settings in the code for other parameters.

For all the models containing an autoencoder structure, we im-
plement them in Keras. We do a grid search for best latent factors

size over {50, 100, 150, 200, 300, 400, 500} for each model. We report
their best results in Table 2 and 3. While training the model, we
use the L2-norm as regularization for each layer. We use a dropout
layer to add the mask-out noise for each DAE. The dropout rate
is set to be 0.3 for all the models. The batch size is set to be 256.
Negative sampling rate is set to be 10 for all the methods. That
is for each observed feedback, we randomly select 10 unobserved
points as negative samples. We fine-tune α and λ to balance the
tasks. While building up models utilizing both feedback on curators
and items, instead of randomly initializing the weight matrices and
bias for encoders, we load the parameters from the pre-trained DAE
models. In CuRe, the discriminator is a simple neural network with
one hidden layer. And the size of the hidden layer is half the size of
hC and hI . For all the models, we run each of them 10 times and
report the average NDCG and F1.

4.3 Curator Recommendation
To evaluate the overall performance of the proposed CuRe model
in curator recommendation, we compare it with several baseline
models by F1@K and NDCG@K for K=5 and K=10 (see Table 2).
On both Goodreads and Spotify, CuRe achieves the best results,
demonstrating its effectiveness for curator top-K recommenda-
tion. In Goodreads, collaborative filtering (UCF) can improve the
naive method of recommending the most popular (MP) curators
by 158.10%. However, UCF just improves upon MP by 10.56% in
Spotify. In Goodreads, there are many methods for users to discover
others who share similar interest in books. For example, users can
read reviews and also check users who write them. Goodreads also
support reading groups in which users can share information in
a certain area. Thus similar users tends to follow similar curators
in Goodreads. In contrast, the Spotify App mainly recommends
popular curators. Alternatively, users can discover new curators by
searching for playlists they are interested in. Thus, methods with
collaborative filtering (UCF) or matrix factorization (Implicit) have
difficulty improving on MP as much as in Goodreads.

We can see that the pairwise personalized ranking method – BPR
performs similarly to Implicit in Goodreads while outperforming
Implicit by 6.05% in Spotify. Using adversarial training for pairwise
learning, AMF can enhance the robustness of BPR and thus lead



Figure 4: Top-k Item Recommendation Performance (corresponding to results in Table 2). The improvement of CuRe is statis-
tically significant compared with all other methods for p < 0.05 on F1 and NDCG.

to a 5.80% (Goodreads) and 4.90% (Spotify) improvement. But we
can see that denoising autoencoder (DAE), which we pick as the
basic structure for preference elicitation, performs even better than
AMF, demonstrating its superiority for this curator recommenda-
tion problem with sparse feedback.

EMJ utilizes both user-curator feedback and user-item feedback
while generating embedding for users (curators) and items. In
Goodreads, with the supplementary information and structure to
extract the interaction between curators and items, EMJ can outper-
form BPR by 2.48%, which shows the importance of incorporating
user preferences on individual items to improve curator recom-
mendation. Further, we can see that Joint-DAE can improve DAE
by 12.68% by utilizing the supplementary item feedback. This im-
provement shows the effectiveness of the the proposed structure in
combining both types of information. However, because user feed-
back on items is sparser in Spotify, we find that the improvement
from DAE to Joint-DAE is smaller. In both Goodreads and Spotify,
CuRe can improve Joint-DAE by about 5%. We can see that the
adversarial learning and attention layer are beneficial for top-k cu-
rator recommendation problem in which the feedback information
is sparse and noisy.

4.4 Item Recommendation
In our curator recommendation, we can also infer users’ preference
on items with the supplementary task. We can take advantage of
the autoencoder structure in this model to recommend a ranked
list of items for each user. Thus we compare it with some baselines
under top-K recommendation for items (Figure 4). For EMJ, Joint-
DAE and CuRe which can recommend both curators and items
at the same time, we list the NDCG and F1 they achieve for item
recommendation corresponding to the results in Table 2. We can
see that CuRe performs better then EMJ for both tasks. And while
recommending items, feedback on curators can be treated as context
information. CuRe can even outperform the CDAE model, which is
more powerful than basic DAE, in item recommendation. Further,
the improvement in Goodreads is smaller than that in Spotify. It is
possible that users in Spotify are more likely to collect music tracks
from playlists created by curators they follow while creating their
own playlists. So by who they follow or who they may follow, we
can infer the items they are interested in.

