
Recurrent Recommendation with Local Coherence
Jianling Wang and James Caverlee

Department of Computer Science and Engineering, Texas A&M University
{jlwang,caverlee}@tamu.edu

ABSTRACT
We propose a new time-dependent predictive model of user-item
ratings centered around local coherence – that is, while both users
and items are constantly in flux, within a short-term sequence, the
neighborhood of a particular user or item is likely to be coherent.
Three unique characteristics of the framework are: (i) it incorpo-
rates both implicit and explicit feedbacks by extracting the local
coherence hidden in the feedback sequences; (ii) it uses parallel
recurrent neural networks to capture the evolution of users and
items, resulting in a dual factor recommendation model; and (iii) it
combines both coherence-enhanced consistent latent factors and
dynamic latent factors to balance short-term changes with long-
term trends for improved recommendation. Through experiments
on Goodreads and Amazon, we find that the proposed model can
outperform state-of-the-art models in predicting users’ preferences.
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1 INTRODUCTION
A key challenge for recommender systems is in predicting how users
will rate items in the future. While many conventional approaches
have shown good success in learning static models of users (or
items) – e.g., [11, 16, 18, 24, 26, 28, 39] – these models are typically
not well-suited to domains where users and items display dynamics
in their evolution over time, leading to poor predictive power.

In contrast, many recent efforts have recognized the importance
of tracking the dynamics in recommenders, to better capture the
evolution of both users and items [21]. For example, a fantasy reader
may progress from the young adult Harry Potter novels to the
grittier Game of Thrones. Similarly, items themselves evolve in how
they are perceived; for example, movie ratings tend to change with
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Figure 1: Users (top) and items (bottom) evolve over time,
while also displaying local coherence.

age and after major prizes like the Oscars [15, 34]. In these dynamic
recommendation settings, recurrent neural networks (RNNs) have
shown great success [6, 25, 34, 37], where the RNN’s chain-like
neural model can learn the evolution of users and items from their
sequences of rating events.

While RNNs are well-suited to model the dynamics of user-item
preferences, the short-term sequences of user (or item) activities
often demonstrate consistency similar to what is modeled by tradi-
tional static latent factors (as we explore in Section 2). To illustrate
this local coherence, consider the Goodreads user in Figure 1 who
has provided explicit ratings on similarly themed books Twilight
and Love in the Time of Cholera in a short (locally coherent) time
period. This same user has also provided implicit activity traces
of “reading” the locally coherent books Harry Potter and then The
Lord of the Rings. Items themselves may also be locally coherent as
a burst of interest in a book may lead to similar ratings by a group
of similar users in a short-term window. Hence, our goal in this
paper is to balance this local coherence with long-term evolution
to build better predictive models of user-item ratings.

Considering both viewpoints – that users and items are always
evolving, but that they demonstrate local coherence – we propose
a new Recurrent Recommendation with Local Coherence (RRLC)
framework with the following unique features:

First, we design a sequence-based embedding approach to cap-
ture the local coherence for users, items and rating events from
both explicit and implicit feedback sequences. Second, we propose
to capture the evolution of users and items with parallel recurrent
networks, resulting in a dual factor recommendation model. Finally,
we show how to integrate coherence-enhanced consistent latent
factors and dynamic latent factors to balance short-term changes
with long-term trends, resulting in improved predictive capabilities.
Related Work. Many approaches have been developed to capture
the temporal dynamics of users and items. As one of the pioneer
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Figure 2: Local Coherence: CDF of the TimeGap between con-
secutive activities on Goodreads for book series vs. random
pairs of books. Users are likely to read books from the same
series or similar categories in a short time period.

works, Ding and Li [5] assign different weights for items in Col-
laborative Filtering to highlight the impact of items rated recently.
Baltrunas and Amatriain [1] split a user’s profile into several sub-
profiles to represent the user in different time periods. Based on the
assumption that the taste of users and the perception of items are
drifting over time, Time SVD++ [15] extends SVD++ by introducing
time-dependent latent factors and bias for both users and items.
More recently, in [33], an opportunity model is used to predict the
follow-up purchase for a product at a particular time. With the
pre-trained latent embeddings of items, Guàrdia-Sebaoun et al. [8]
model the movements of users among them. Translation-based rec-
ommendation models [10] focus on next-item recommendation and
model the transition of users among sequences of implicit feedback
events. While these next-item prediction models focus mainly on
capturing the continuous long-term evolution, our RRLC model
aims to incorporate local coherence as well.

