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ABSTRACT
Tensor completion has become an e�ective computational tool in
many real-world data-driven applications. Beyond traditional static
se�ing, with the increasing popularity of high velocity streaming
data, it requires e�cient online processing without reconstructing
the whole model from scratch. Existing work on streaming tensor
completion is usually built upon the assumption that tensors only
grow in one mode. Unfortunately, the assumption does not hold in
many real-world situations in which tensors may grow in multiple
modes, i.e., multi-aspect streaming tensors. E�ciently modeling
and completing these incremental tensors without sacri�cing its
e�ectiveness remains a challenging task due to the uncertainty of
tensor mode changes and complex data structure of multi-aspect
streaming tensors. To bridge this gap, we propose a Multi-Aspect
Streaming Tensor completion framework (MAST) based on CAN-
DECOMP/PARAFAC (CP) decomposition to track the subspace of
general incremental tensors for completion. In addition, we inves-
tigate a special situation where time is one mode of the tensors,
and leverage its extra structure information to improve the general
framework towards higher e�ectiveness. Experimental results on
four datasets collected from various real-world applications demon-
strate the e�ectiveness and e�ciency of the proposed framework.

1 INTRODUCTION
Tensors are multidimensional or N -way extensions of matrices.
Given the increasing popularity of multi-modal information, data
instances are o�en indexed with multiple variables and naturally
derive high-order tensor objects [20]. Tensor completion, which
aims at �lling the missing entries of partially observed tensors,
has become an e�ective computational tool in many real-world
data mining applications such as social network analysis [7, 11],
recommender systems [25, 26], image recovery [17], and clinical
data analysis [9, 36].

Beyond traditional static se�ing, real-world applications are
o�en imbued with high velocity streaming data. For example, due to
the popularity of online information systems, large amounts of new
data are produced rapidly. Facebook users update 684,478 messages
and Twi�er users post over 100,000 tweets every single minute.1
With the large number of newly created data instances and features,
1h�p://mashable.com/2012/06/22/data-created-every-minute/
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Figure 1: An illustration of traditional streaming tensors
and multi-aspect streaming tensors.

model reconstruction from scratch is computationally expensive
due to high time and space complexity [8]. �e fast-evolving data
motivates us to investigate dynamic tensor completion methods to
timely model and incorporate newly emerging pa�erns.

Existing work has been conducted on developing dynamic ten-
sor completion methods based on a widely used assumption that
tensors will be developed in one mode (or dimension). Following
this assumption, online completion methods have been proposed
based on CP decomposition [15, 20]. �e key idea is that, by iter-
atively updating the decompositions of static modes with partial
decomposition of the incremental mode, the developed methods
could e�ciently track the low-rank subspace over time, and achieve
comparable performance with batch learning methods for data im-
putation. �e developed methods have shown e�ectiveness in
dynamic data analysis applications such as video streams [15].

Unfortunately, in many real-world applications, a tensor may
develop in multiple dimensions and traditional assumption does not
hold. For example, given a dynamic tensor in recommender systems
structured as user ×movie × actor , the number of registered users,
movies, and actors may all increase as time goes. �is incremental
property gives rise to a new streaming pa�ern, which we call multi-
aspect streaming. Figure 1 depicts traditional streaming tensors
and its generalized multi-aspect streaming tensors counterpart. As
we can observe from the �gure, from time t to t + 2, each mode of
the multi-aspect streaming tensor increases while only one mode of
the streaming tensor grows. To deal with the tensors with distinct
data characteristics, in this paper, we propose to study the novel
problem of e�ective multi-aspect streaming tensor completion.

Multi-aspect streaming tensor completion is a challenging task
due to the following reasons. First, coordinating multidimensional
dynamics is di�cult given the uncertainty of tensor mode changes.
It is too arbitrary to �x partial structure of a certain mode without
accessing the data for an update. Second, the incremental part of
multi-aspect streaming data may not be a complete tensor. �is is
di�erent from streaming tensors in which the incremental part is
well structured and can be directly decomposed. �ird, the multi-
aspect streaming pa�ern leads to much higher time and space
complexity. Although some distributed and parallel algorithms
could partially address the scalability issue [4, 24, 28], the problem
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of non-adaptability still exists, meaning that the completion process
of new data cannot directly bene�t from the existing model without
complete model reconstruction.

To tackle the aforementioned challenges, in this paper, we pro-
pose to investigate how to complete multi-aspect streaming tensors
based on CP decomposition. Speci�cally, we mainly study: (1) How
to build up an updatable framework based on CP decomposition
for e�ciently modeling multi-aspect streaming tensors? (2) How
to e�ectively capture the low-rank subspace for completion pur-
pose? �rough answering the two questions, we propose a general
Multi-Aspect Streaming Tensor completion algorithm (MAST). �e
main contributions are summarized as follows:

• Formally de�ne the problem of multi-aspect streaming
tensor completion;

• Propose a CP-based general algorithm MAST for multi-
aspect streaming tensor completion;

• Propose a modi�ed model T-MAST based on MAST for
temporal multi-aspect streaming tensor completion, which
is a special case of the general problem; and

• Empirically validate the e�ectiveness and e�ciency of the
proposed models on four real-world datasets with di�erent
real-world applications.

