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Abstract. We propose a framework for personalized music curator rec-
ommendation to connect users with curators who have matching curation
style. Three unique features of the proposed framework are: (i) models
of curation style to capture the coverage of music and curator’s individ-
ual style in assigning tracks to playlists; (ii) a curation-based embedding
approach to capture inter-track agreement, beyond the audio features,
resulting in models of music tracks that pair well together; and (iii) a
novel neural pairwise ranking model for personalized music curator rec-
ommendation that naturally incorporates both curator style models and
track embeddings. Experiments over a Spotify dataset show significant
improvements in precision, recall, and F1 versus state-of-the-art.

1 Introduction

Music streaming platforms provide access to a diverse, incredibly large, and ever
growing collection of music tracks. To make sense of the millions of available
tracks (e.g., 40 million on Apple Music and 30 million on Spotify), playlists
have become an essential feature of many music streaming platforms for orga-
nizing music, mediating how users experience the service. Across platforms,
most playlists are manually curated and managed by a group of music curators,
which consists of both “regular” users and expert tastemakers. To benefit from
the power of human curation [15], many platforms enable users to follow these
music curators to receive updates of their listening activities, e.g., to discover
new tracks, albums, or playlists (as illustrated in Fig. 1(a)).

While recommendation systems have been widely deployed in many music
streaming platforms for tasks like recommending individual music tracks
[3,19,23] or playlists [2,14], they are not well-suited for real-world scenarios
like (i) discovering new tracks with little or no feedback; (ii) finding relevant
playlists that are frequently updated (and hence, out-of-sync with respect to a
learned recommendation model); and (iii) recommending playlist creators them-
selves who can provide direct access to new tracks, albums, or playlists. As a
step toward supporting these scenarios, we focus on the task of curator recom-
mendation to create a personalization layer to help users discover vast amounts
of new tracks, fresh playlists, and interesting curators.

While some services highlighting highly-rated or popular curators [7,16,22]
(e.g., Spotify’s recommendation of “featured” curators with high popularity),
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Fig. 1. (a) Users follow music curators with matching curation style to receive updates.
(b) We randomly sample curators with IDs containing the keywords (“workout”,
“sport”, “run”, “fit”, “gym”, “country”, “piano”, “instrument”, “classic”, “jazz”). We
show the 2D visualization (with t-SNE [11]) of selected curators based on average audio
features of music tracks they curate.

identifying personally-relevant music curators is a daunting task due to the fol-
lowing challenges. First, music curators themselves are complex amalgamations
of the playlists they create, the tracks they select, and their unique style. For
example, some curators may focus on specific emotions (like happy or excited),
eras (like the 80s or 90s), or situations (like workouts, parties, or road trips),
while others cross boundaries (like happy 80s music, or 90s road trip). Hence the
first challenge is: How can we build models that capture these stylistic differences
across music curators taking both their curating coverage and individual style
into consideration? To illustrate, we conduct an initial exploration of Spotify
curators whose areas of interest can be inferred from their user IDs. We repre-
sent each of the music curators using the average of audio features (see Sect. 3.2
for details) for all the tracks in playlists they curate and plot the 2D t-SNE dis-
tribution in Fig. 1(b). We see that there are clear patterns of curator coverage:
country music curators cluster together in the top-right, curators focusing on
active music for sports and workouts cluster in the top-left, while classical and
instrumental music curators dominate the lower portion. We see that curators
have preferences in the coverage of music they would curate. However, coverage
alone is insufficient to distinguish between curators. We must also consider indi-
vidual style. Considering the playlists curated by three classical music curators
(in the bottom of the figure), while all drawing from the same musical coverage
area, each of them displays a unique style – one groups tracks for activities like
work or study, one collects tracks featuring the same instrument, while the third
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groups by artists. We see that curators who curate similar types of music can
have different style in deciding how tracks go with each other.