Recently, there is growing interest in applying neural models
to recommenders [11, 27, 28]. By introducing nonlinearity, neural-
based methods can outperform conventional collaborative filter-
ing methods, plus RNNs can capture the temporal dynamics of
time-ordered user activities. For example, there are works done
on session-based item recommendation with RNN [12, 25, 29, 31],
in which no user-profiles are available and the system needs to
infer users’ preference with sessions of users’ behavior. In addi-
tion, Latent Cross [2] has been proposed to incorporate contextual
features with RNNs for implicit recommendation over YouTube.
RIB [38] models and captures the effect of sequential micro behav-
iors with RNNs. These works make use of RNNs to capture the
changing patterns for users while keeping items static. To uncover
the dynamics of both items and users, Recurrent Recommender
Network [34] predicts future ratings with separate LSTM models
for users and items, in which the ratings are aggregated by time
granularity before being fed into the networks. A key question is
how to represent users and items at each time step in an RNN as
we explore here.

2 PROBLEM SETTING AND CHALLENGES
We consider a recommendation system in which there are a set of
N users U = {u1, u2,..., uN } and a set of M items C = {i1, i2,..., iM }.
Let ru,i denote the rating user u gave to i and tu,i represent the
time this rating is placed. Our goal is to predict how user u will rate

Figure 3: Local Coherence: Cosine Similarity for Different
User Pairs. Users who rate or read the same book in a shorter
time period are more similar.

item i at time t . In this work, we focus on predictive (real-world)
scenarios, where models are trained on data on or before a certain
timestamp, and then are tested on future data after that timestamp.

To tackle this user-item rating prediction problem, we could rely
on matrix factorization (to capture consistency) and recurrent neu-
ral networks (to capture dynamics). Here, we first show evidence of
local coherence, and then highlight the challenges in these existing
models that motivate our proposed approach.
Evidence of Local Coherence. While many models have been
proposed to handle long-term dynamics, local coherence is an im-
portant factor for recommendation. Here we illustrate with evi-
dence from a sample of 300k users of Goodreads, a long-lasting
book reading community with more than 20 billion actions like
reviews, ratings, and tags [30]. First, we examine the local coher-
ence in user feedback sequences. We assume that books in the same
series are highly similar to each other. In Figure 2, we compare the
average time gap of a user leaving implicit feedback for books in
the same series and for books in a random sample. We find that
the time gap for books in the same series is shorter, meaning that
users are likely to read similar books in a short time period or even
sequentially (demonstrating local coherence). Second, to examine the
local coherence of books’ feedback sequences, we represent books’
status with users who have implicit feedback on them. Thus we
compare the similarity of users pairs who have implicit feedback
on the same book under different time gaps. The three groups are:
(1) “Small Gap” consisting of user pairs in which the users have
left implicit feedback to the same item within 30 days. (2) In “Large
Gap”, each pair consists of the user leaving the first feedback and
the user leaving the last feedback on the same item. (3) In “Random”,
we randomly select users to construct the pairs. We represent each
user with a vector listing all of the user’s ratings. From Figure 3,
we find that users who have read the same book are closer to each
other than the random user pairs. Further, users who rate or read the
book in a shorter time period are more similar. Thus we can conclude
that nearby books in a user’s feedback sequence or nearby users in
a book’s feedback sequence are locally coherent.
Matrix Factorization: Consistency. A natural approach to incor-
porate this local coherence is through Matrix Factorization (MF),
which usually identifies consistent latent factors that can be used to
represent unchanging user preferences and item characteristics. In
neural-based MF models, the latent factors are often derived from



multiplication between a weight matrix and one-hot representation
of the element [11, 35]. We denote this embedding operation as F (·).
Let hu and hi denote the one-hot representations of user u and
item i , the standard latent factors Fu and Fi are determined by:

Fu = F (u) =WU serhu Fi = F (i) =WI temhi (1)

in whichWU ser andWI tem are the embedding weight matrices for
users and items correspondingly. With the standard latent factors,
in a neural-based General Matrix Factorization (GMF) model [11],
the rating r̂iu between u and i is calculated as:

r̂iu = a(vT (Fi ◦ Fu )) (2)

in which the linear activation function a(·) and the edge vector v
transfer the element-wise product Fi ◦ Fu to a 1-dimension output.
Challenge. In practice, user-item interactions are often sparse, so
many previous works aim to expand traditional MF-based meth-
ods to make use of neighboring users or items to overcome this
sparsity. For example, TrustSVD [9] expands to similar users in the
social network. SVD++ [14] treats items rated by the same user as
neighbors.We propose to make use of the local-coherence hidden in
implicit feedback sequences to effectively uncover these neighboring
relationships for overcoming sparsity.
RNN: Dynamics. In contrast to MF, RNNs have shown success in
capturing the dynamics of users and items. Each unit in an RNN has
a hidden state, which can be passed through the network to persist
the information, thus tracking the development of preference in
a recommendation system. There are several variants of RNN. In
this work, we use Gated Recurrent Unit (GRU) [4], which performs
similar to Long Short-Term Memory (LSTM) but is more efficient.

GRU introduces the update gate zt and reset gate rt to control
the long short-term dependencies. LetW,U and b denote the corre-
sponding weights and bias of different gate layers. And д(·) denotes
the activation function such as sigmoid function. The calculation
for each layer of a single unit is shown as below. Let xt denote the
input at time step t . Firstly, with the similar equation, the update
gate zt and reset gate rt will aggregate the information ht−1 from
time t − 1 and the input at t :

zt = дz (Wzxt + Uzht−1 + bz )

rt = дr (Wrxt + Urht−1 + br )
However, they function differently. The update gate zt decides how
much information from previous time steps is going to be retained,
while the reset gate rt determines how much of the previous infor-
mation is to be forgotten with another hidden state h̃t :

h̃t = дh (Whxt + Uh (ht−1 ◦ rt ) + bh )

Lastly, the output ht of the GRU at step t is the weighted sum of
the current and the last hidden state.

ht = zt ⊙ ht−1 + (1 − zt ) ◦ h̃t (3)

To capture the dynamics of both users and items, we can follow
the idea in Recurrent Recommender Networks (RRN) [34] of using
two separate RNNs. While modeling the dynamics of a user or an
item, ratings by the user or ratings for the item can be fed into the
RNN to indicate their status at each time step (see Figure 4).
Challenge. We need to efficiently represent the rating events. In
RRN, for a dataset with M items, at time step t, it uses a rating

Figure 4: A single unit for RNN. An effective representation
of the rating event is needed for the input at each time step.

vector xt ∈ RM as input for the given user, where xt j equals to
rating for item j at time t or equal to zero for no rating. Input to
represent items’ status is constructed in a similar way. Since the
one-hot representation is in high-dimension but extremely sparse,
this method is inefficient and weakly models users (and items).
We propose to make use of the local-coherence within explicit rating
sequences to identify effective representations of rating events.

3 RECURRENT RECOMMENDATIONWITH
LOCAL COHERENCE

With these challenges faced by existing models, we turn in this
section to the design of our Recurrent Recommender with Local
Coherence (RRLC). We propose to integrate both implicit and ex-
plicit feedback together to improve the user-item rating prediction
through careful modeling of local coherence in the following steps:
• First, with local-coherence in implicit feedback sequences, we
can uncover neighboring users and items to enrich the consis-
tent latent factors.

• Second, after extracting the local-coherence from explicit feed-
back sequences, the resulting embeddings can be fed into the
parallel RNNmodels to capture the evolution of users and items.

• Finally, we propose a joint model combining both coherence-
enhanced consistent latent factors and dynamic latent factors
for improved predictive quality.

3.1 Consistent Latent Factors
First, to identify consistent latent factors, we exploit local coherence
to identify neighbors (of users and items).

Coherence-basedNeighbors.Based on local coherence, the books
a user reads in a short time period or users who rate the same book
in a short time period are usually coherent with each other. Hence,
we can follow a word2vec-style approach [3, 7, 22, 23, 32, 36], where
we treat the ordered sequence of implicit feedback of each user
as a “sentence” and aim to find the embedding for each item (or
“word”) in the system, e.g., book, movie. Similarly, we can train on a
sequence of implicit feedback for each item to find representations
for users. With the vector representations, we will be able to find
neighboring items and neighboring users to enhance the general
MF model discussed in Section 2.

