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ABSTRACT
There is an increasing attention on next-item recommendation sys-
tems to infer the dynamic user preferences with sequential user
interactions. While the semantics of an item can change over time
and across users, the item correlations defined by user interactions
in the short term can be distilled to capture such change, and help
in uncovering the dynamic user preferences. Thus, we are moti-
vated to develop a novel next-item recommendation framework
empowered by sequential hypergraphs. Specifically, the framework:
(i) adopts hypergraph to represent the short-term item correlations
and applies multiple convolutional layers to capture multi-order
connections in the hypergraph; (ii) models the connections be-
tween different time periods with a residual gating layer; and (iii)
is equipped with a fusion layer to incorporate both the dynamic
item embedding and short-term user intent to the representation
of each interaction before feeding it into the self-attention layer
for dynamic user modeling. Through experiments on datasets from
the ecommerce sites Amazon and Etsy and the information sharing
platform Goodreads, the proposed model can significantly outper-
form the state-of-the-art in predicting the next interesting item for
each user.
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1 INTRODUCTION
In online platforms with millions of available items and churn in
new items, recommendation systems act as an essential compo-
nent to connect users with interesting items. From ecommerce
platforms to streaming services to information sharing communi-
ties, recommenders aim to accurately infer the preferences of users
based on their historical interactions, like purchases, views, and
follows. In a promising direction, many recent efforts have shown
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Figure 1: Themeaning of an itemat a certain time period can
be revealed by the correlations defined by user interactions
in the short term. And the meaning of an item can change
over time and change across users. Such dynamics can help
to uncover the preference patterns of users.

good success in next-item recommendation which aims to predict
a user’s next actions based on the sequential interactions in the
past [22, 25, 30, 35, 37, 39, 44].

A critical issue is how items are treated in such models. Specifi-
cally, for a certain time period in next-item recommendation, we
adopt the view that the meaning of an item can be revealed by the
correlations defined by user interactions in the short term. As shown
in Figure 1, the iPhone 8 was purchased together with several other
up-to-date devices at the time it was released (like a Nintendo
Switch) in 2017, indicating that it was a hot new technology item at
that time. Once a new version is released in 2019 like the iPhone 11,
the iPhone 8 becomes a budget choice since it may be purchased
with other devices that are also budget-priced (e.g., the Lite version
of the Nintendo Switch or early generation AirPods). In the same
way, we can infer that the bouquet purchased by User 𝐴 was for a
wedding since she also purchased items typically associated with
weddings. To capture these changes in item semantics, we propose
to model such short-term item correlations in a hypergraph [1, 11],
in which each hyperedge can connect multiple nodes on a single
edge. In this regard, while each node in the hypergraph denotes an
item, a hyperedge can connect the set of items a user interacts with
in the short time period altogether.

However, it is non-trivial to extract expressive item semantics
from the item-correlation hypergraph. On the one hand, the item
correlations encoded by the hyperedges are no longer dyadic (pair-
wise), but rather triadic, tetradic or of a higher-order. Such complex
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The bestsellers (top 1% of products) change dramatically More than 50% of the items becomes inactive shortly Neighboring items change temporallyMore than 50% of the items becomes inactive shortly

(a) (b) (c)

Figure 2: (a) The majority of listings (products) on Etsy become inactive in a year. (b) The overlap of monthly Bestsellers in
Amazon decreases as the time gap grows larger (i.e., from 1 month to 5 years). (c) The neighboring books (books with large
co-occurrence) on Goodreads are changing as time goes on.

relationships cannot be handled by conventional methods since
they only focus on pairwise associations; on the other hand, the
item semantics could propagate over multiple hops. For example,
in Figure 1 (Sept 2019), though not purchased by the same user, the
iPhone 8 is also related to the Apple Lightning cable with a 2-hop
connection to it. Thus it necessitates a design to effectively exploit
the hypergraph for learning expressive item semantics.

Furthermore, how to capture the dynamic meanings of items
is another challenge for next-item recommendation, since the se-
mantics of an item can change over time and across users. And such
change can help to uncover the preference patterns of users. As
illustrated in Figure 1, User𝐶 purchasing the iPhone 8 in 2017 gives
evidence that User 𝐶 chases the latest devices; whereas User 𝐷
purchasing the iPhone 8 in 2019 indicates that User 𝐷 is looking
for a deal. Although the item is the same in both cases, the funda-
mental semantics of the iPhone 8 have changed. Even at a single
timepoint, an item can carry different meanings to different users.
For example, a bouquet of flowers for User 𝐵 in Figure 1 can reflect
home decoration, whereas the same bouquet for User 𝐴 can reflect
a wedding. Though there are previous works in next-item recom-
mendation treating items as dynamic [7, 35, 39], they usually model
the variation of an item as a function of time. How to capture the
aforementioned two perspectives – change over time and change
across users – is vital for high-quality next-item recommendations,
but still remains to be explored.

To tackle the aforementioned challenges, we propose HyperRec,
a novel end-to-end framework with sequential Hypergraphs to
enhance next-item Recommendation. To untangle the short-term
correlations at different time periods, HyperRec truncates the user
interactions based on the timestamp to construct a series of hy-
pergraphs. With a hypergraph convolutional network (HGCN),
HyperRec is able to aggregate the correlated items with direct or
high-order connections to generate the dynamic embedding at each
time period. To model the influence of item embeddings in the past
time periods, we develop a residual gating layer to combine the dy-
namic item embeddings of the previous time period with the static
item embeddings to generate the input for the HGCN. With change
happening both over time and across users, the resulting embed-
dings from the HGCN will be fed into a fusion layer to generate
the final representation for each specific user-item interaction in-
corporating both the dynamic item embedding and short-term user

intent. In personalized next-item recommendation, the dynamic
user preferences can be inferred from the sequence of interactions
from the user. Thus we use a self-attention layer to capture the
dynamic user patterns from the interaction sequences. While pre-
dicting a user’s preference on an item, both the static and the most
recent dynamic item embedding are considered. We summarize our
contributions as below:
• We investigate the dynamics of items from two perspectives –
change over time and change across users – and uncover the
importance in exploiting the short-term correlations between
items for improving next-item recommendation.