Second, user preferences for music curators may be driven by many factors,
including preferences for curator coverage and style. These preferences may only
be revealed through extremely sparse user feedback. For example, in a sample
of Spotify playlists (see Sect. 4.1) we find that only 0.20% of all user-curator
pairs have a following relationship. And for pairs without a following relation-
ship, it may mean the user dislikes the curator or just has not known her yet.
Furthermore, because anyone can be a curator on these platforms, there are
many long-tail candidate curators who may be invisible to most users. Hence
the second challenge is: How can we uncover the hidden taste preferences that
connect users to the music curators they may prefer?

Toward answering these questions, we propose a novel personalized Music
Curator Ranking (MCR) framework to recommend music curators to users
based on the style of each curator and on each user’s taste profile. There are
three unique features of the proposed MCR framework: (i) We propose to model
curation style through a novel neural pairwise framework that considers how
each curator assigns tracks to different playlists, toward uncovering each cura-
tor’s latent style; (ii) Based on how crowds of curators compose their playlists,
we propose an embedding model for tracks to capture inter-track agreement to
uncover hidden connections among tracks, which can assist in characterizing the
coverage of each curator; (iii) We propose a novel neural ranking model for per-
sonalized music curator recommendation that naturally incorporates both cura-
tor style models and track embeddings to identify personally relevant curators.
Through experiments over a Spotify dataset, we find the proposed framework
results in a 20.5% and 5.7% improvement in top-k F1 score compared to Bayesian
Personalized Ranking (BPR) and Neural Personalized Ranking (NPR), and in
a 24.9% and 21.4% improvement in cold start scenarios.

2 Related Work

Music Recommendation and Playlist Generation. Complementary to our
focus on recommending curators, many researchers have explored music contin-
uation and automated playlist generation. For example, [12] predicts the next
track based on a listener’s preferences and most-recently played tracks. DJ-MC
[14] aims to recommend track sequences based on reinforcement learning. Groove
Radio [1] generates personalized playlists based on seed artists. EFM [2] recom-
mends both tracks and playlists through a new embedding approach. There are
also efforts on training an embedding model on users’ historical music playing
sequences to estimate the similarity between songs for recommendation [5,24].
In contrast, we propose a style-based recommender that links users directly to
curators rather than specific tracks or playlists.

User Profiling and Expert Recommendation. Somewhat similar to our
notion of curator is research on finding expertise to improve search and recom-
mendation [9,27]. By uncovering the latent preferences of users or building up
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profiles for them, these approaches aim to identify related experts. For music,
one effort has aimed to identify curators [13] based on a Linked Data graph
capturing listening history and other factors. However, it cannot scale to larger
datasets demonstrating sparsity as in our case.

Neural-Based Recommendation with Implicit Feedback. To make recom-
mendations in such sparse, implicit feedback scenarios, methods like Bayesian
Personalized Recommendation (BPR) [21] and a recently introduced variant
called Neural Personalized Ranking (NPR) [18] have shown good success. These
and other neural approaches have demonstrated their power in recommenders,
including [4,6,25]. Other approaches include the autoencoder-based CDAE [26]
and Neural Collaborative Filtering [10] that adds nonlinearities to traditional
Matrix Factorization (MF). In this work, we propose to take advantage of the
benefits of neural architectures for recommenders, while carefully incorporat-
ing special properties of music curation, including curator style, coverage, and
curation-based embeddings.

3 MCR: Music Curator Ranking

In this section, we start from problem setting and then present the design of our
MCR framework, organized around three guiding research questions.

Problem Setting: Let U = {u1, u2,..., uN} be a set of N users and C = {c1,
c2,..., cM} be a set of M curators. A curator c can create a playlist Lc

q composed
of tracks drawn from a collection of possible tracks T = {t1, t2, ..., t|T |}. Further,
curator c can create multiple playlists Pc = {Lc

1, Lc
2, ..., Lc

Q}. Users may express
their interest in a curator through an action such as a “like” or “follow”. Our
goal is to recommend a personalized ranked list of music curators to each user.

Research Question: RQ1: How to model the hidden curation style that guides
how playlist curators select tracks for their playlists? RQ2: How can we use
these curation decisions to model individual tracks, to capture how curators view
tracks beyond their particular audio characteristics? RQ3: How to model users
preferences on both curation style and coverage for improved recommendation?