2 PRELIMINARIES
Notations and de�nitions in this paper are presented as follows.
Notations: An N th-order tensor is an N -way array, also known
as N -dimensional or N -mode tensor. In this paper, tensors, matri-
ces, vectors are denoted by Euler script le�ers (e.g., XXX), boldface
uppercase le�ers (e.g., A), and boldface lowercase le�ers (e.g., a), re-
spectively. An entry of tensor XXX indexed by [it1, . . . , i

t
N ] is denoted

as XXX[it1, . . . , i
t
N ]. We use A−1, A>, and ‖A‖F to denote the trans-

pose, inverse, and Frobenius norm of matrix A, respectively. Let
~·� denote the Kruskal operator. Notations � and ~ are used to rep-
resent the Khatri-Rao product and Hadamard product, respectively.
�e main symbols and operations are listed in Table 1.
De�nition 1 (CP Decomposition). Given an N th-order tensorXXX,
its CP decomposition is an approximation of N loading matrices
An ∈ R

In×R ,n = 1, . . . ,N , such that,

XXX ≈ ~A1, . . . ,AN �, (1)

where R is a positive integer denoting an upper bound of the rank
of XXX. We can further unfold XXX along its nth mode as follows,

XXX
unfold
=⇒ X(n) ≈ An (AN � . . .An+1 � An−1 . . . � A1)

>

= An[(Ak )
�k,n ]>.

(2)

De�nition 2 (Coupled Tensor). If two tensors share one or more
modes, then they are coupled with each other and called coupled
tensors. For example, in recommender systems, two tensors struc-
tured asuser×movie×time andmovie×actor×director are coupled
on themovie mode.
De�nition 3 (Tensor Sequence). A sequence of N th-order ten-
sorsXXX(1) , . . . ,XXX(T ) , . . . is called a tensor sequence denoted as {XXX(T ) },
where each XXX(T ) ∈ RI

T
1 ×I

T
2 ×...×I

T
N ,T ∈ Z+.

De�nition 4 (Multi-aspect streaming Tensor Sequence). A se-
quence of N th-order tensors {XXX(T ) } is called multi-aspect streaming

Notations De�nitions
XXX ∈ RI1×I2×. . .×IN N th-order tensor

X(n ) ∈ R
In×(ΠNi,n Ii ) Mode-n unfolding matrix of tensor XXX
~ ·� Kruskal operator, e.g., XXX ≈ ~A1, . . . , AN �

� Khatri-Rao product
~ Hadamard product

(Ak )
�k,n AN � . . . � An+1 � An−1 � . . . � A1

(Ak )
~k,n AN ~ . . . ~ An+1 ~ An−1 ~ . . . ~ A1

Table 1: Main symbols and operations.

tensor sequence if for anyT ∈ Z+,XXX(T−1) is the sub-tensor ofXXX(T ) ,
denoted as XXX(T−1) j XXX(T ) . T increases with time, and XXX(T ) is the
snapshot tensor of this sequence taken at time T .

In fact, any tensor sequence {XXX(T ) } can be modeled as a multi-
aspect streaming one by adding an additional mode, i.e., de�ning
an (N + 1)th-order new tensor sequence {YYY(T ) }, where YYY(T ) ∈

RJ
T
1 ×J

T
2 ×...×J

T
N ×T , Jn = maxt {I tn }. Entries of YYY(T ) are de�ned as:

YYY(T )[it1, . . . , i
t
N , t] =




XXX(t )[it1, . . . , i
t
N ], if 1 ≤ itn ≤ I tN ,

0, otherwise,
(3)

where 1 ≤ t ≤ T , and then YYY(T−1) j YYY(T ) is satis�ed.
Based on the terminologies, the multi-aspect streaming tensor

completion problem can be formally de�ned as follows.
Given a multi-aspect streaming tensor sequence {XXX(T ) } with missing
entries, we aim at recovering the missing data in current snapshot
XXX(T ) . SinceXXX(T−1) j XXX(T ) , and we have recoveredXXX(T−1) in pre-
vious time step, the problem is equivalent to completing the relative
complement of XXX(T−1) inXXX(T ) which is denoted asXXX(T )\XXX(T−1) .

3 MULTI-ASPECT STREAMING TENSOR
COMPLETION

In this section, we introduce the proposed framework MAST to
solve the general multi-aspect streaming completion problem. By
taking advantage of the learned model in previous time step, MAST
can accelerate the completion process while preserving compa-
rable completion accuracy to traditional batch learning methods.
To achieve this, we begin with designing a dynamic tensor de-
composition (DTD) algorithm to model the incremental pa�ern
of multi-aspect streaming tensor sequence and track its low-rank
subspace. �en, based on the DTD algorithm, we conduct the com-
pletion task via the nuclear norm constraint. At the end, we discuss
a special case in which “time” is one mode of the tensors and further
improve our framework for a be�er completion e�ectiveness.

3.1 Dynamic Tensor Decomposition
CP decomposition is a widely used tool for tensor completion
[11, 17, 18]. By decomposing a tensor into multiple low-rank ma-
trices using its observed entries, the underlying low-rank subspace
structure can be tracked for �lling the missing entries. �ere are
two intuitive solutions for our main problem. At each time step, we
can either reconstruct the batch CP model for the entire snapshot,
or decompose XXX(T )\XXX(T−1) only. �e former solution is both time
and space consuming since the snapshots are increasing dramati-
cally. In contrast, the la�er fails to exploit the information inXXX(T−1)

to help achieve desirable imputation.
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Figure 2: An illustration of the proposed dynamic tensor decomposition model DTD.