• We are motivated to develop a novel next-item recommendation
framework with sequential hypergraphs to generate dynamic
item embeddings incorporating the short-term correlations be-
tween items. Two of the unique aspects of the framework are a
residual gating layer to control the residual information from
the past, and a fusion layer to encode each interaction with
both the dynamic item embedding and short-term user intent
for sequential pattern modeling.

• With extensive experiments on datasets covering different on-
line platforms including ecommerce websites (Amazon and
Etsy) and an information sharing community (Goodreads), the
proposed model outperforms state-of-the-art models in provid-
ing Top-K next-item recommendation.

2 MOTIVATION
In this section, we conduct an initial investigationwith data sampled
from three online platforms – the ecommerce sites Amazon and Etsy
and the information sharing platform Goodreads (see Section 4.1
for details of these three datasets). We explore the dynamic patterns
of items and correlations between them from both the long-term
and short-term perspectives.

Items emerge and disappear frequently. First, we examine the
“lifecycle” of items in Etsy, which is one of the largest ecommerce
platforms selling hand-crafted items. In Figure 2 (a), we summarize
the active time, meaning the time gap between the first purchase
and the last purchase, for all the items listed on Etsy from 2006 to
2018. We find that more than half of the products in Etsy become
inactive (that is, they fall out of stock or are replaced by upgraded
models) in less than one year. A similar pattern can be found in other



online platforms. With the frequent emergence and disappearance
of items, short-term relationships may be critical for item modeling,
whereas the relationships between items are unstable from a long-term
perspective.

The popularity of items changes rapidly along time. Second,
we retrieve the Bestsellers (i.e., products ranked in the top 1% of
purchases) on Amazon in each month from 2001 to 2005. We then
calculate the Jaccard Similarity between the list of Bestsellers of
each month with the Bestsellers after 1 month, 2 months, 3 months,
8 months, 1 year or more. In Figure 2 (b), as illustrated by the blue
line, the intersection of Bestsellers between consecutive months
is only around 30%. And there is little overlap between the list of
Bestsellers after a gap of 6 months (with Jaccard similarity less
than 10%). While the popularity of an item can reflect how the
community views the item, the change in the list of Bestsellers along
time indicates that the meaning of items in the community can change
along time.
The co-occurrence of items changes temporally. Finally, we
turn to the items in Goodreads, a platform in which users share
their thoughts on books. Each user has a sequence of items that
the user has interacted with via rating, tagging or commenting
in chronological order. We split the sequences of items the users
have interacted with based on the timestamps (by year) and train
different item embedding models with sequences in different years.
Following the idea in [6, 12, 35], we adopt word2vec [23] to generate
embeddings of books based on the co-occurrence of items (i.e.,
books read by a user consequently). Based on these embeddings,
we find the Top-10 neighbors of each book in different years. Then
we calculate the Jaccard similarity between neighbors of each book
in 2012 with its neighbors in 1 to 5 years later and show the average
results in Figure 2 (c). We find that the similarity between neighbors
in 2012 and 2013 for books is 40% and the similarity keeps decreasing
as the time gap become larger. That is, the relationships between
items are changing along time and the variations are larger the longer
the time gap.

In summary, relationships between items are changing from
the long-term perspective, leading to the change in the semantic
meanings of items. Thus we are motivated to exploit the short-term
correlations between items while modeling their dynamic patterns
for next-item recommendation.

3 HYPERREC
In this section, we propose a novel end-to-end next-item recom-
mendation framework empowered by sequential hypergraphs to
incorporate the short-term item correlations while modeling the
dynamics over time and across users. We will start with the prob-
lem setting of next-item recommendation. Then we introduce the
details of the proposed HyperRec, centered around three guiding
research questions: RQ1 How to define correlations between items
with a hypergraph structure and how to effectively incorporate
the short-term item correlations into dynamic item embeddings by
considering multi-hop connections between items? RQ2While the
meaning of items in the past can hint on their characteristics in the
future, how to link the embedding process at different time periods
to connect how the residual information flows between consecutive
time periods? RQ3 How to fuse the short-term user intent with the

dynamic item embedding to represent each interaction in a user
interaction sequence for dynamic user preference modeling?

3.1 Problem Setting
We use U = {𝑢1, 𝑢2, ..., 𝑢𝑁 } to represent the set of 𝑁 users and
I = {𝑖1, 𝑖2, ..., 𝑖𝑃 } to represent the set of 𝑃 items in a platform. We
consider the set of 𝑄 different timestamps T = {𝑡1, 𝑡2, ..., 𝑡𝑄 }. Each
timestamp 𝑡𝑛 ∈ T is the equivalent of a certain short time period.
For each user, we sort the list of items user u has interacted with in
chronological order as L𝑢 = {(𝑖𝑢1 , 𝑡

𝑢
1 ), (𝑖

𝑢
2 , 𝑡

𝑢
2 ), ..., (𝑖

𝑢
|L𝑢 |, 𝑡

𝑢
|L𝑢 |)}, in

which (𝑖𝑢𝑛 , 𝑡𝑢𝑛 ) denotes that 𝑢 interacted with item 𝑖𝑢𝑛 at 𝑡𝑢𝑛 , 𝑡𝑢𝑛 ∈ T.
Items start with a set of static latent embeddings E = [e1, e2 ..., e𝑃 ],
each of which is a trainable embedding associated with the item ID
but unchanged for different users at different timestamps.

The goal of next-item recommendation is to predict the item that
𝑢 will be interested in after L𝑢 . Note that to avoid data leakage, we
use all the historical interactions on or before a cutting timestamp
for model training. We aim to predict the next item each user will
interact with after the cutting timestamp.