3.1 RQ1: Model of Curation Style

As shown in the previous section, curators have their own style in deciding how
tracks go together. For example, some classical music lovers may create playlists
based on the time period (e.g., 1800 s) or for different artists. Some may focus on
the particular instrument featured, while others may curate based on feelings,
activities (e.g., for studying or focusing), or locations (e.g., for “coffee shop”).
Modeling these styles is important for accurately connecting users to their pre-
ferred curators. A purely content-based approach to model style (e.g., based on
composer, time period, or audio features of the track) may face challenges in
determining these subtle stylistic choices that motivate a curator.
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Fig. 2. Curation style modeling and curation-based track embedding.

Hence, we propose to model curation style through a pairwise framework
intended to discern why a curator chooses one track over another. Given tracks
t1, t2, and t3, curator c may put t1 and t2 in the same list while putting t3 in a dif-
ferent list. We propose a neural network (see Fig. 2(a)) to simulate how curators
choose what tracks go in what playlists. By iterating among and across playlists
of different curators, we can generate input tuples to represent their behaviors in
assigning tracks to playlists. Each input tuple has three components: the index
of the curator, the features representing t1, and the features representing t2. If
curator c puts t1 and t2 into the same playlist (a positive pair), then the ground
truth of prediction is set to be 1. However, if t1 and t2 appear in different playlists
of curator c (a negative pair), then the ground truth is set to be 0. We can then
train a binary classification model to predict how curators will relate two tracks
during curation. The intermediate embedding layer of this model – estylec – can
then characterize curator c’s curation style.

Concretely, such a model requires a vector representation as input. Let ic
denote the one-hot encoding of curator c. Since the space of tracks is large,
instead of a one-hot approach, we represent each track ti by a dense vector Fti

(more details in Sect. 3.2). After feeding the input tuple < c,Ft1 ,Ft2 > to the
neural network, to learn the representation of c’s curation style, the vector ic is
passed to the embedding layer: estylec = Wstyleic, where Wstyle is the embedding
matrix and the resulting embedding estylec will be used to characterize c. Then the
element-wise multiplication between embedding of the curator and music track is
analogous to matrix factorization with Ht1

c = estylec ◦ Ft1 and Ht2
c = estylec ◦ Ft2 .

Thus the resulting vectors Ht1
c and Ht2

c represent c’s preferences in curating.
To decide whether the curator will put t1 and t2 into the same or different
playlists, we calculate the element-wise absolute difference between them |Ht1

c −
Ht2

c | for comparison. We also calculate the element-wise multiplication Ht1
c ◦Ht2

c

to represent the cosine distance between them. Then the concatenated vector will
be fully connected to a dense layer activated with ReLU function. Finally a one-
dimension output is generated as the prediction of likelihood that t1 and t2 will
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be in the same playlist by curator c. Binary cross-entropy is used to calculate
the training loss. After reaching an accurate prediction model, the embedding
vector estylec can be used to represent c’s curation style.

Curator Coverage. Complementary to curation style, we can also characterize
a curator’s coverage as a simple aggregate of the tracks associated with a curator.
Let Tc = {ti|ti ∈ Lc

x,∀Lc
x ∈ Pc} represent the set of tracks that curator c adds

to at least one playlist, where Pc denotes the set of playlists curated by c and
Lc
x is each of those playlists. Recall that each track ti can be represented by a

dense vector Fti . Concretely, we can use the weighted sum of Tc to model c’s
curating coverage, in which the weight of each track is the frequency with which
the track appears across all of curator c’s playlists. Then we can describe the
range of musical style curator c covers using the weighted average of set Tc:

covc =
1

∑
ti∈Tc

countc(ti)

∑

ti∈Tc

countc(ti)Fti , (1)

where countc(·) counts the frequency of appearing across all the playlists of c.

3.2 RQ2: Curation-Based Track Embeddings

A natural question raised in the last section is how to model individual tracks in
the first place? One alternative is to use the audio features of music tracks. For
example, there are 13 audio features provided by Spotify, including danceability,
energy, key, loudness, mode, speechless, acousticness, instrumentalness, liveness,
valence, tempo, duration in ms, and time signature. However, these features are
not always available due to the cost of analyzing audio signals.