We follow the skip-gram model as shown in Figure 5. Given a
time-ordered sequence of items Iu={i1, i2, ...,ik , ...i |Iu | } on which
user u has left implicit feedbacks, if we set the window size to be
j, then the neighboring “words” of ik will be (ik−j ,...ik−1,ik+1, ...,
ik+j ). We construct positive pairs between each feedback and their



Figure 5: The skip-gram framework for item embedding.

neighbors. And we aim to optimize the log probability for them:

l =
∑

−j≤w ≤j,w,0
log P(ik+w |ik ) (4)

in which P(ik+w |ik ) represents the probability that item ik+w and
item ik receive implicit feedback from the same user within a short
time window. To help in speeding up the training process, we also
construct some negative pairs. Then, for each positive neighboring
items pair (ix , iy ), the log probability is calculated as:

P(iy |ix ) = logσ (eTiy eix ) +
∑
iȳ ∈n

logσ (−eTiȳ eix ) (5)

Here σ represents the Sigmoid function and n denotes the set of
negative itemswith ix , which are sampled based on their probability
distribution. eix , eiy and eiȳ represent their embeddings from the
model. We iterate over all the items and “sentences”. We can get the
representation for each user by training on all the implicit feedback
sequences of all items, while getting the representation for each
item by training on implicit feedback sequences of all users.
Neighbor-enhanced Consistent Latent Factors. With the em-
beddings learned by optimizing Equation 5, we will be able to define
neighboring users and neighboring items based on cosine similar-
ity. To counter the sparsity in recommendation, we can take the
characteristics of the similar users and items into consideration. We
denote the set of Ki nearest coherence-based neighbors of item i as
N (i) and Ku nearest coherence-based neighbors of user u as N (u).
To aggregate the features of the neighbors, we feed the standard
latent factors defined with Equation 1 of all items in N (i) and all
users in N (u) to the average-pooling layers.

Fneiдhbori =
1
Ki

∑
ī ∈N (i)

Fī Fneiдhboru =
1
Ku

∑
ū ∈N (u)

Fū (6)

The standard latent factors of i and u can be expanded with the
aggregated neighbors latent factors Fneiдhbori and Fneiдhboru .

L̃i = [Fi Fneiдhbori ]T L̃u = [Fu Fneiдhboru ]T (7)

Finally, we multiply the concatenations L̃u and L̃i with the affine
matrices Ac

user and Ac
item correspondingly to get the neighbor-

enhanced consistent latent representations of user u and item j.

Lcu = Ac
user L̃u Lci = Ac

item L̃i (8)

3.2 Dynamic Latent Factors
To identify dynamic latent factors, we first define a rating embed-
ding based on local coherence.
Rating Embedding with Local Coherence. Different ratings for
the same item reveal different levels of preference. And the rat-
ings from different users may have different meanings. Some rate

Figure 6: Model of Generating Embeddings for book:rating.

Twilight 1 star because they are dissatisfied with the story ending,
while others give it 1 star because they dislike vampires. To define
the representations for these rating events based on local coherence,
similar to Section 3.1, we adopt the idea from word2vec, but treat
different book : ratinд or user : ratinд events as “words”, and the
explicit feedback sequences as “sentences” (see Figure 6). We make
the following modifications on the original word2vec algorithm for
our rating embeddings.

To maintain the short-term coherence, we truncate the rating
history of each user with a sliding window of 365 days. Iterating
over all the users, we can get lots of short-term rating sequences,
which are treated as “sentences” during training. The resulting
embeddings will be representations for different book : ratinд
events.

A neighboring ratings pair reveals both positive and negative
information. Given a pair of neighboring ratings, like Harry Potter
: 5 star and The Lord of the Rings : 4 star, we get a positive signal
for this pair and also a negative signal between Harry Potter : 5 star
and The Lord of the Rings : 1 star. Thus we add additional negative
samples to Equation 5. Then the objective function for the ground
truth neighboring ratings pair (ix : rx , iy : ry ) becomes:

logσ (eTiy :ry eix :rx )+
∑̄
n∈n

logσ (−eTn̄ eix :rx )+
∑

r̄ ∈R/ry

logσ (−eTiy :r̄ eix :rx )

(9)
where R represents the set of all possible rating levels and n rep-
resents the set of negative book : ratinд events sampled based on
their overall probability distribution. After iterating over all the
rating sequences, we can use the resulted embeddings e from the
trained model to represent different book : ratinд events. Generat-
ing embeddings for user : ratinд events is symmetric and similar.
Dynamic Latent Factors with RNN. By optimizing Equation 9,
we will be able to learn the dense representations of rating events