3.2 Sequential Hypergraphs
Since the items purchased by a user in a short time period are cor-
related, it is vital to define appropriate connections among them.
While users may interact with various numbers of items, the con-
ventional graph structure usually only supports pairwise relations
between items and is not fit for this case. Thus, we propose to model
such short-term correlations with a hypergraph [1, 11], in which
multiple items can be connected with one hyperedge. For the exam-
ple in Figure 1, the hypergraph for Sept 2017 consists of 7 nodes
(items) with 3 hyperedges. The three items purchased by User 𝐴
are linked together by one hyperedge. Furthermore, besides the
direct connections in the hypergraph, the high-order connections
between items can also hint on their correlations. For example, in
Figure 1 (Sept 2019), though not purchased by the same user, the
iPhone 8 is also related to the Apple Lightning cable with a 2-hop
connection. With a hypergraph convolutional network (HGCN), we
can exploit both the direct and high-order connections to extract
the short-term correlations between items. Meanwhile, an item
should not be treated as discrete at different time periods, since its
features in the past can hint on its features in the future. For exam-
ple, although the iPhone 8 has fundamentally changed in meaning
from 2017 to 2019 in Figure 1, the representation in 2019 should
inherit some of the characteristics of the iPhone’s representation
in 2017. In the following, with hypergraph as a principled topology
structure, we will discuss about how to effectively generate such
dynamic item representations considering both the item correla-
tions in the short term and the connections among different time
periods.
Short-term Hypergraphs. To capture the item correlations for
different time periods, we can split the user-item interactions into
multiple subsets based on the timestamps. Let G = {G𝑡1 ,G𝑡2 , ...,
G𝑡𝑄 } represent a series of hypergraphs.G𝑡𝑛 = (V𝑡𝑛 , E𝑡𝑛 ,W𝑡𝑛 ,H𝑡𝑛 )
is constructed based on all the user-item interactions happening
during time period 𝑡𝑛 .V𝑡𝑛 ⊂ I represents the set of nodes in G𝑡𝑛 ,
that is all the items with interactions in 𝑡𝑛 . And E𝑡𝑛 ⊂ U denotes
the set of hyperedges, which is similar as all the users who have
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Figure 3: The structure of HyperRec: a series of hypergraphs are constructed based on item correlations at different time
periods and the HGCN is able to capture the correlations in multi-hop connections. The resulting dynamic item embedding
from the previous time period can influence the item embedding in the future via the Residual Gating layer. Both the dynamic
item embedding and short-term user intent are fused to represent each interaction for dynamic user modeling.

interactions during 𝑡𝑛 . EachG𝑡𝑛 ∈ G is associated with an incidence
matrix H𝑡𝑛 of size |V𝑡𝑛 | × |E𝑡𝑛 |. It is also associated with a matrix
W𝑡𝑛 , which is a diagonal matrix with𝑊 𝑡𝑛

𝜖𝜖 representing the weight
of the hyperedge 𝜖 . In this work, we let all the hyperedges share
the same weights and let𝑊 𝑡𝑛

𝜖𝜖 = 1,∀𝜖 ∈ E𝑡𝑛 . When 𝜐 ∈ V𝑡𝑛 is
incident with edge 𝜖 during time period 𝑡𝑛 (i.e., user 𝜖 purchased
𝜐 at 𝑡𝑛), we have 𝐻𝑡𝑛𝜐𝜖 = 1, otherwise 𝐻𝑡𝑛𝜐𝜖 = 0. D𝑡𝑛 and B𝑡𝑛 are the
diagonal degree matrices for vertex and hyperedge correspondingly,
in which:

D𝑡𝑛𝜐𝜐 =

|E𝑡𝑛 |∑
𝜖=1

𝑊
𝑡𝑛
𝜖𝜖 𝐻

𝑡𝑛
𝜐𝜖 B𝑡𝑛𝜖𝜖 =

|V𝑡𝑛 |∑
𝑖=1

𝐻
𝑡𝑛
𝑖𝜖

At different time periods, there will be a different set of user-item
interactions, leading to hypergraphs with changing topology. We
aim to extract the item semantics from each of the short-term
hypergraphs by capturing item correlations.
Hypergraph Convolution Network (HGCN). At each time pe-
riod, we aim to exploit the correlations among items for their tempo-
rally dynamic embeddings, in which the correlated items should be
close with each other for the short time period. To achieve that, an
item should aggregate information (i.e., latent representations) from
all its neighboring items (i.e., items with connection to it). This nat-
urally fits the assumption of the convolution operation [2, 3, 11, 19]
that more propagation should be done between connected items.
Given that nodes in V𝑡𝑛 have a set of initial latent representation
X𝑡𝑛,0 = [x𝑡𝑛,01 , x𝑡𝑛,02 , ..., x𝑡𝑛,0|V𝑡𝑛 |], the convolution operation can be
defined as:

x𝑡𝑛,1
𝑖

= 𝜏 (
|V𝑡𝑛 |∑
𝜐=1

|E𝑡𝑛 |∑
𝜖=1

𝐻
𝑡𝑛
𝑖𝜖
𝐻
𝑡𝑛
𝜐𝜖𝑊

𝑡𝑛
𝜖𝜖 x

𝑡𝑛,0
𝜐 P0)

in which 𝜏 (·) represents the activation function (ReLu in our ex-
periment). P0 represents the trainable weight matrix between the
initial and the 1𝑡ℎ layer. This convolution operation will encode

each hyperedge with all the nodes connected to it and then output
the embedding for each node by aggregating information of all the
hyperedges it is on. We can formulate this convolution process into
a matrix form as:

X𝑡𝑛,1 = 𝜏 (H𝑡𝑛W𝑡𝑛H𝑡𝑛𝑇X𝑡𝑛,0P0)

To prevent numerical instabilities caused by stacking multiple con-
volutional layers, we need to add in symmetric normalization. Then
we end up with:

X𝑡𝑛,1 = 𝑓 (X𝑡𝑛,0,H𝑡𝑛 ,W𝑡𝑛 |P0)

= 𝜏 (D𝑡𝑛−1/2H𝑡𝑛W𝑡𝑛B𝑡𝑛−1H𝑡𝑛𝑇D𝑡𝑛−1/2X𝑡𝑛,0P0)
(1)

Here 𝑓 (·) is used to denote the operation for one hypergraph con-
volutional layer to update each node with its one-hop neighbors.
We can stack multiple convolution layers to recursively aggregate
the information from high-order neighbors in the hypergraph. In
such a hypergraph convolutional network (HGCN), The output
from the 𝐿𝑡ℎ layer can be calculated as:

X𝑡𝑛,𝐿 = 𝑓 (X𝑡𝑛,(𝐿−1) ,H𝑡𝑛 ,W𝑡𝑛 |P(𝐿−1) )

The resulting X𝑡𝑛,𝐿 from layer 𝐿 can inherit embeddings from pre-
vious layers to capture the propagation of item correlations in the
hypergraph. While at different time periods, the topology of hyper-
graphs is changing, leading to dynamic item embeddings reflecting
the short-term correlations at different time periods.
Residual Gating.While items are changing, there is still linkage
between their features at different timestamps. Some characteristics
of an item will retain from the last time period to the next time
period. For example, items may have some intrinsic features that
change smoothly or are unchanged at all times. In order to propa-
gate the residual information from the previous time periods to the
future, we introduce a residual gating to generate the initial embed-
ding of each node by combining the set of dynamic embeddings for