Instead, we seek to characterize tracks by how groups of curators com-
pose their playlists. The intuition is that when users create or follow playlists,
they provide implicit linkages between tracks in the same playlist. Hence, a
key hypothesis is that tracks in a particular playlist are in high coherence,
regardless of their underlying audio-based signature. Inspired by word2vec [17],
we propose to learn a vector representation for each track from the curation-
based perspective of how tracks cohere with other tracks. We can treat tracks
as “words” and find neighboring tracks within a window. In many music ser-
vices, users can shuffle the playlists, meaning that tracks arrive in a random
order. Hence, tracks within a playlist will have high coherence, regardless of
their immediate order in the playlist. To simulate this shuffle activity, we ran-
domly reorder the music tracks in each playlist to generate the shuffled track
sequences (see Fig. 2(b)). Then we treat each shuffled track sequence as a
“sentence” and each music track as a “word”. For instance, given a music
sequence (similar to a “sentence”) m = (t1, t2, ...t|m|), the log probability lm is
calculated as lm = 1

|m|
∑

0≤k<|m|
∑

−w≤j≤w,j �=0 log P (tk+j |tk), where P (tk+j |tk)
represents the probability that track tk+j is the neighbor of tk, given that track
tk is listened. Here, w is the window size in observing neighboring tracks. This
skip-gram model aims to maximize the log probability across the set of all gen-
erated track “sentences”. The hidden layer (in Fig. 2(b)) that is learned will
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be used as the low-dimensional vector representations for tracks. Tracks with
larger pairwise-similarity are more likely to be listened to together from the per-
spective of how curators create their playlists. After generating the embedding
representation Et for each track t, we can use it as track features for curation
style embedding in Fig. 2(a) and coverage in Eq. 1.

3.3 RQ3: Neural Personalized Curator Ranking

Given these models of curation style and embedding of individual tracks, we
now turn to the challenge of connecting users with the right music curators. The
main insight of the proposed MCR approach is that when deciding between two
curators, a user will consider the style and coverage of each curator.

Users leave only implicit feedback on curators in the form of “following”.
That is, we can assume that if user u follows curator c, then u is interested in c.
However, if u does not follow curator c, we cannot conclude that u is not inter-
ested in c because it is also possible that u is unaware of c. Hence, to overcome
this implicit feedback challenge, we propose a neural pairwise ranking model
inspired by Bayesian Personalized Recommendation (BPR) [21] and Neural Per-
sonalized Ranking (NPR) [18]. Following BPR and NPR, the key assumption of
this proposed approach is that users prefer the observed positive items (following
a curator) to the unobserved items.

The proposed MCR model consists of two symmetric branches as shown in
Fig. 3. Suppose that user u has already followed curator c and hasn’t followed
curator q yet. We denote this relationship as c >u q. Given user u and a pair of
curators (c, q), the left branch is designed to estimate a user’s overall preference
for curator c, while the right branch (the transparent part) aims to estimate a
user’s overall preference for curator q.

There are 7 inputs to the symmetric structure, denoted as (u, c, q, covc,
covq, estylec , estyleq ). Besides the index of the user u, the curator c and another
curator q, we also feed in the coverage covc, covq and style estylec , estyleq of cura-
tor c and q. While constructing the input tuple for model training, we select
a curator followed by u and another curator for whom u does not leave feed-
back. Given the tuple (u, c, q), its ground truth label y(u, c, q) is equal to 1 if
c >u q, while y(u, c, q) = −1 if q >u c. Then the personalized ranking problem
is transformed into a binary classification problem.

Model Details. Since MCR is symmetric, we focus on one of the branches in
detail. To fit into the neural structure, the index of u and c are one-hot encoded as
iu and ic directly after input. First, we model the direct preference relationships
between users and curators. iu and ic are connected to the corresponding embed-
ding layers to learn the compact and vectorized representations. The resulting
embeddings eu and ec act as the latent factors of u and c. To simulate the tradi-
tional matrix factorization, we calculate the element-wise product eu ◦ec, which
captures the interaction between u and c.
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Fig. 3. Neural Music Curator Ranking (MCR) structure.