Figure 7: Structure of the Proposed RRLC Model. Separate RNNs are used to capture the dynamics of users and items. Local
coherence extracted from both the implicit and explicit feedbacks can enrich the neighbor-enhanced consistent latent factors
and dynamic latent factors (from RNN). They are combined with the time gap to predict the future ratings.

for the RNN model (in Figure 4). Our task is to predict the rating for
item i by useru at time t . Before time t , useru already left a sequence
of ratings {ru,1, ru,2, ..., ru,k } on items {i1, i2, ..., ik } at correspond-
ing timestamps {tu,1, tu,2, ..., tu,k }. Because the time gap between
two ratings can be a signal on how much the user changes, we
concatenate the time changing information with coherence-based
rating event embedding to construct the input for each GRU unit.
The input at time step tu, j will be represented as:

xu, j,t = [ei j :ru, j ∆tu, j ]T ∆tu, j = tu, j − tu, j−1

where ei j :ru, j is coherence-based embedding for the rating event
and ∆tu, j is the vector representation for time gap generated by the
embedding operation as Equation 1. Output LDu,t from user-RNN
on the sequence of rating events of user u before t will be treated
as the user’s most recent dynamic preference by time t .

Then, for the item i , we will feed the rating history on this item
before time t to the item-RNN. The output LDi,t will be the dynamic
characteristics for it by time t . We feed in the rating history for
user u and item i in parallel to capture their dynamics separately.

3.3 RRLC
In the previous section, we explained how local-coherence can
help us overcome the challenges faced by the MF model and RNN
recommendation model. We can combine the coherence-enhanced
dynamics latent factors and the consistent latent factors for an
improved recommendation system (Figure 7).

Our task is to predict how u will rate i at time t . Based on all
rating events before time t , we get LDu,t and LDi,t representing the
most recent dynamic characteristic of user u and item i . We use
∆tu,p to represent the gap between t and the last rating of u, which
can hint at how much the user has changed from their most recent
status. Similarly, ∆ti,p′ denotes the gap between time t and the last
rating on item i to indicate the possible shifting of i . Combining the
dynamic latent factors, the neighbor-enhanced consistent latent
factors and also ∆T together, the ultimate joint factor vectors of

user u and item i are as below:

Lu,t = [LDu,t ∆tu,p Lcu ]
T Li,t = [LDi,t ∆ti,p′ Lci ]

T

(10)
With the latent representations of both the user and the item, we

conduct element-wise multiplication to simulate their interaction:

Mi,u,t = Li,t ◦ Lu,t

Finally, we apply an edge vector v and the linear activation
function a(·) to convert the result to 1-dimension. The predicted
rating r̂iu from ourRecurrentRecommender with LocalCoherence
(RRLC) at time t will be calculated as:

r̂iu = a(vT (Li,t ◦ Lu,t )

We use Mean Square Error (MSE) between r̂iu and ground truth
rating riu to calculate the loss and optimize the model.

4 EXPERIMENTS
In this section, we evaluate the quality of the proposed recurrent
recommender with local coherence.

4.1 Datasets
We evaluate our models on data (see Table 1) from a book reading
platform (Goodreads) and an e-commerce platform (Amazon). To
test the predictive power of the model, we must avoid the common
random train-test split that can leak information. For example, the
training set may contain information that a user rates Harry Potter
Book 7 5 stars in 2017 and we need to predict how he rated Harry
Potter Book 3 in 2015. Instead, we train the model over training data
before a “cutting edge” date. We use the first rating of each user
after the edge as validation for model tuning. And then we test the
models on all the other ratings after the edge date. The edge date is
set to be Jan 1, 2017 for Goodreads and Jan 1, 2013 for Amazon.
Goodreads.We crawl rating and bookshelves data with the official
APIs of Goodreads. Ratings in Goodreads range from 1 to 5, which
are the explicit signals revealing the preference levels of users and



Dataset #Users #Items #Ratings Sparsity

Goodreads 86,409 179,506 9,696,327 0.0625%
Amazon (Total) 86,426 105,094 2,690,664 0.0296%