4.5 Evaluating CuRe Design
The proposed CuRe model extends the basic DAE with several com-
ponents. To evaluate the effectiveness of each component, we start
fromDAE and add supplementary task, discriminator, isolated layer,
and the attention layer sequentially. We show their performance
(F1@10) for both datasets in Figure 5:

Figure 5: Comparison between different models on F1@10.

Supplementary Task and Information. The dotted lines denote
the best results we can achieve with the basic DAE. By introducing
the item feedback with the Joint Curator-Item-DAE (Joint-DAE)
model, there is a 9.14% (Goodreads) and 1.25% (Spotify) improve-
ment on F1@10, which demonstrates that users’ preferences on
items can assist in predicting their preference on curators. Utilizing
the item feedback information can help to compensate the sparsity
of feedback on curators. Further, we find that the model brings in
a much larger improvement in Goodreads because there is denser
user-item interaction information in Goodreads.
Adversarial Learning and Discriminator. After adding the dis-
criminator to Joint-DAE, we see that the resulted Adversarial Joint-
DAE can further improve Joint-DAE in Goodreads and Spotify (from
orange line to the red line in Figure 5). Since adversarial loss and
the discriminator can guide the hidden latent representation for the
primary task and supplementary task to be similar to each other
(that is, each should share a similar distribution), we find the Ad-
versarial Joint-DAE can achieve better performance while training
for the same number of epochs and thus converge in fewer epochs.
Isolated Layer. In CuRe, besides h containing shared information
for both tasks, we also design an isolated layer h to encode infor-
mation which only benefit the primary task. After appending the
isolated hidden layer, we can see F1@10 can be improved. Thus it is
necessary for us to reserve some isolated latent factors to represent
users’ preference on curators. For example, there are users who
follow curators based on popularity but not based on items the
curators collect. We should have an isolated layer for information
which can support the primary task but can add noise for the sup-
plementary task. It is able to improve the curator recommendation
with higher accuracy and more robustness.
Attention Layer. Recently, neural attention mechanism has been
widely applied on neural models for different applications. In CuRe,
while integrating the preferences on curators and preferences on
items, we replace the addition with an attention layer to conduct



Goodreads Spotify
F1 NDCG Ave ∆ F1 NDCG Ave ∆K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10

MP 0.0554 0.0556 0.0755 0.1000 243.36% 0.0815 0.0644 0.1084 0.1223 44.51%
UCF 0.1401 0.1167 0.1530 0.1283 82.84% 0.0892 0.0759 0.1192 0.1399 27.99%

Implicit 0.1530 0.1283 0.2079 0.2479 33.14% 0.0881 0.0769 0.1116 0.1338 31.59%
BPR 0.1393 0.1187 0.1847 0.2231 47.04% 0.0893 0.0776 0.1156 0.1378 28.73%
EMJ 0.1562 0.1358 0.2067 0.2526 30.26% 0.0912 0.0835 0.1132 0.1400 26.02%
AMF 0.1469 0.1245 0.1952 0.2349 39.58% 0.0914 0.0801 0.1195 0.1429 24.79%
DAE 0.1607 0.1337 0.2176 0.2583 27.38% 0.1047 0.0903 0.1368 0.1623 9.61%
VAE 0.1681 0.1378 0.2293 0.2697 22.04% 0.1056 0.0888 0.1379 0.1613 9.78%
CDAE 0.1608 0.1352 0.2180 0.2605 26.68% 0.1079 0.0903 0.1404 0.1639 7.81%

Join-DAE 0.1889 0.1531 0.2607 0.3044 8.46% 0.1045 0.0909 0.1374 0.1636 9.16%
CuRe 0.2040∗ 0.1652∗ 0.2844∗ 0.3314∗ - 0.1160∗ 0.0974∗ 0.1514∗ 0.1771∗ -

Table 3: Comparing Models on Top-K Curator Recommendation under Cold-start Setting. ∗ indicates that the improvement of
the best result is statistically significant compared with other methods for p < 0.01.

Figure 6: Curator Recommendation vs. Latent Factors.