Then we need to determine how a user’s preferences are aligned with each
curator’s coverage and style. We use ReLU function to activate curator c’s aux-
iliary features. The activated coverage and style of curator c are denoted as rc
and sc. Given the one-hot encoding of user u as iu, u’s preferences on cover-
age and style are learned by the corresponding embedding layers r̃u = Wriu
and s̃u = Wsiu, where Wr and Ws are the embedding weight matrices for
coverage and style. The resulting embeddings share the same size with the
coverage and style features of curators. We use the element-wise multiplica-
tions to capture user u’s preferences on curator c. We will concatenate all the
element-wise products together to represent the preference of u on c and get
puc = [eu ◦ ec r̃u ◦ rc s̃u ◦ sc]T . Then this concatenation is passed to a fully
connected layer. The one-dimension output from this layer can be represented as
ruc = f(Wpuc+b). Here f(·) denotes the ReLU function. W is the weight matrix
and b is the bias term for the single perceptron. The output ruc represents the
preference score of u on c. Because the model is symmetric, ruq, the preference
score of u on curator q, is calculated in the same process with the other branch
(the transparent part in Fig. 3). Thus we apply a subtraction layer to estimate the
difference between u’s preferences on curator c and q: d(u, c, q) = ruc−ruq. Since
our objective is to make d(u, c, q) share the same sign as y(u, c, q), we train the
entire model to minimize the loss: L = 1

|V |
∑

(u,c,q)∈V − ln(δ(d(u, c, q)·y(u, c, q))),
in which V is the set of training tuples and δ is the sigmoid function. If the
product d(u, c, q) ·y(u, c, q) is larger, it means that u’s preference for the curator
pair (c, q) is more likely to be predicted correctly by the model. We adopt the
L2-norm for regularization.

During prediction, we can input the tuple (u, c, c, covc, covc, estylec , estylec )
to calculate user u’s preference on curator c. We denote the preference scores
generated from the symmetric components as rleftuc and rrightuc . Then the overall
preference score can be predicted as ruc = 1

2 (rleftuc + rrightuc ). Thus for prediction,
we only need to replace the last subtraction layer with an addition layer. With
the preference score of a user over each curator, we will be able to generate a
personalized ranked list of curators for this user.
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4 Experiments

In this section, we conduct a series of experiments to evaluate the proposed
framework by answering these questions: (i) How does the proposed MCR per-
form in curator recommendation compared with state-of-the-art? (ii) How does
each component of MCR contribute to the quality of curator recommendation?
and (iii) Are the proposed style features able to alleviate the cold start issue?

4.1 Setup

Data. Our experiments are based on a dataset sampled from Spotify. Initially,
we create a seed list of playlists by issuing 200 keyword queries representing
popular topics on Spotify (e.g., pop, coffee, trip) and then randomly selecting
0.2 million returned playlists. We then identify the creators of these playlists and
crawl their followees, arriving at a list of 5 million valid user IDs. We then identify
active users who have followed more than 5 music curators. We end up with a
dataset with 19,760 users and 6,821 music curators who have curated 5,413,478
music tracks in total. Further, the resulting dataset is extremely sparse, in which
only 0.20% of the user-curator pairs have a following relationship. We use 60%
of user-curator following data for training, 10% for validation and the remaining
30% for testing.

Metrics and Baselines. We adopt Precision@k (Prec@k), Recall@k (Rec@k)
and F-1 score@k (F1@k) as metrics to evaluate the personalized recommenda-
tion. Prec@k represents the percentage of correctly predicted curators among
the top-k recommendations, and Rec@k represents the fraction of relevant cura-
tors which are discovered by the top-k recommendations. F1@k is a weighted
combination of Prec@k and Rec@k, that is F1@k = 2·Prec@k·Rec@k

Prec@k+Rec@k .
We first consider 3 classic recommendation models and a graph-based model

for curator recommendation as baselines:

– Popular (MP) recommends the curators with highest popularity.
– User-based Collaborative Filtering (UCF) estimates user u’s preference on

curator c with a weighted aggregation of his/her neighboring users’ feedback.
– Bayesian Personalized Ranking (BPR) [21] is a basic pairwise ranking model

with Matrix Factorization.
– node2vec [8] explores diverse neighborhoods on a graph through a biased

random walk. We use node2vec to find embeddings for users and curators
with the user-user (curators) following graph. Based on the cosine similarities
between each user and all the curators, we can recommend nearby curators.