Table 1: Overview of Datasets

what we want to predict. The behavior that a user places books
onto a bookshelf is similar to tagging the books with the name
of the bookshelf. We treat this behavior as a user leaving implicit
feedback. There are three default bookshelves of each user named
“read”, “want to read”, and “currently reading”. Users can also create
new bookshelves and name them. The user IDs in Goodreads are
consecutive integer numbers. We randomly select 1 million users
and crawl all the feedback information they have left from the date
registering to January 2018. We filter out users with fewer than 10
ratings and books rated by fewer than 10 users. We treat the “date
updated” as the date they leave the feedback. We keep only users
who are active for more than one year, that is the gap between the
user’s last rating and the first rating should be longer than 365 days.
Amazon. To test whether our model can also be generalized for rec-
ommendation settings in e-commerce, we test over an Amazon rat-
ing dataset [20] (http://snap.stanford.edu/data/web-Amazon.html),
containing about 35 million product reviews from June 1995 to
March 2013. For our experiments, we use the ratings (1 to 5) and
corresponding timestamps. Following the same settings as in previ-
ous work [14, 15], the set of items a user has rated is treated as the
set of items the user has left implicit feedbacks on. We delete users
who are active for less than one year and left no ratings in 2013. We
only keep users who rate more than 10 products and items rated
by more than 10 users.

4.2 Setup
Our experiments were conducted on a desktop machine with Intel
i7-4829K CPU and a 12 GB Nvidia GeForce Titan XP GPU.
Metrics.We adopt Root Mean Square Error (RMSE) to evaluate our
recommender, which is widely used in related work for user-item
rating prediction and recommendation [15, 16, 28, 34]. For item and
user pairs (i,u) in test set S, we denote the ground truth rating as
riu and the predicted rating as ˆriu . Then RMSE is calculated as:

RMSE =

√√
1
|S|

∑
(i,u)∈S

(riu − ˆriu )2

Baselines. We compare our final model with the following neural-
based MF models.
• General Matrix Factorization (GMF). In this basic neural MF
model [11], the prediction is generated by Equation 2.

• Neural Collaborative Filtering (NCF). This method [11] consists
of multi-layer perceptron (MLP) and GMF to model the inter-
action between users and items. It can take advantage of both
deep learning and factorization models.
We also compare RRLCwith some time-dependent or RNN-based

recommendation models:
• Time SVD++. This method [15] extends SVD++ with temporal
information by introducing time changing latent factors and
bias for both users and items.

• Session-Aware Recommendation (User-SAR / Item-SAR). It trains
an RNN on sequences of user activities (sessions) [31]. User-
SAR trains the RNN on users’ explicit feedback sequences but
treats items as static. In Item-SAR, an RNN is trained on items’
explicit feedback sequences while users are static. We use the
coherence-based rating embeddings to train the RNN.

• Recurrent Recommender Networks (RRN). This model [34] trains
RNNs for users and items in parallel but both local-coherence
and implicit feedback are not considered.
With the simplified variants of RRLC below, we can test the

coherence-enriched consistent latent factors and dynamic latent
factors individually.
• GMF with Implicit Coherence (GMF++). This method enriches
GMF with local coherence from implicit feedback. Only the
neighbor-enhanced consistent latent factors Lcu and Lci are con-
sidered in Equation 10 for RRLC.

• Parallel Recurrent Neural Network (P-RNN). In this model, the
prediction is based only on the dynamic latent factors. That is
we ignore Lcu and Lci in Equation 10 for RRLC.

Parameter Settings. For TimeSVD++, we use the implementation
provided in Graphchi [17]. We use grid search for regularization λ
over {1, 10−1, ...10−6} and latent factor size over {20, 50, 100, 150, 200}.
Each time bin contains 30 days.

For all the word2vec-style embedding models (in Section 3.1 and
3.2), we set the window size to be 5 and negative sampling rate to be
5. The dimension for the resulted embedding vectors are all set to
be 100 empirically considering the tradeoff between computational
complexity and performance.

For neural-based models, we implement them in Python and
Keras. We adopt Adam optimizer [13] and mini-batch approach of
gradient descent. The batch size for Goodreads and Amazon data is
5120 and 2048. The dropout rate is set to be 0.3 and 0.4 separately.
We fine-tuned the regularization parameters in the experiments,
and then set it to be λ = 10−5 for Goodreads data and λ = 10−4

for Amazon data. For all the RNN-based models, we choose to use
GRU. The input of each GRU unit is 50-dimension and the output
is also 50-dimension. The sensitivity of timestamps is all set to be
30-days. For fair comparison between the dynamics of users and
items, in models with parallel RNNs, we set the maximum length
of users and items to be the same.