To accelerate completion process while preserving e�ectiveness,
a dynamic CP decomposition method DTD is proposed. It is based
on two ideas. First, CP decomposition enjoys the good partitioning
property which means if XXX(T ) is approximated by ~A1, . . . ,AN �,
then its sub-tensorXXX(T−1) could be approximated by ~Ã1, . . . , ÃN �

where Ãn is a sub-matrix of An , for n = 1, . . . ,N . �is enables
us to partition the current snapshot XXX(T ) to take advantage of the
foregone acquired decomposition of its sub-tensor XXX(T−1) . Second,
partial calculation complexity of decomposingXXX(T ) can be reduced
one order lower by substituting acquired decompositions forXXX(T−1) .
�ese two ideas are separately used in following two steps of our
proposed method for information preservation and optimization
acceleration, respectively.

3.1.1 Tensor partition and substitution. For the ease of presenta-
tion, we use a third-order tensor with steady growth on all three
modes as an example. It is straightforward to extend to general N th-
order tensors. We use X̃̃X̃X ∈ RI1×I2×I3 andXXX ∈ R(I1+d1 )×(I2+d2 )×(I3+d3 )

to represent two consecutive snapshotsXXX(T−1) andXXX(T ) , (T ∈ Z+),
respectively. X̃̃X̃X = 0 if T = 0. We now introduce the details.

Let A ∈ R(I1+d1 )×R ,B ∈ R(I2+d2 )×R ,C ∈ R(I3+d3 )×R be the CP
factor matrices of XXX, the CP loss function under gaussian noise is:

LLL(A,B,C) = ‖XXX − ~A,B,C�‖2F . (4)

A�er partitioning XXX into eight sub-tensors according to X̃̃X̃X, we
use a binary tuple (i, j,k ) ∈ {0, 1}3 , Θ to denote these eight
sub-tensors as shown in Figure 2, with X̃̃X̃X = XXX0,0,0. Each pair of
adjacent sub-tensors are coupled with each other. Based on the
partitioning property of CP decomposition, each sub-tensor of XXX
could also be approximated via the sub-matrices of A, B and C,
i.e., XXXi, j,k ≈ ~Ai ,Bj ,Ck �. A0 ∈ RI1×R and A1 ∈ Rd1×R are the
partitioned sub-matrices of A, i.e., A> = [A>0 ,A

>
1 ]. Similarly to Bj

and Ck . �en Equation (4) could be rewri�en as follows.
LLL(A,B,C) =

∑
(i, j,k )∈Θ

‖XXXi, j,k − ~Ai ,Bj ,Ck �‖
2
F

= ‖XXX0,0,0 − ~A0,B0,C0�‖
2
F + LLL0,

(5)

where LLL0 ,
∑

(i, j,k )∈Θ\(0,0,0) ‖XXX
i, j,k − ~Ai ,Bj ,Ck �‖

2
F .

Let ~Ã, B̃, C̃� denote the CP decomposition of X̃̃X̃X obtained at time
T − 1. It represents the low-rank subspace which preserves the in-
formation of former snapshot. Based on this, we can approximately
replace XXX0,0,0 by ~Ã, B̃, C̃� and get the loss function as follows:

LLL(A,B,C) ≈ µ‖~Ã, B̃, C̃� − ~A0,B0,C0�‖
2
F + LLL0, (6)

where weight µ ∈ [0, 1] is the forge�ing factor [20] used to alleviate
the in�uence of the previous decomposition error. If µ = 1, then
~Ã, B̃, C̃� is considered as a perfect decomposition of X̃̃X̃X. If µ = 0,
then the former-step information is considered as independent
to current decomposition. As our �nal goal is to complete this
tensor sequence, this inequality (0 < µ < 1) is quite e�ective to
alleviate the substitution errors especially when the percentage of
missing data is high. In other words, this forge�ing factor degrades
the status of old data and upgrades the power of newly arrived
data, so that we can more e�ectively incorporate newly emerged
information to update the foregone decomposition and ensure the
substitution error not continuously accumulated.

3.1.2 Alternating least square updating. �e optimization is based
on alternating least squares (ALS), for its fast and easy implemen-
tation with high accuracy [16, 38]. �e update rule for A0 is:
∂LLL

∂A0
= − 2µ (Ã(C̃ � B̃)> (C0 � B0) − A0 (C0 � B0)

> (C0 � B0))

− 2
∑

(j,k ),(0,0)
(X0, j,k

(1) (Ck � Bj ) − A0 (Ck � Bj )
> (Ck � Bj )),

A0 ←
µÃ

[
(C̃>C0) ~ (B̃>B0)

]
+

∑
(j,k ),(0,0) X0, j,k

(1) (Ck � Bj )

(
∑1
k=0 C>k Ck ) ~ (

∑1
j=0 B>j Bj ) − (1 − µ ) (C>0 C0) ~ (B>0 B0)

.