We also want to compare MCR with its simplified variants:

– Neural Personalized Ranking (NPR) [18] ignores both style and coverage.
Recommendation is purely based on user-curator following relationships.

– Coverage-based MCR (C-MCR) relies only on the coverage features based on
track embeddings and ignores style.
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– Audio feature-based MCR (A-MCR). Let Ati denote the 13-dimension audio
feature (details in Sect. 3.2) vector of music track ti. To compare our curation-
based track embeddings with the traditional audio-based features, we replace
Fti in Eq. 1 with track embedding Ati . This model ignores the curator style
features.

– Style-based MCR (S-MCR) integrates the style embedding estyle as a contex-
tual feature for MCR, while ignoring the simpler coverage feature.

Parameter Settings. For the curator style embedding, we randomly pick 10
tracks from each playlist and iterate among all playlists to get the positive tuples.
Then for each curator, we iterate across playlists he/she creates to generate neg-
ative tuples. We keep the number of positive tuples and the number of negative
tuples to be the same for each curator by random sampling. With this method,
we generate a training set and a validation set with the same size. We train the
model for 20 epochs, with the loss generally converging within 10 epochs. We
use the intermediate embedding layer in the well-trained model to represent a
curator’s style. For the curation-based track embeddings, we set the window and
feature vector size following the default settings of Gensim [20].

We adopt Adam optimizer and mini-batch approach of gradient descent, in
which the batch size is 3072. We grid search the regularization parameters over
{1, 10−1, ...10−6} in the validation set. We set the dimension of latent factors for
“following” feedback to be 100 for all the models. The dimensions of coverage
based on track embeddings and curation style embedding estyle are also set to
be 100. We keep them to be the same for fair comparison. To train the pairwise
ranking model, we select 5 negative curators (unfollow/unobserved) for each user
to construct the training tuples; we find that increasing these negative samples
leads to longer training time but little improvement on recommendation quality.

Fig. 4. Similarity of users and cura-
tors on curation style.

Exploring Curator Style. Firstly, we want
to explore what the style embeddings dis-
cover about curators. Although users may
not create playlists themselves, they can
reveal their “curation style” by following dif-
ferent playlists. For a user u, we calculate the
cosine similarity of the curation style embed-
ding between u and two different sets of cura-
tors: (i) we select the set of K curators u
is following ; and (ii) we randomly select K
curators. We summarize the results for all the

users in Fig. 4. We observe that users have a higher similarity with curators they
follow rather than random curators. Thus, we see that users do have clear pref-
erences based on style, and there exists clear pattern of users sharing style with
curators.



Recommending Music Curators: A Neural Style-Aware Approach 201

4.2 Evaluating Curator Recommenders

In our first experiment, we compare MCR versus the baselines. We report the
precision, recall and F1 over the testing set in Fig. 5. We see that the proposed
MCR approach results in the highest precision, recall and F1 for k = 5, 10, 15.

Fig. 5. Comparing models: top-k precision, recall and F1.

Beginning on the left-side of each figure, we see that user-based collaborative
filtering (UCF) performs the worst. Since this curation network is so sparse, users
have provided insufficient implicit feedback for this recommender to figure out
their similarities purely based on the curators they followed. Applying matrix
factorization to find latent factors for both users and curators, BPR can out-
perform UCF by 11.9% on average for the top-k recall and precision, though
it still lags the neural models. Relative to traditional collaborative filtering, we
see that BPR’s relaxed assumption of users’ unobserved implicit feedback and
pairwise ranking model is more effective for this task. Perhaps surprisingly, the
Most Popular (MP) recommender performs slightly better than both UCF and
BPR. Currently, Spotify suggests users with popular verified curators and friends
on Facebook. Thus, although MP can result in better precision and recall than
BPR and UCF, it necessarily ignores the long-tail challenge of uncovering cura-
tors who are not widely known.