𝑡1,..., 𝑡𝑛−1 with the static embedding. The initial embedding of item
𝑖 at 𝑡𝑛 can be calculated as:

x𝑡𝑛,0
𝑖

= 𝑔x𝑡<𝑛,𝐿
𝑖

+ (1 − 𝑔)e𝑖 , 𝑔 =
𝑒z

𝑇
𝑅
𝜎 (W𝑅x𝑡<𝑛,𝐿

𝑖
)

𝑒z
𝑇
𝑅
𝜎 (W𝑅x𝑡<𝑛,𝐿

𝑖
) + 𝑒z𝑇𝑅𝜎 (W𝑅e𝑖 )

in which W𝑅 and z𝑅 is the transformation matrix and vector for
the gate. 𝜎 (·) is the tanh function. We use x𝑡<𝑛,𝐿

𝑖
to denote the

dynamic embedding from the most recent hypergraph before 𝑡𝑛
for item 𝑖 . If item 𝑖 doesn’t appear in any previous hypergraph,
we ignore the residual component and let x𝑡𝑛,0

𝑖
= e𝑖 . The value 𝑔

calculated with the gating function is used to control the percentage
of residual information that will be retained. With this residual
gating, we connect the hypergraph sequentially, leading to the
major component of HyperRec – the sequential hypergraphs (as in
Figure 3). At each time period, each item will be initialized from
both the static item embedding and residual information from the
past. And then the HGCN can incorporate the short-term item
correlations to generate the expressive dynamic item embedding.

3.3 Dynamic User Modeling
Short-term User Intent. As introduced in Figure 1, the short-
term user intent can be inferred from all the items the user has
interacted with in a certain time period. This naturally falls into
the definition of the hyperedge which accounts for all the items a
user has interacted with in the short-term altogether. Thus moving
one step forward, we can aggregate the dynamic node embedding
on each hyperedge to infer each user’s short-term intent with the
following operation

U𝑡𝑛 = 𝜏 (B𝑡𝑛−1/2H𝑡𝑛𝑇D𝑡𝑛−1/2X𝑡𝑛,𝐿P𝐿) (2)

The resulting matrix U𝑡𝑛 = [u𝑡𝑛1 ,u
𝑡𝑛
2 ,..., u

𝑡𝑛
|E𝑡𝑛 |] can be regarded as

an assembly of short-term user intents at 𝑡𝑛 .
Fusion Layer. Then we want to incorporate both the dynamic item
embedding and the short-term user intent for a more expressive
representation of each interaction in the sequence. We propose
the fusion layer as below to generate the representation of the
interaction between user 𝑢 and item 𝑖 at 𝑡𝑛 :

e𝑡𝑛
𝑖,𝑢

= 𝛼𝑢u𝑡𝑛𝑢 + 𝛼𝑑x𝑡𝑛,𝐿𝑖
+ (1 − 𝛼𝑑 − 𝛼𝑢 )e𝑖

𝛼𝑢 =
𝑒z

𝑇𝜎 (W𝐹u𝑡𝑛𝑢 )

𝑒z
𝑇𝜎 (W𝐹u𝑡𝑛𝑢 ) + 𝑒z𝑇𝜎 (W𝐹 x𝑡𝑛,𝐿

𝑖
) + 𝑒z𝑇𝜎 (W𝐹 e𝑖 )

𝛼𝑑 =
𝑒z

𝑇𝜎 (W𝐹 x𝑡𝑛,𝐿
𝑖

)

𝑒z
𝑇𝜎 (W𝐹u𝑡𝑛𝑢 ) + 𝑒z𝑇𝜎 (W𝐹 x𝑡𝑛,𝐿

𝑖
) + 𝑒z𝑇𝜎 (W𝐹 e𝑖 )

(3)

in which e𝑖 and x𝑡𝑛,𝐿
𝑖

is the static and dynamic item embedding
correspondingly, and u𝑡𝑛𝑢 is the vector in the matrix generated by
Equation 2 to indicate the short-term user intent at 𝑡𝑛 .W𝐹 and z is
the transformation matrix and vector correspondingly. To avoid the
overfitting problem, during training, for interactions happening at
the same timestamp as what we want to predict, we feed in u𝑡𝑛−1

𝑢

and x𝑡𝑛−1,𝐿
𝑖

to the fusion layer while generating e𝑡𝑛
𝑖,𝑢

.
Self-attention. With the superior performance of self-attention
layer (i.e., Transformer) in next-item recommendation compared
with CNN, RNN andMarkovChains-basedmodels (as shown in [18]),
we adopt self-attention as the basic model to capture the dynamic

pattern in interaction sequences. e𝑡𝑛
𝑖,𝑢

can be treated as embedding
for interaction between 𝑖 and 𝑢 at 𝑡𝑛 .

Assume that we have a sequence of items user 𝑢 has interacted
with in chronological order L𝑢 = ((𝑖𝑢1 , 𝑡

𝑢
1 ), (𝑖

𝑢
2 , 𝑡

𝑢
2 ), ..., (𝑖

𝑢
|L𝑢 |, 𝑡

𝑢
|L𝑢 |)).

To represent the 𝑘𝑡ℎ interaction, we also take the position 𝑘 into
consideration.We use o𝑢

𝑘
= e

𝑡𝑢
𝑘

𝑖𝑢
𝑘
,𝑢
+p𝑘 to represent the interaction, in

which p𝑘 is the positional embedding of position 𝑘 to characterize
the order information.