(7)
�e main di�erence between the above update rule and static CP-

ALS method is the �rst term of the numerator. Following the prop-
erty of Khatri-Rao product, the space and time complexity of calcu-
lating the Khatri-Rao products � in equation (C̃� B̃)> (C0�B0) can
be reduced using the element-wise Hadamard product, i.e., C̃>C0 ~
B̃>B0. Hence, by substituting XXX0,0,0 with ~Ã, B̃, C̃�, this term is
changed from X0,0,0

(1) (C0�B0) to µÃ
[
(C̃>C0) ~ (B̃>B0)

]
leading to

a reduction of time complexity fromO (RI1I2I3) toO (R2 (I1+I2+I3)).
�e update rules of the incremental matrix A1 can be derived as:

A1 ←

∑
j,k X1, j,k

(1) (Ck � Bj )

(
∑1
k=0 C>k Ck ) ~ (

∑1
j=0 B>j Bj )

. (8)

Similar update rules for matrices B0, C0, B1, and C1 can be easily
derived. �e proposed DTD model enjoys several nice properties.
First, it is capable of handling any-mode-change dynamic pa�ern.
Second, it has a fast updating process for the purpose of scalability.
�ird, it well preserves the information acquired from old data as
well as captures the new data characteristics through the updated
process. Besides, the idea of partitioning also bene�ts methods in
solving large-scale tensor decomposition problems [4, 24, 28].



3.2 Proposed Completion Framework - MAST
�e proposed DTD method balances the trade-o� between e�-
ciency and e�ectiveness in modeling the multi-aspect streaming
pa�ern. As CP decomposition is an e�ective way in addressing
static tensor completion problem, the DTD model also paves the
way of solving the multi-aspect streaming tensor completion prob-
lem. In this section, we show how MAST is applied to this problem.
We start with introducing the nuclear norm based method on low-
rank tensor completion problem in batch se�ing and then combine
it with the DTD model for completing multi-aspect streaming ten-
sor sequences.

3.2.1 Low-rank tensor completion (LRTC). Generalized from ma-
trix completion problem, the LRTC problem can be formulated as
an equivalent rank-minimization problem as follows [9]:

minimize
XXX

rank (XXX) subject to ΩΩΩ ~XXX = TTT, (9)

whereXXX denotes the complete tensor, TTT denotes the practical obser-
vations ofXXX. ΩΩΩ is a binary tensor with the same size asXXX indicating
whether each corresponding entry in XXX is observed or not.

As calculating the tensor rank is an NP-hard problem [12], one
way is to relax the tensor rank by replacing it with the summation
of the nuclear norm of its factorized matrices [17, 18]. �e modi�ed
relaxation objective function is described as follows:

minimize
XXX,A1,A2, ...,AN

N∑
n=1

αn ‖An ‖∗ + ‖XXX − ~A1,A2, . . . ,AN �‖

subject to ΩΩΩ ~XXX = TTT,

(10)

where {αn } are trade-o�s to balance the signi�cance of each mode.

3.2.2 Combine LRTC with DTD. Since multi-aspect streaming
tensor completion problem can be treated as a dynamic LRTC prob-
lem, a natural solution is to combine DTD with LRTC approach. By
extending Equation (6) to N th-order tensor and combining it with
Equation (10), the proposed loss function forN th-order multi-aspect
streaming tensor completion problem is formulated as:

LLL =
∑

(i1, . . .,iN )∈ΘN \{0}N
‖XXX(i1, . . .,iN ) − ~A(i1 )

1 , . . . , A(iN )
N � ‖2F

+

N∑
n=1

αn ‖An ‖∗ + µ ‖~Ã1, . . . , ÃN � − ~A
(0)
1 , . . . , A(0)

N � ‖
2
F

, LLL1 +
N∑
n=1

αn ‖An ‖∗,

(11)

where An =



A(0)
n

A(1)
n



∈ RIn×R

∈ Rdn×R
. ~Ã1, . . . , ÃN � is the decomposition of

recovered tensor X̃̃X̃X in the previous step, and ΘN = {0, 1}N .
A tensor-based Alternating Direction Method of Multipliers

(ADMM) algorithm is employed to solve this optimization problem.
ADMM is an e�cient optimization scheme for accommodating vari-
ous constraints [14, 23]. Following the similar optimization scheme

described in [11, 18], we induce auxiliary variables Zn =


Z(0)
n

Z(1)
n


∈ RIn×R

∈ Rdn×R
, n = 1, . . . , N into Equation (11), then the corresponding

partial augmented Lagrangian function is:

Algorithm 1: �e proposed framework MAST
Input: TTT, Ω, {Ãn }

N
n=1, R, {αn }Nn=1, µ, η, ηmax, ρ, tol ;

Output: XXX, {An }
N
n=1

1 Initialize A(0)
n = Ãn , A(1)

n = rand (dn,R), Zn = Yn = 0;
2 repeat
3 η = min{η ∗ ρ,ηmax} (accelerate optimization process);
4 for n = 1 : N do
5 Update A(0)

n and A(1)
n using Equation (13);

6 Update XXX using Equation (15);
7 for n = 1 : N do
8 Update Zn using Equation (14);
9 Update Yn using Equation (16);

10 until ‖XXXpre −XXX‖F/‖XXXpre‖F < tol ;

minimize
XXX, {An }, {Zn }, {Yn }

LLL1 +
N∑
n=1

(
αn ‖Zn ‖∗+ < Yn, Zn − An > +

η
2 ‖Zn − An ‖

2
F

)
subject to ΩΩΩ ~XXX = TTT, Zn = An, n = 1, 2, . . . , N ,

(12)

where Yn =


Y(0)
n

Y(1)
n



∈ RIn×R

∈ Rdn×R
is the Lagrange multiplier matrix, η > 0

is a penalty parameter. Based on Equations (7) and (8), by calculat-
ing the derivatives of matrices {A(0)

n } and {A(1)
n }(n = 1, 2, . . . ,N ),

we can get their update rules as follows:

A(0)
n ←

µÃn

[
(Ã>kA(0)

k )
~k,n

]
+

∑
i∈S0

n
Xi
(n ) (A

(ik )
k )�k,n + ηZ(0)

n + Y(0)
n

(A(0)
k

>
A(0)
k + A(1)

k

>
A(1)
k )
~k,n

− (1 − µ ) (A(0)
k

>
A(0)
k )
~k,n

+ ηIR
,

A(1)
n ←

∑
i∈S1

n
Xi
(n ) (A

(ik )
k )�k,n + ηZ(1)

n + Y(1)
n

(A(0)
k

>
A(0)
k + A(1)

k

>
A(1)
k )
~k,n

+ ηIR
, (13)

where S0
n = {(s1, . . . , sN ) |

∑N
k=1 sk , 0, sk ∈ {0, 1}, sn = 0} and

S1
n = {(s1, . . . , sN ) |∀ k ∈ {1, . . . ,N } sk ∈ {0, 1}, sn = 1}.

In each iteration, the auxiliary matrices {Zn } has a closed-form
solution as follows[6]:

Zn = SVT αn
η
(An −

Yn
η

), n = 1, 2, . . . ,N . (14)

where SVT αn
η

is the singular value thresholding operator [6] de-
�ned as SVTδ (A) = U(diaд{σi−δ })+V>, where U(diaд{σi }1≤i≤r )V>

is the singular value decomposition of matrix A. For any matrix X,
X+ = max{X, 0}, where max{·, ·} is an element-wise operator.

To mask the missing values and iteratively completing tensor XXX,
XXX is updated as follows:

XXX← TTT + Ωc ~ ~A1,A2, . . . ,AN �. (15)

Finally, Yn is updated as follows:
Yn ← Yn + η(Zn − An ), n = 1, 2, . . . ,N . (16)

By using this optimization scheme, we can get the decomposi-
tion matrices and completed tensor XXX simultaneous. �e entire
optimization process of MAST is summarized in Algorithm 1. �e
termination criterion is that the relative changing of tensor XXX in
two contiguous iterations is smaller than the tolerance.
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Figure 3: Degeneration of multi-aspect streaming tensor.

3.3 Temporal Multi-Aspect Streaming Tensor
Completion

In some real-world applications, time is one mode of each tensor
in a multi-aspect streaming tensor sequence. Take a recommender
system structured as a user ×movie × time tensor as an example. If
a new user or a new item joins the system at timeT , their past-time
information would not exist during t ∈ (0,T ). �is information
shortage renders the snapshot tensor degenerated to a ladder-type
structure shown in Figure 3. If we treat this structure as a combi-
nation of slices {XXX(T ) }, then the original multi-aspect streaming
tensor sequence can be reconstructed using the incremental tensor
slices with zero-paddings. We call these slices {XXX(T ) } temporal
multi-aspect streaming tensor sequence. �is special structure pro-
vides us a way to improve MAST model for a be�er e�ectiveness
by alleviating the quantity of substitution on missing entries.

3.3.1 Connection of Di�erent Dynamic Pa�erns. Figure 3 depicts
the relationships between di�erent dynamic pa�erns. �e temporal
multi-aspect steaming is a special scenario. If the sizes of the tensor
slices are the same at each time step, it will further degenerate into
the traditional streaming tensor situation. Although the general
framework MAST can be directly applied to the temporal case, the
ladder-type structure provides extra information that could help.

We propose to reduce the quantity of substitution on missing
entries to improve one of the key manipulations of MAST, i.e.,
tensor substitution. Di�erent from DTD, because of data missing,
the substitution of XXX(T−1) at time T is composed of two parts: (1)
using former-step predicted values to impute the missing entries; (2)
using ��ing values to substitute the existed entries. �e substitution
of existed part o�en has much smaller error and usually provides
more convincing information than the prediction of missing part.
As the degeneration process naturally centralizes the existed data
in the ladder-type object, all of the extra parts can be treat as
missing data and their substitution errors are easy to reduce. �us,
besides forge�ing factor µ, this special structure paves another
way to reduce the accumulated error in MAST framework towards
e�ectively capturing fast and dramatically changed subspaces.

3.3.2 Temporal Multi-Aspect Streaming CP Completion Algo-
rithm. Inspired by the coupled tensor factorization [2], we tailor
the general MAST framework and use Figure 4 to illustrate the
main idea of the variation model T-MAST. Let XXX(T ) denote the
new tensor slice arrives at time T . TTT (T ) represents its observed
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Figure 4: An illustration of T-MAST comparing with MAST.

T − 1. We use A(T )
n ,n = 1, . . . ,N to represent the incremental

part of the decomposition matrix on mode-n at time T and use
A(t )
n (1 ≤ t ≤ T − 1) to represent the updated result of Ã(t )

n at cur-
rent timestamp T . At each time step T , the problem is converted to
how to recover XXX(T ) based on the decompositions of former recov-
ered slices {XXX(t ) }(1≤t ≤T−1) and get the updated CP decomposition
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Comparing to MAST, which requires zero-paddings to rede�ne a
multi-aspect sequence shown in Figure 4, for T-MAST, rather than
reconstructing it as a whole tensor, we directly treat this ladder type
object as coupled tensor slices and use the decomposition of each
slice to substitute it. Since newly added zero-padding tensors and
the block operation of XXX(T ) has no in�uence on the current update,
the di�erence between MAST and T-MAST models is how we substi-
tute the former existed slices. Owing to the slice-based substitution
in T-MAST model, the substitution of the former zero-padding parts
can be omi�ed compared with the tensor-based substitution used
in MAST model. �us, it successfully reduces the proportion of
missing data substitution as described before. �e modi�ed loss
function is de�ned as follows:
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where An =



A(1)
n
.
.
.