NPR adds nonlinearity and improves over BPR by 20.3% without any aux-
iliary information. NPR also outperforms MP by 17.4% on average. The neural
architectures are beneficial for this recommendation scenario. In addition, by
aggregating the proposed curation style and coverage features, the final MCR
model can further improve NPR by 5.7%. From the experiment, we observe the
effectiveness of adopting a neural pairwise ranking model for the music curator
ranking problem and incorporating curator style and coverage.

We compare with node2vec, which has demonstrated good performance in
link prediction by efficiently exploring diverse neighborhoods on the graph. We
find node2vec performs worse than MCR; indeed, it under-performs NPR by
more than 10%. Both NPR and the node2vec method rely only on user-user
(curators) following information, so the comparison can be fair. These results
indicate that graph structure alone may be insufficient in this domain; in con-
trast, our MCR method can capture both graph structure (via the underlying
matrix factorization which can uncover links between user-user and user-item
pairs) and user preferences for curation style/coverage.
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4.3 Comparison of Different Features

Here, we compare MCR with its simplified variants and the baseline NPR to
examine how the curation style and coverage features perform in generating
recommendations (see Table 1 Normal Setting). In the t-tests between NPR and
MCR or its simplified variants on F1, we can get p < 0.01, which indicates a
statistically significant difference.

Table 1. Comparison of different features of MCR under normal setting and cold start
with F1@K scores.

Method Normal setting Cold start

@5 @10 @15 Ave Δ @5 @10 @15 Ave Δ

NPR .1082 .1003 .0889 – .0615 .0651 .0585 –

A-MCR .1117 .1028 .0907 +2.0% .0744 .0753 .0626 +14.5%

C-MCR .1125 .1034 .0913 +3.3% .0818 .0696 .0709 +17.2%

S-MCR .1127 .1037 .0913 +3.4% .0781 .0753 .0692 +20.3%

MCR .1124 .1043 .0920 +5.7% .0818 .0753 .0676 +21.4%

Firstly, we observe that curation-based track embeddings (C-MCR) perform
better than the audio-based features (A-MCR) in characterizing a curator’s cov-
erage. The track embeddings are learned from curation choices with skip-gram
embedding model to extract the collective wisdom of curators, while the audio-
based track features relying on audio analysis of individual tracks. The superior
results from our track embeddings indicate the importance of curation decisions.

Additionally, the curation style features estyle (S-MCR) increase F1 score by
3.4% while the coverage with track embeddings (C-MCR) increasing it by 3.3%.
Combining both the coverage and style, the proposed MCR framework is able
to improve NPR by 5.7% in top-k F1 score. This nearly additive improvement
suggests that coverage and style are complementary perspectives on curators
and so both need to be properly modeled for curator recommendation.

4.4 Cold Start

In practice, it can be challenging to infer preferences of new users with very
little feedback. We want to investigate whether the coverage and style contextual
features can also help in the cold-start setting. For this experiment, we select
users who follow fewer than 8 curators and examine how MCR and its simplified
variants work for those users (in Table 1 Cold-Start). We find that the curating
coverage with track embeddings (C-MCR) and the curation style (S-MCR) can
improve NPR by 17.2% and 20.3% separately. Combining both of these features
leads to an average improvement of 21.4% in F1 score. For each of the features
and their combination, we see larger improvements compared with the original
setting. This suggests that these features are critical in cold start scenarios,
which are typical in real-world curation settings.
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5 Conclusion

In this work, we tackle the problem of personalized music curator recommen-
dation through a style-aware framework. We introduce the curation style and
coverage features to capture a curator’s individual approach for curating music.
We also propose a curation-based embedding approach to capture inter-track
agreement for music that pair well together. Through experiments, we observe
that MCR results in the best precision, recall and F1 versus state-of-the-art.
Also, the proposed style and coverage features can alleviate the challenges posed
by cold start scenarios. In the future, we are interested in extending the models
to support other curation platforms like Pinterest and Flipboard.
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