Given embedding sequence (o𝑢1 , o
𝑢
2 , ..., o

𝑢
|L𝑢 |), self-attention [33]

is designed to generate the aggregation based on the similarities
(attention scores) between the last element o𝑢|L𝑢 | and each element
in the sequence. Then the attention score between o𝑢|L𝑢 | and o𝑢

𝑗

can be calculated as:

𝑎𝑡𝑡 (o𝑢|L𝑢 |, o
𝑢
𝑗 ) =

(W𝑄o𝑢|L𝑢 |)
𝑇 (W𝐾o𝑢𝑗 )

√
𝑑

in which W𝑄 and W𝐾 are transformation matrices and 𝑑 is the
dimension of the embedding. Then the attentive aggregation can
be calculated as:

d
𝑡𝑢|L𝑢 |
𝑢 =

|L𝑢 |∑
𝑗=1

𝑎𝑡𝑡 (o𝑢|L𝑢 |, o
𝑢
𝑗 ) (W𝑉 o𝑢𝑗 ) (4)

where W𝑉 is a transformation matrix. Then the generated d
𝑡𝑢|L𝑢 |
𝑢

can represent the dynamic preference of user 𝑢 after interacting
with the sequence of items in |L𝑢 | at 𝑡𝑢|L𝑢 | .

3.4 Preference Prediction
While predicting the preference of users for items, we should take
both the dynamic item embedding and the static item embedding
into consideration:

𝑦
𝑡𝑛+1
𝑢,𝑖

= d𝑡<𝑛+1
𝑢

𝑇 (x𝑡<𝑛+1,𝐿
𝑖

+ e𝑖 ) (5)

in which d𝑡<𝑛+1
𝑢 and x𝑡<𝑛+1,𝐿

𝑖
denotes the most recent dynamic user

preference and dynamic item embedding generated before 𝑡𝑛+1. To
train the model, we adopt Bayesian Pairwise Loss [27], in which
we assume that a user prefers item that she has interacted with to
items she hasn’t interacted with. The loss is calculated as

𝐿 =
∑

(𝑢,𝑡,𝑖, 𝑗) ∈C
− ln𝛿 (𝑦𝑡𝑢,𝑖 − 𝑦

𝑡
𝑢,𝑗 ) + 𝜆 | |𝜃 | |

2

in which | |𝜃 | |2 denotes the L2 regularization and 𝜆 is used to control
its weight. 𝛿 is the Sigmoid function. Each element (𝑢, 𝑡, 𝑖, 𝑗) in the
training set C is constructed with a ground truth tuple (𝑢, 𝑡, 𝑖) (i.e.,
𝑢 interacted with 𝑖 at time period 𝑡 ) with an item 𝑗 that 𝑢 did not
interact with (a negative sample).

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the perfor-
mance of the proposed HyperRec over datasets sampled from three
online platforms (Goodreads, Amazon and Etsy). Besides its overall
performance in next-item recommendation, we further investigate
the design of HyperRec via ablation tests and parameter analysis.
In addition, we also examine whether HyperRec can capture both



Dataset # Users # Items # Interactions Density Cutting
Timestamp

Amazon 74,823 64,602 1,475,092 0.0305% Jan 1, 18
Etsy 15,357 56,969 489,189 0.0559% Jan 1, 18

Goodreads 16,884 20,828 1730,711 0.4922% Jan 1, 17
Table 1: Statistics of the datasets.

the long-term and short-term patterns in the platforms based on
its recommendation to users with various lifespans.

4.1 Data
In the experiments, we formulate the next-item recommendation
problem under leave-one-out setting as in previous works [18, 31]
and split the train-test data following the real-world scenario as in
[35, 39]. Note that models are trained with only the interactions
on or before a cutting timestamp. We use the first interaction of
each user after the cutting timestamp for validation and the second
interaction for testing. To explore the generalization of the pro-
posed model, we sample data from three different online platforms.
Summary statistics of these datasets are in Table 1.
Amazon.This is the updated version of a public Amazon dataset [24]
covering reviews from Amazon ranging from May 1996 to October
2018. In order to explore the short-term item correlations among
a set of diverse products, we mix the purchase data from different
categories instead of conducting experiments per-category. We use
the review timestamp to approximate the timestamp of purchasing.
We remove items with fewer than 50 purchases. We keep users
who purchased at least 5 items before the cutting timestamp and
purchased at least 2 items after the cutting timestamp.
Etsy. The Etsy dataset contains purchase records from November
2006 to December 2018 for one of the largest ecommerce sites selling
handmade items. For data preparation, we remove products with
fewer than 50 transactions, and then filter out users with fewer than
5 transactions before 2018 or fewer than 2 transactions in 2018.
Goodreads. This Goodreads dataset [35] is from a book reading
community in which users can tag, rate, and write reviews on books.
We treat different types of interactions equally as implicit feedback
on items. We keep users who interacted with more than 5 books
before 2017 and at least 2 books in 2017. This dataset is denser
than both Amazon and Etsy since the items (i.e., books) in such an
information sharing platform are more stable and less likely to be
replaced by new items as in ecommerce platforms (e.g., products
can be replaced by upgraded models).

4.2 Experimental Settings
4.2.1 Evaluation Metrics. Following the leave-one-out setting,

in the test data, each user only relates to one item that the user
interacts with after the cutting time. We adopt the commonly used
metrics for next-item recommendation including Hit Rate (HIT@K),
Normalized Discounted Cumulative Gain (NDCG@K) and Mean
Reciprocal Rank (MRR) to evaluate the performance of each model
for Top-K recommendation. As in previous work for Top-K rec-
ommendation [15, 18], we randomly select 100 negative items for
each user and rank the item in the test set (positive item) with the
negative items. The ranking is based on the predicted preference
scores of each user generated by the recommendation system.

Since there is only one item in the test set for each user, hit rate
is equal to recall, indicating whether the tested item appears in
the Top-K list. The Ideal Discounted Cumulative Gain is equal to
a constant for all users and thus can be ignored while calculating
NDCG@K. Given that the tested item of user 𝑢 is ranked 𝑟𝑢 based
on the predicted scores, 𝑁𝐷𝐶𝐺𝑢@𝐾 = 1

log2 (1+𝑟𝑢 )
if 𝑟𝑢 ≤ 𝐾 and

𝑁𝐷𝐶𝐺𝑢@𝐾 = 0 otherwise. Meanwhile,𝐻𝐼𝑇𝑢@𝐾 = 1 if 𝑟𝑢 ≤ 𝐾 and
𝐻𝐼𝑇𝑢@𝐾 = 0 otherwise. According to the calculation, 𝑁𝐷𝐶𝐺@1
is equal to 𝐻𝐼𝑇@1 in the leave-one-out setting. We report the
average NDCG and Hit Rate across all the users in each platform.
MRR measures the average rankings of the tested items and𝑀𝑅𝑅 =

1
|𝑈 |

∑
𝑢∈𝑈

1
𝑟𝑢
, in which 𝑈 is the set of all the users for testing. In

the following, we report the results for 𝐾 = 1 and 𝐾 = 5.