A(T )
n


, n = 1, . . . ,N .

3.3.3 Optimization Scheme. By comparing Equation (17) with
Equation (11), we can easily �nd that their �rst and second terms are
correspondingly equivalent when dealing with the temporal-mode-
involved scenario. �e di�erent is the last term. Hence, we can still
use ADMM algorithm to solve the above optimization problem and
the only di�erence lies in the optimization of {An }n . For the sake
of brevity, we omit other repetitive derivation and only focus on
the update of matrices {A(t )

n }t,n . For each non-temporal mode n =



2, . . . ,N , we calculate the partial derivatives of matrices {A(t )
n }, t =

1, ...,T , and de�ne intermediate recursive matrix sequences {B(t )
n },

{D(t )
n }, {P

(t )
n }, and {Q(t )

n } to update them in each iteration. Assume
I
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Based on {P(t )
n } and {Q(t )

n }, if we de�ne D(T+1)
n = 0, µT = 1, and

B(T+1)
n = 0, we have:
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�en we can get the update rules for {A(t )
n } as follows:

A(t )
n ←

C(t )
n + Ã(t )

n D(t )
n + ηZ(t )

n + Y(t )
n

B(t )
n + ηIR

, t = T , . . . , 1, n = 2, . . . ,N ,

(18)
where {Y(t )

n }t,n are the Lagrange matrix multipliers. {C(t )
n }t are

the block sub-matrices of Cn , X(T )
(n )

[
A(T )

1 �
(
Ak

)�k,1,n
]

based on

the size of {A(t )
n }t .

For each mode n, only 2(N − 1)R2 extra space is needed compar-
ing to the MAST model if we follow the updating order below:

Cn → {P(T )
k }k∈[2,N ] → {Q(T )

k }k∈[2,N ] → D(T )
n → B(T )

n → A(T )
n

→ {P(T−1)
k }k∈[2,N ] → {Q

(T−1)
k }k∈[2,N ] → D(T−1)

n → B(T−1)
n → A(T−1)

n

→ . . . → {P(1)
k }k∈[2,N ] → {Q(1)

k }k∈[2,N ] → D(1)
n → B(1)

n → A(1)
n .

�e temporal mode (n = 1) could be updated by:

A(t )
1 ←

µtC(t )
n + ηZ(t )

1 + Y(t )
1

µt (Q
(t )
k )~k,1 + ηIR

, t = T , . . . , 1, µT = 1, (19)

where C(T )
n = X(T )

(1)

(
Ak

)�k,1
, C(t )

n = (P(t )
k )~k,1 . �e rest matrices

{Y(t )
n }, {Z

(t )
n } and tensor XXX(T ) are updated similarly as MAST.

From model perspective, although T-MAST can not handle the
general multi-aspect streaming situation as MAST, both of them
can be applied to the traditional streaming case. Not surprisingly,
comparing Equations (11) and (17), using the traditional streaming
se�ing, these two models are equivalent to each other.

4 EXPERIMENTS
In this section, we empirically evaluate the performance of the
proposed framework MAST. �ree major aspects are analyzed.
Q1: How e�ective is MAST compared with static and dynamic CP
completion methods on di�erent real-world datasets with di�erent
dynamic variation pa�erns?
Q2: How e�cient is MAST compared with the state-of-the-art
methods on datasets with di�erent length of time segments?
Q3: What is the in�uence of the forge�ing factor µ on the general
model MAST?

0 10 20 30
Timestamp

0

200

400

600

800

1000

Nu
mb

er 
of 

Us
ers

User Mode (MovieLens)

0 10 20 30
Timestamp

0

500

1000

1500

Nu
mb

er 
of 

Mo
vie

s

Movie Mode (MovieLens)

0 50 100 150 200
Timestamp

0

20

40

60

80

100

Nu
mb

er 
of 

Ha
sh

tag
s

Hashtag Mode (Twitter)

Figure 5: Incremental patterns of di�erent datasets.
Total Size Initial Size Increased Modes

Twi�er Topic 500 × 500 × 20 50 × 50 × 20 1,2
Youtube 1066 × 1066 × 5 100 × 100 × 5 1,2

MovieLens 943 × 1682 × 31 57 × 983 × 1 1,2,3
Twi�er Hashtag 100 × 1000 × 249 57 × 1000 × 1 1,3

Table 2: Characteristics of the four datasets.