Figure 7: Curator recommendation (primary task, left) vs.
item recommendation (supplemental task, right).

a user-specific weighted sum. In Figure 5, we can see that there is
gap between the blue line and the black line, which indicates the
improvement of our curator recommendation by adopting the atten-
tion mechanism. And further, with the user-dependent weights, we
can improve the performance of the supplementary task for item
recommendation while also improving curator recommendation.

4.6 Hyper-Parameters
Latent Factors. To examine the influence of the hidden layer (la-
tent factors), we compare the performance of CuRe with baselines
which contain an autoencoder structure in Goodreads (see Figure
6) by varying the size of the hidden layer. For fair comparison, we
use the sum of the size for the isolated layer and the shared layer
as the size of the latent factors for CuRe. When the size of latent
factors is relatively small, as the additional user node can help to
store part of the information, CDAE performs better than DAE. But
when the size of latent factors goes up to 300, DAE achieves similar

performance as CDAE since the basic DAE structure is enough for
information from user feedback on curators. Further, we can see
that Joint-DAE can outperform both CDAE and DAE even with
a smaller size of latent factors. Thus we can see the necessity of
incorporating the supplementary information of user feedback on
items for curator recommendation. We use an isolated layer in
CuRe for information for the primary task only. Comparing CuRe
with Joint-DAE, we can see while the size of latent factor is small,
CuRe improve Joint-DAE slightly as small-sized isolated layer and
shared layer can weaken the power of the model. However, when
the latent factor is ample for capturing user preferences extracted
from feedback for both items and curators, CuRe performs much
better than Joint-DAE, which demonstrates the effectiveness of the
proposed model design. We see a similar pattern in Spotify.

Primary Task vs. Supplementary Task. In CuRe, we use α to
adjust the weight of the supplementary task, and λ to balance the ad-
versarial loss while fusing latent representations for both tasks (in
Equation 4). To get insight into how they impact the performance
of both tasks, we do a case study to compare the performance
of CuRe under various λ and α in Spotify. We plot the resulting
NDCG@10 under the situation with a light weight (α = 0.1) or a
heavy weight (α = 0.5) on the supplementary task (in Figure 7).
Appropriate amount of adversarial loss can benefit both the curator
recommendation and item recommendation while allocating differ-
ent weights on the supplementary task, which shows the benefit
of the adversarial process in fusing the latent factors. Without the
adversarial loss, while putting a light weight on the supplementary
task, we can see that the performance on item recommendation is
much worse than the situation that we give it a heavy weight. But
heavy weight on the supplementary task can be harmful for the
primary task. By introducing the adversarial loss, we can see that
the performance on both tasks increases. And the model with light
weight on supplementary task is more sensitive to the adversarial
loss. With light weight, we can see that if we set λ ∈ (0.5, 1.0), both
tasks can achieve better results comparing to the situation with
either light or heavy weight on supplementary task but no adver-
sarial loss (λ = 0). This case study illustrates how the adversarial
learning can help to compensate for the loss in supplementary task
(item recommendation) while improving curator recommendation.



4.7 Cold Start
Recommender systems commonly come across cold start problem
in which new users have not left enough feedback for revealing
their preferences. There are users in Goodreads or Spotify who just
follow a few curators and we still want to make accurate predictions
as to who they are going to follow. Thus we compare CuRe with
other methods under a cold start setting in Table 3. We test each
model on the 30% of users who left the least numbers of feedback
on curators. We can see CuRe improves Joint-DAE, which is the
baseline with best performance, by 8.46% and 9.61% in Goodreads
and Spotify correspondingly. The improvement of CuRe compared
with other models under the cold-start setting is larger than that in
the normal setting. Thus we can see that the proposed model can
compensate for sparsity and provide robust recommendation.

5 CONCLUSION
We have proposed a new user recommendation model in content
curation platforms enhanced with adversarial learning and an at-
tentive mechanism to fuse users preferences on curators and pref-
erences on items. Through experiments on data sampled from both
Goodreads and Spotify, we find that the proposed model can outper-
form state-of-the-art baselines in F1 and NDCG in curator recom-
mendation. Meanwhile, CuRe also demonstrates good performance
on the supplementary task of item recommendation. In the future,
we are interested in further exploring the interactions between
users and curators. To get more insight of the great human power
hidden in curation communities, we would like to capture the dy-
namics of users and curators along time via different neural models.
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