4.2.2 Baselines.

• PopRec: Popularity Recommendation.This simplemethod ranks
items based on their popularity and recommends the top items.

• TransRec: Translation-based recommendation [14]. TransRec
models the transitions between different items in the interaction
sequences with user-specific translation operations.

• GRU4Rec+: Recurrent Neural Networks with Top-k Gains [16].
As an improved version of GRU4Rec [17], this model adopts a
GRU to model sequential user behaviors with a new class of
loss functions designed for improving Top-K gains.

• TCN: A Simple Convolutional Generative Network for Next Item
Recommendation [44]. This baseline improves the typical CNN-
based next-item recommendation models with masked filters
and stacked 1D dilated convolutional layers for modeling long-
range dependencies.

• HPMN: Lifelong Sequential Modeling with Personalized Mem-
orization [25]. HPMN is powered by a hierarchical periodic
memory network to capture multi-scale sequential patterns of
users simultaneously, and thus can combine recent user behav-
iors with long-term patterns.

• HGN:Hierarchical Gating Networks for Sequential Recommenda-
tion [22]. This method contains a feature gating and an instance
gating to hierarchically select the features and instance of items
for user modeling while making next-item recommendation.

• SASRec: Self-attentive Sequential Recommendation [18]. It adopts
the self-attention layer to capture the dynamic patterns in user
interaction sequences. It can be treated as a simplified version
of the dynamic user modeling component in HyperRec to use
the static item embeddings to represent each interaction.

• BERT4Rec: Sequential Recommendation with Bidirectional En-
coder Representations from Transformer [31]. This baseline uti-
lizes a bi-directional self-attention module to capture the con-
text information in user historical behavior sequences from
both left and right sides.
Besides the baselines above, we also compare the proposedmodel

with its variants in Section 4.4 as our ablation test cases.

4.2.3 Parameters. Our experiments are conducted on a server
machine equipped with a 12 GB Nvidia TITAN Xp GPU. We set
the maximum sequence length to be 50 for all the datasets. For fair
comparison, the negative sampling rate is set to be 1 for all the



Metrics Datasets PopRec TransRec HPMN TCN GRU4Rec+ BERT4Rec HGN SASRec HyperRec Improv.

NDCG@1/
HIT@1

Amazon 0.0423 0.0533 0.0771 0.0783 0.0983 0.1011 0.1012 0.1051 0.1215∗ 20.03%
Etsy 0.0677 0.4201 0.3746 0.3816 0.3916 0.4338 0.4379 0.4477 0.4725∗ 7.90%

Goodreads 0.0776 0.2174 0.2229 0.2069 0.2360 0.2366 0.2447 0.2643 0.2878* 17.62%

NDCG@5
Amazon 0.1026 0.1202 0.1663 0.1648 0.1989 0.2010 0.1981 0.2041 0.2264∗ 12.60%
Etsy 0.1386 0.5495 0.5096 0.5120 0.5307 0.5553 0.5698 0.5713 0.5946∗ 4.37%

Goodreads 0.1694 0.3752 0.3847 0.3593 0.4035 0.4073 0.4163 0.4326 0.4624∗ 11.07%

HIT@5
Amazon 0.1633 0.1867 0.2543 0.2499 0.2963 0.2972 0.2918 0.3001 0.3272∗ 10.08%
Etsy 0.2084 0.6678 0.6300 0.6310 0.6566 0.6650 0.6885 0.6816 0.7047∗ 2.35%

Goodreads 0.2587 0.5234 0.5358 0.5009 0.5581 0.5643 0.5747 0.5865 0.6206∗ 7.98%

MRR
Amazon 0.1204 0.1357 0.1780 0.1777 0.2073 0.2094 0.2070 0.2120 0.2328∗ 11.19%
Etsy 0.1526 0.5328 0.4920 0.4974 0.5131 0.5411 0.5519 0.5555 0.5780∗ 4.73%

Goodreads 0.1801 0.3624 0.3707 0.3495 0.3867 0.3896 0.3979 0.4146 0.4418∗ 11.02%
Table 2: Comparison of Different Models. ∗ indicates that the improvement of the best result is statistically significant com-
pared with the next-best result with 𝑝 < 0.01.

models in the training process. That is, we couple each ground-truth
tuple with a randomly sampled negative item.

For HPMN, GRU4Rec+, HGN and BERT4Rec, we use the imple-
mentations and settings as provided in the original papers. As for
TCN and SASRec, we use the implementation provided in [30]. To
achieve the best performance for each model, we grid search for the
dropout rates in {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the regularization
weight 𝜆 in {10−5, 10−4, 10−3, 10−2, 10−1}, the learning rate in {10−5,
10−4, 10−3, 10−2, 10−1} and the embedding size in {25, 50, 100, 150,
200}. For the model-specific hyper-parameters, we fine-tune them
based on results in the validation set.

We implement HyperRec and all its variants in TensorFlow and
adopt Adam as the optimizer. In the experiment, after the grid-
search, the learning rate is set to be 0.001 and the batch size is set
to be 5120. We set the embedding size to be 100 for all the datasets.
We fine-tune the number of convolution layers in {1, 2, 3, 4, 5} and
the granularity of time periods in {1, 3, 6, 12, 18} months for each
dataset while reporting the results in Table 2.

4.3 Evaluation
We compare HyperRec with the baselines and the results are re-
ported in Table 2. Under all the evaluation metrics, HyperRec can
significantly outperform all the baselines in each of the datasets,
which demonstrates its effectiveness in improving next-item rec-
ommendation in realistic settings where items evolve over time.