4.1 Datasets and Tasks
To evaluate the validity of MAST, we apply it to four datasets with
di�erent applications. �eir basic information is shown in Table 2.
Twitter Topic [10] (Recommendation): It is a third-order tensor
with binary entries of size 500(user ) × 500(expert ) × 20(topic ).
Experts represent the high-quality content producers of 20 topics.
It starts from 50×50×20 and increases 2% of total users and experts
at each time step. �e task is to recommend the personalized expert
of each topic to each user.
Youtube2 [33] (Link Prediction): It includes 1,066 users which
have the most interactions among original 15,088 users sharing
�ve interactions, including contact, co-contact, co-subscription,
co-subscribed, and favorite networks. It starts from 100(user ) ×
100(user ) × 5(interaction) and increases 2% of total users in each
timestamp. �e task is to predict missing links at each time step.
MovieLens3 (Recommendation): It is a benchmark dataset for
movie recommendation structured as a temporal multi-aspect stream-
ing tensor sequence of size 943(user ) × 1,682(item) × 31(week ).
Instead of predicting concrete movie rates, the task is to predict
what movies a user may rate.
Twitter Hashtag [11] (Information Di�usion): �is is a spatial-
temporal dataset structured as a temporal multi-aspect streaming
tensor sequence of size 100(hashtaд) × 1000(city) × 249(day). Each
binary entry indicates whether the corresponding hashtag emerges
at the corresponding city on a speci�c day or not. Hashtag mode
is increased as time goes. �e task is to predict the emergence of
previously appeared hashtags in each city at each time step.

�e MovieLens and Twi�er Hashtag follow the natural evolve-
ment of a ladder-type increment. To give a be�er understanding
of the incremental process, we depict the sectional views of the
user and item modes of MovieLens, as well as the hashtag mode
of Twi�er Hashtag in Figure 5. �e incremental pa�ern of Twi�er
Hashtag dataset is relatively gentle comparing with MovieLens.

4.2 Baseline Methods
�ree state-of-the-art CP completion methods are employed includ-
ing two categories, i.e., static and dynamic algorithms.

• Static CP-ALS [5]: It is a traditional CP-based method also
called EM-ALS [1]. To enhance the learning process, the
former-step decomposition is utilized as the initialization
for the current step. We implement it with the help of [3].

2h�p://socialcomputing.asu.edu/datasets/YouTube
3h�p://movielens.umn.edu

http://socialcomputing.asu.edu/datasets/YouTube
http://movielens.umn.edu


Tensor Type General Multi-Aspect Streaming Tensor Temporal Multi-Aspect Streaming Tensor
Dataset Twi�er Topic Youtube MovieLens Twi�er Hashtag

Missing Percentage 20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%

Static CP-ALS 0.8394 0.7810 0.6238 0.9390 0.9209 0.8609 0.9304 0.9057 0.8605 0.9257 0.9236 0.9133
TNCP 0.8443 0.7936 0.6661 0.9384 0.9199 0.8659 0.9344 0.9139 0.8790 0.9258 0.9238 0.9137

Dynamic
OLSTEC 0.6670 0.5035 0.5028 0.8601 0.7315 0.7225 0.7048 0.6550 0.6227 0.7449 0.6716 0.6314
MAST 0.8392 0.7714 0.6493 0.9326 0.9141 0.8618 0.8393 0.8354 0.8099 0.9160 0.9019 0.8641

T-MAST N .A. N .A. N .A. N .A. N .A. N .A. 0.9294 0.9023 0.8586 0.9233 0.9153 0.8881
Table 3: Performance in terms of RA-AUC metric. (Results of the best dynamic and static methods are highlighted.)

• Static TNCP [18]: It is one of the state-of-the-art static
completion methods. It employs trace norm constraints
optimized by ADMM algorithm. Similar initialization ap-
proach is employed to accelerate the convergence.

• OLSTEC [15]: It is a state-of-the-art streaming tensor com-
pletion method. We extend it for multi-aspect streaming
tensor completion by spli�ing the multi-aspect incremen-
tal process into several streaming ones and update them
in random order in each iteration until it converges.

• T-MAST: �is is a variation of MAST tailored towards tem-
poral multi-aspect streaming tensor sequence. It cannot be
applied to the Twi�er Topic and Youtube.

4.3 Experimental Setup
Following widely used se�ings [15, 20], for all datasets, we ran-
domly cover a �xed percentage of data and consider the remaining
entries as observed information. �e hidden data is used as ground
truth. To further study the impact of the missing ratio, we vary
it as {20%,50%,80%}. To evaluate the performance, a widely used
metric is employed for all tasks, i.e., running-average Area Under
Curve (RA-AUC). For the �rst two datasets, we focus on the incre-
mental part XXX(t )\XXX(t−1) at time step t to avoid double counting
and calculate the Area Under Curve (AUC) score of each topic slice
or interaction slice based on the prediction. �e average AUC at
time t among topics or interaction slices is denoted as AUCt . For
the last two datasets which are two multi-aspect streaming ten-
sor sequences, AUCt is calculated using the prediction of missing
data in slice XXX(t ) . �e running-average AUC score is de�ned as:
RA-AUC = 1

T
∑T
t=1 AUCt , where T is the total number of time

steps. �e e�ciency is measured by average running time de�ned
as 1

T
∑T
t=1 RTt , where RTt is the running time at time step t .