Impact ofNeighbors.With Equation 6, we aggregate the coherence-
based neighboring users or items to enhance the matrix factoriza-
tion. In order to isolate other factors, we test on GMF++ to check
how the neighbors can influence the prediction. In Figure 8, we
show the resulted testing RMSE while changing the values of Ku
and Ki separately. At the starting points, both Ku and Ki are set
to be 1. While increasing the number of neighboring items and
users, the errors decrease first and then become relatively stable. In
addition, the model is more sensitive to the change of neighboring
items. In the following experiments, we take top-10 neighbors while
generating consistent latent factors in Equation 7 for both stability
and efficiency.



Figure 8: RMSE w.r.t number of neighbors in GMF++. While
involving more neighboring items and users in Equation 6,
the error decreases and then becomes relatively stable.

Goodreads Amazon

GMF 0.8638 1.0716
NCF 0.8461 1.0298
GMF++ 0.8365 1.0286
RRN 0.8545 1.0657
TimeSVD++ 0.8455 1.0471
User-SAR 0.8295 1.0505
Item-SAR 0.8547 1.0476
P-RNN 0.8209 1.0282
RRLC 0.8039 1.0114

Table 2: RMSE for different methods

4.3 Evaluating RRLC
We begin our experiments by comparing RRLC with all of the
baselines for both Goodreads and Amazon in Table 2. We see that
RRLC achieves the best (lowest) RMSE on both datasets. Compared
with TimeSVD++, which also takes implicit feedback and tempo-
ral information into consideration, our model results in a 4.92%
improvement on Goodreads and 3.41% improvement on Amazon.
The combination of consistent latent factors (GMF++) and dynamic
latent factors (P-RNN) in our model can improve GMF++ by 3.90%
and 1.67%, and improve P-RNN by 2.07% and 1.63% for Goodreads
and Amazon. This indicates the effectiveness of RRLC’s careful
integration of both implicit and explicit feedback.
ComparisonwithGMF, NCF andGMF++.GMF++ extends GMF
with local coherence-defined neighbors. Comparing GMF++ with
GMF, we can see an improvement of 3.16% and 4.01 % for Goodreads
and Amazon. Since besides the particular user and item, their local
coherence-defined neighbors are also updated at the same time
during training, GMF++ converges faster with fewer iterations. We
find that GMF++ can even outperform NCF, which makes use of the
MLP component to take advantage of deep learning. In addition, we
find that the improvement on the sparser dataset (Amazon) is larger
than in Goodreads. Thus we can conclude that the local coherence
based on implicit feedback can help to improve the prediction of
user-item ratings and it can help overcome the sparsity of the
traditional MF models.
Comparison with RRN. Implicit feedback information and local-
coherence is not considered in the baseline RRN model. We can see
that RRLC brings in a 5.92% improvement for Goodreads and a 5.10%
improvement for Amazon comparing with RRN. This shows the

importance of applying the rating embedding from local coherence
to capture the dynamics of users and items.
Comparison with User-SAR, Item-SAR and P-RNN. All these
methods use our local coherence-based embedding as input to RNN.
With the promising results from all of them, we find that the rating
embedding approach proposed in our RRLC framework can be
effectively generalized to other RNN-based recommenders. We find
that User-SAR works better than Item-SAR in Goodreads. But they
perform almost the same in Amazon. The reason may be that the
users change more frequently than items in Goodreads and thus
capturing the dynamic of users is more important. In Amazon,
users and items appear to change at a similar rate. P-RNN which
treats both users and items as dynamic can improve User-SAR and
Item-SAR. Thus we can conclude that in those communities, it is
necessary to model the evolution for both users and items.

4.4 Visualization of Local Coherence
Complementing this evaluation, we visualize here the local coher-
ence and rating embeddings that are important for RRLC.
Coherence-based Neighbors. With the local coherence in im-
plicit feedbacks of users, we get the vector representations for
books on Goodreads. The result of the top-100 (most popular in
Goodreads) is shown in Figure 9. We can find the series of Harry
Potter are close to each other on the top-left corner. Classic romantic
books fall on the top-right corner.
Rating Embedding. To illustrate the coherence-based rating em-
bedding, we calculate the cosine similarity between rating of 1 star
and all the other ratings (2,3,4,5) for the top-100 books in Goodreads.
The results are summarized in Figure 10. We find that on average,
for a certain item, rating 1 star is close to 2 star but less similar
to other ratings, especially 5 star, showing that the embedding (in
Section 3.2) learns the difference between extreme ratings.