As a pioneer for personalized next-item recommendation, Tran-
sRec can provide promising improvement compared with simply
recommending the most popular items. However, TransRec treats
users as a linear translation between consecutive items they pur-
chase, which limits the model in dealing with the realistic problems
that both users and items are changing. With the development of
neural networks in capturing dynamic patterns in sequential data,
there are lots of recent efforts in adopting these neural structure for
next-item recommendation. HPMN consists of hierarchical mem-
ory networks to create lifelong profiles for users, in which each
layer of the memory network is designed to capture periodic user
preferences with a specific period. We find that HPMN outperforms
TransRec by more than 30% in Amazon but appear to be weak
on Etsy and Goodreads. Building on top of 1D dilated convolu-
tion layers, TCN shows its strength in modeling the short-term

behaviors and outperforms HPMN in ecommerce for Etsy. It does
not seem to be a good fit for scenario like Goodreads in which
the long-term preferences are significant. As an advanced version
of GRU4Rec targeting Top-K recommendation, in Amazon and
Goodreads, GRU4Rec+ can improve TCN and HPMN by conduct-
ing dynamic user modeling with GRU and adopting a loss function
tailored to RNN-based models for Top-K recommendation. The
newly proposed HGN is equipped with a novel feature-gating and
an instance gating to enhance the short-term user modeling, and
thus can outperform the aforementioned baselines. Both SASRec
and Bert4Rec employ a self-attention layer to model the sequential
user patterns. In BERT4Rec, by randomly masking items in the
user sequences, it is able to train a bidirectional model for recom-
mendation. However, it does not bring in huge improvement as
in the original BERT applications for natural language processing
since the right-to-left patterns in sequences are not necessarily
informative for predicting dynamic user preferences.

Compared with the state-of-the-art, HyperRec can achieve its
largest improvement in Amazon than in other datasets. The reason
might be that HyperRec is able to fully extract the item charac-
teristics from extremely sparse user-item interactions with the
Hypergraph topology. Meanwhile, the outstanding performance of
HyperRec in both ecommerce and information sharing platforms
demonstrates that it can be generalized to various online scenarios.

4.4 Ablation and Parameter Study
In this section, we first conduct a series of ablation tests by removing
or replacing the essential components in HyperRec to evaluate their
effectiveness. Then we explore the performance of HyperRec with
various number of convolution layers and different granularity of
time periods to further investigate how it works in exploiting the
short-term item correlations for next-item recommendation.

Ablation Test. We report the results of our ablation tests in Table
3. For fair comparison, results are all achieved with granularity of
time periods to be 12-months and HGCN containing 2 layers when
there are hypergraphs in the models. First of all, HyperRec can
achieve the best performance compared to any of its variants for
all the datasets, indicating the effectiveness of its design.

To evaluate the effectiveness of the hypergraph structure, in (3),
we assign each user and each item with different latent embeddings



Architecture Amazon Etsy Goodreads
(1) HyperRec 0.1215 0.4712 0.2809

(2) Static Item Embedding 0.1051 0.4477 0.2643
(3) Replace Hypergraph 0.0978 0.4588 0.2576

(4) (-) Residual 0.1169 0.4591 0.2626
(5) (-) Dynamic Item Embedding 0.1131 0.4646 0.2789
(6) (-) Short-term User Intent 0.1147 0.4616 0.2709
(7) (-) Dynamic in Prediction 0.1151 0.4703 0.2746

Table 3: Results for Ablation Test under HIT@1/NDCG@1.
(-) denotes removing the specific component.
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Figure 4: Performance comparisonwith different number of
HGCN layers under HIT@1/NDCG@1.

at different time periods as the dynamic item embeddings and short-
term user intents. That is, instead of exploiting the short-term item
correlations with a hypergraph as in HyperRec, we use these time-
dependent embeddings to encode the change in the platforms. We
find that there is a huge drop in performance. In Amazon and
Goodreads, the performance of (3) is even worse than that of (2)
which uses static item embeddings. One reason is that the user-
item interactions at each time period are too sparse to sufficiently
train the time-dependent embedding directly. But hypergraph with
HGCN is able to fully extract the effective correlations between
items from the multi-hop connections at each time period.

Then we turn to each of the components empowered by the
dynamic item embedding in HyperRec to examine its contributions
to next-item recommendation. In (4), by removing the residual
component, the initial embedding of the hypergraph only consists
of the static item embedding. While the performance drops in all
the datasets, we find it brings in the largest loss of performance in
Goodreads. Therefore it is important to connect the dynamic item
embedding at different time periods via controlling the residual
information from the past. For (5) and (6), we remove x𝑡𝑛,𝐿

𝑖
and

u𝑡𝑛𝑢 in the fusion layer respectively to examine how the resulting
dynamic item embedding and short-term user intent contribute to
the meaning of a specific interaction in dynamic user preference
modeling. Since (5) and (6) achieve a similar performance in all of
the datasets, we may conclude that both components are important
for capturing the meaning of an interaction. In (7), we remove the
dynamic item embedding (from the most recent time period) while
calculating the preference score with Equation 5. We find that this
component contributes a lot for Amazon and Goodreads. However,
on Etsy, items are more sensitive to instant gifting events (e.g.,
Christmas, anniversaries), so the dynamic item embedding from
the last time period may not be able to provide great insight into
the current time period.
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Figure 5: Performance comparison with various time granu-
larity under HIT@1/NDCG@1.

4.5 Different User Groups

Number of HGCN Layers. To explore how the high-order con-
nections in the hypergraph can help to uncover hidden item correla-
tions and thus contribute to the final recommendation for different
online platforms, we compare the performance of HyperRec by
varying the number of hypergraph convolutional layers (in Figure
4). When there is one convolution layer for the sequential hyper-
graphs, each dynamic item embedding aggregates only information
from items connected with them directly by the hyperedge. At this
stage, HyperRec can outperform its variants considering only static
item embedding, which illustrates the necessity of exploring the
short-term item correlations and adopting dynamic embedding in
next-item recommendation. Furthermore, by stacking two HGCN
layers, it can bring in significant improvement compared with a
model with just one convolution layer. We can infer that hyper-
graph and HGCN are effective options for extracting expressive
item semantics in the short term. And it is important to take the
high-order neighboring information in hypergraph into considera-
tion. However, for Etsy and Amazon, since the data is very sparse,
it is not necessary to further increase the number of convolutional
layers. 2-3 HGCN layers are enough for extracting the item seman-
tics at different time periods. However, while Goodreads contains
comparatively more interactions in each graph, more convolutional
layers can further improve the embedding process. This demon-
strates the effectiveness of hypergraph and HGCN in modeling the
short-term item correlations for next-item recommendation.

Change of Time Granularity. An important parameter which
can control how sensitive HyperRec is to the change over time
is the granularity of the time period. Thus in Figure 5, we show
the performance of the proposed model by varying the granularity
from 1 month to 18 months. When the granularity is small, we
find that the model cannot achieve the best performance since the
interactions are extremely sparse and not sufficient for building up a
set of expressive item embeddings. While enlarging the granularity,
we find that the performance of HyperRec is increasing in all the
datasets. In Amazon, it reaches the best performance when the
granularity is set to be 12-months. However, for Etsy, the optimized
granularity is smaller since the products sold on Etsy (i.e., hand-
crafted items) are in higher volatility than products on Amazon. In
Goodreads, the optimized granularity is around 6-months, which
is smaller than that for the other datasets since there are more
interactions for each time period in Goodreads for the dynamic item
embedding. If we further enlarge the granularity, the performance
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Figure 6: Performance comparison for users with different lifespans.

will decrease since it underestimates the change of items and may
introduce noise to the model.

To further explore the performance of the proposed model in
both long-term and short-term scenarios, we compare HyperRec
with the top-2 baselines, HGN and SASRec, for users with various
lifespans in the platforms (in Figure 6). Here, we calculate the time
gap between the last interaction and the first interaction for each
user as his/her lifespan in the platform. We find that HGN works
better than SASRec for users with a short lifespan (less than one
year), while SASRec can outperform HGN in modeling the users
who are active for longer time in the platforms. However, we find
that HyperRec significantly outperforms the baselines for users
with both short and long lifespans. And it can achieve comparatively
larger improvement for users with longer lifespans, indicating that
HyperRec is superior in capturing the long-term patterns while
taking the short-term correlations into consideration.

5 RELATEDWORK
Next-item Recommendation. Next-item recommendation has
been a promising research topic recently. Compared with recom-
mendation systems treating users as static, it usually updates a
user’s status after each of her interactions and generates predictions
relying on the relationships between items consumed sequentially.
Some works focus on recommendation for short-term interaction
sessions without user identification, which usually assume that
items in a session are highly correlated with each other and center
around an intense intent [26, 41].

Another line of research models user preferences with historic
item sequences spanning a longer period of time. Pioneering works
adopt Markov Chains [28] and translation-based [14] methods to
model the transition between items that a user interacted with
sequentially. Recently, there are lots of efforts in applying differ-
ent neural networks to capture users’ dynamic preferences from
their sequential behaviors. GRU4Rec [17] utilizes a Gated Recurrent
Neural Network (GRU) to investigate users’ sequential interactions
and then GRU4Rec+ [16] is proposed as a modified version with a
new class of loss function designed for the Top-K recommendation.
Meanwhile, Convolutional Neural Networks (CNN) are adopted by
[32, 44] to capture the sequential patterns of users’ historic interac-
tions. While self-attention layer (transformer) [33] is proposed to
be an effective replacement for RNN and CNN in handling sequen-
tial data, it is adopted in SASRec [18] to extract user preferences
from the interactions in the past. However, these methods focus on
modeling the sequential patterns without considering the temporal

effects, leading to similar latent representations for interactions
happening at different time periods or from various users.

There are previous efforts paying attention to the temporal ef-
fects in the design of recommendation systems. In TimeSVD++ [20],
to preserve the temporal dynamics, they train various SVD mod-
els with ratings at different time periods. Considering both users
and items are evolving along time, the works in [29, 35, 39] uti-
lize parallel RNNs to model the sequential patterns of users and
items separately and aim to predict how a user will rate the items
at different timestamps. [7] proposes to generate coevolutionary
feature embeddings for users and items with a model combining
an RNN and point process. These methods are designed for explicit
feedback sequences (i.e., ratings) and need to rely on precise timing
information. Thus they are not suitable for handling scenarios with
implicit feedback and sparse timestamps.

Neural Graph-based Recommendation. There is an increasing
attention on exploiting graph structures for various recommenda-
tion scenarios with the recent advance in neural graph embedding
algorithms [8, 9, 13, 19, 34]. Many of these works make use of the
high-order connections in a static graph to generate enriched latent
representations for users or items. In social recommendation, social
connections between users can be investigated with GNN to model
the propagation of user preference in social networks [10, 36, 40].
Differently, PinSage [19] proposes to generate item embeddings
on a graph constructed with item-item connections, which can be
applied for downstream recommendation. In addition, there are also
works focusing on the user-item interaction graph [4, 38] in which
they construct a static graph connecting users and items based
on their interaction. However, these methods are not designed for
capturing the sequential patterns in recommendation systems.

To model the temporally dynamic patterns and predict for future
behaviors, Session-based Temporal Graph (STG) [42] is proposed
to connect users, items and sessions in a graph. With random walk
process starting from different type of nodes (user/session), it is
able to model users’ long-term and short-term preferences for rec-
ommendation. The work of [30] consists of an RNN to capture
dynamic user behaviors and a graph attention layer to model the
social influence on a static user-user graph. SR-GNN [41] proposes
to construct various graphs of items with session sequences and
use GNN to extract item co-occurrences from those session graphs.
It generates next-click prediction based on attentive aggregation of
item embedding in a session.

As a generalization of the ordinary graph in which each hy-
peredge can encode the correlations among various numbers of
objects, hypergraph has been adopted to unify various types of



contents for context-aware recommendation. In terms of modeling
the correlations among various types of objects, there are early ef-
forts [5, 21, 43, 45] in applying hypergraphs to assist conventional
collaborative filtering for incorporating context information. In
[5], in order to integrate both the social relationships and music
contents for music recommendation, they propose to use hyper-
graph to model the relations among various types of objects (e.g.,
users, groups, music tracks, tags, albums) in music social commu-
nities. Similarly, the work of [21] models the correlations among
readers, articles, entities and topics with a hypergraph for person-
alized news recommendation. These methods are designed based
on the properties of the specific communities and can not be easily
generalized to the task of next-item recommendation.

6 CONCLUSION
In this work, we explore the dynamic meaning of items in real-
world scenarios and propose a novel next-item recommendation
framework empowered by sequential hypergraphs to incorporate
the short-term item correlations for dynamic item embedding. With
the stacking of hypergraph convolution networks, a residual gating
and the fusion layer, the proposed model is able to provide more
accurate modeling of user preferences, leading to improved perfor-
mance compared to the state-of-the-art in predicting user’s next
action for both ecommerce (Amazon and Etsy) and information
sharing platform (Goodreads). In the future, we are interested in
investigating how to transfer the dynamic patterns across platforms
or across domains for an improved predictive performance.
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