Figure 10: Similarity between different rating levels.

4.5 Time Effect and Dynamics
In this section, we investigate whether more rating events can
provide better results or are the recent events enough for us to
capture the dynamics of users and items with RNNs? And whether
our model captures temporal dynamics well?
Length of Training Records. To examine how the length of his-
tory ratings will influence the model training, we change the maxi-
mum length of the rating sequence and evaluate the performance of
the model. We show the result of our experiment on Goodreads in
Figure 11. We find that when we train on longer rating sequences,



Figure 9: 2-D visualization (with t-SNE [19]) of books based on local coherence. Books from the same series or similar categories
are close to each other (e.g. Harry Potter at the top-left corner, classic romantic books at the top-right corner).

because more information is retained, the RMSE is decreasing. How-
ever, if the length is set to be too large, the performance starts to
get worse. Because the data is sparse, the majority of users and
items of Goodreads have fewer than 100 ratings, so padding the
training introduces noise, leading to worse performance. Similar
patterns also appears in the Amazon data.
Length of Testing Records. Then we filter out the test data con-
taining users with more than 100 ratings and items with more than
100 ratings in Goodreads. We test our model on this set by varying
the length of rating records. From the result in Figure 11, even
though both the users and items have more than 100 ratings, RMSE
decreases sharply when we vary the length from 10 to 30 and tends
to converge after 50. There is similar pattern with the Amazon
dataset. It indicates that the dynamic status of users and items are
more sensitive to recent ratings.

Figure 11: RMSE w.r.t Length of Training or Testing Records

Dynamics in Goodreads. To explore how our model captures the
dynamics of users and items, we pick out three books which were
adapted into a movie in 2016 and also randomly select 10% of the
users. The users may or may not leave any feedback to the movies.
We use our model to predict how those users would rate the movies
from Jan 2016 to Aug 2018 and the result is summarized in Figure
12. We find that around the time when a book adoption movie was
released, the rating for the particular book tends to increase. The
reason may be that people were influenced by the movie and were
more likely to give higher ratings. However, 2 to 3 months later, the
ratings for those books fades as this enthusiasm begins to wane.

Figure 12: Change of ratings predicted by RRLC for books
which are turned into movies. Around the time when the
book-adapted movie was released, the rating for the partic-
ular book tends to increase. The rating fades 2 to 3 months
later as the enthusiasm begins to wane.

4.6 Cold Start
The cold-start problem commonly happens for recommenders in
which new users or new items have only limited feedback to train
a model. To examine how our model performs in the cold-start
scenario, we compare it with NCF and TimeSVD++, which perform



Goodreads TimeSVD++ NCF RRLC

New User 0.8683 0.8472 0.8147
New Item 0.8792 0.8679 0.8367

Amazon TimeSVD++ NCF RRLC

New User 1.0920 1.0525 1.0310
New Item 1.1244 1.0750 1.0567

Table 3: RMSE under Cold-Start Setting.

the best among all the baselines without local-coherence. We filter
out users who have fewer than 20 ratings (new users) and items
which have been rated by fewer than 20 users (new items) on
Goodreads and Amazon. From Table 3, we can see that RRLC still
outperforms other methods under the cold-start setting. For new
users, our model improves TimeSVD++ by 6.17% and 5.59% on
Goodreads and Amazon, which are larger than those under the
warm-start setting. For new items, our model can gain a similar
improvement. These results illustrate that local coherence can help
to keep a robust improvement even in a sparser situation.

5 CONCLUSION
We have proposed and evaluated a new RNN-based recommen-
dater enhanced with local coherence over both implicit and explicit
feedback sequences. Based on the experiments on both Goodreads
and Amazon, we find that our model outperforms state-of-the-art
models in RMSE, and in the cold-start setting. In the future, we
will explore social networks in those long-lasting communities to
see how users may be influenced by their friends and followees.
In addition, we would like to extend our model to support more
interaction types and in analyzing review text to track the evolution
and consistency of users and items.
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