Parameter Setting: We set the tolerance rate to 10−5, the max-
imum number of iteration to 500 for all the algorithms. By testing
the performance of static methods on whole four datasets using
10 di�erent ranks varying from 5 to 50, we set R = 10 in all the
experiment considering of both accuracy and speed for fair com-
parison. In the implementation of our proposed method, default
parameters are set as αn = 1

10N n = 1, . . . ,N , η = 10−4, ρ = 1.05
and ηmax = 106. �e forge�ing factors are �ne-tuned according to
the missing ratio f (usually µ = µt = 1− f (∀ t > 0)). For baselines,
we follow the suggestions of original papers to set parameters. �e
initial completion and warm start matrices are calculated using
TNCP method for two reasons: (1) MAST framework degenerates
to static TNCP when T = 1. (2) For fair comparison, we use the
same best warm start at initial time for all methods. All experimen-
tal results are the arithmetic average of �ve runs and are ran on a
Dell OptiPlex 9030 i7-16GB desktop with MATLAB R2016b.
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Figure 6: Performance of di�erent methods on the four
datasets with di�erent timestamps.

4.4 Evaluation of E�ectiveness
Table 3 shows the performance of MAST and baselines on di�erent
datasets in terms of RA-AUC. �ree main conclusions are observed.

First, MAST has commensurate performance comparing with the
two static models and higher performance than dynamic baseline
method OLSTEC with di�erent percentages of random missing
entries on the �rst two datasets. To illustrate the performance
of di�erent models over time, we display the RA-AUC variation
curve of MAST compared with baselines on four datasets with 80%
missing entries in Figure 6. �e results show that, with time goes,
the increase of users leads to a �uctuant increasing RU-AUC for all
the methods except OLSTEC. MAST has comparable performance
to the static baselines and has higher accuracy than OLSTEC.

Second, on both MovieLens and Twi�er Hashtag, which have
di�erent dynamic pa�erns shown in Figure 5, the variation model
T-MAST outperforms MAST. �is result empirically validates our
analysis in Section 3.3 that the ladder-type structure of temporal
multi-aspect streaming pa�ern could help to reduce the quantity of
substitution on missing entries thereby improving general MAST
framework. Besides, as can be seen from the results, the di�erence
between T-MAST and MAST on MovieLens is larger than the one
on Twi�er Hashtag. �is is because MovieLens dataset has fewer
snapshots and sharper changes on the size of tensor slices than
Twi�er Hashtag as shown in Figure 5. �e dramatically increased
ladder-type structure leads to a larger ratio of missing data substi-
tution at each time step. �is further results in a hysteresis e�ect
for capturing characteristics of the new data during the update.



Dataset Twi�er Topic Youtube MovieLens Twi�er Hashtag
Missing Percentage 20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%

Static CP-ALS 305.20 307.42 302.85 504.77 502.73 500.72 1189.9 1223.3 1170.2 257.16 468.13 582.38
TNCP 110.73 118.69 117.92 371.33 368.56 365.67 509.87 511.34 456.59 172.01 194.78 193.59

Dynamic
OLSTEC 14.042 14.150 13.903 29.592 27.272 27.216 144.18 143.59 140.81 9.2601 9.6796 9.3625
MAST 8.7937 8.3523 7.6398 28.270 26.443 25.626 118.13 113.74 110.72 8.9186 8.5487 7.0420

T-MAST N .A. N .A. N .A. N .A. N .A. N .A. 113.65 105.29 103.56 19.1785 18.6397 16.3826
Table 4: Average running time of di�erent methods on the four datasets.
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Figure 7: Running time (in logarithmic scale) of allmethods.
�ird, MAST shows strong stability on di�erent datasets of di�er-

ent dynamic pa�erns. Furthermore, for di�erent ratios of missing
data and di�erent length of time steps, our proposed framework
retains comparable performance with static models. �eses results
demonstrate the capability of our model in capturing low-rank
subspace of dynamically changed tensor objects.

4.5 Evaluation of E�ciency
To study the e�ciency of the proposed framework, we compare
the average running time of all �ve models shown in Table 4. For
be�er visualization, Figure 7 displays the computation time (RTt )
in logarithmic scale as a function of timestamps or user numbers
on four datasets with 80% missing. From these results, we can come
to the conclusion that (1) For general multi-aspect streaming ten-
sor, MAST model takes much less running time than static models
and outperforms OLSTEC. (2) T-MAST model shows comparable
e�ciency with MAST on short-term datasets. Although it sacri-
�ces the time complexity to some degree on long-term datasets
for the sake of higher e�ectiveness, it is still signi�cantly faster
than static models. If we assume R � In , n = 1, . . . ,N , and de�ne
St =

∏N
n=1 I

t
n , where I tn is size of the N th mode of slice XXX(t ) in a

temporal multi-aspect streaming tensor sequence, the complexi-
ties per iteration of all three dynamic models at time t would be
O ((N +1)R (St −S (t−1) )) comparing to O ((N +1)RSt ) of two static
models. Moreover, a dramatic change in the size of the tensor will
cause a violent �uctuation on the completion time. For instance,
the structures of Youtube and Twi�er Topic datasets changed more
steadily than MovieLens and Twi�er Hashtag datasets resulting in
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Figure 8: Impact of forgetting factor µ on MAST with di�er-
ent missing percentages.
less violent �uctuations on the running-time curves. If we focus
on one dataset such as Twi�er Hashtag, the time curve �uctuates
more acutely when the size of the newly slice increases sharply.

4.6 In�uence of Forgetting Factor µ
To investigate the e�ect of forge�ing factor µ on our proposed
framework, we vary it from 0 to 1 with a step size 0.05 and compare
the performance of MAST model on Twi�er Topic and Youtube
datasets. Results shown in Figure 8 demonstrate that with the de-
creasing of forge�ing factor, the performance of MAST increases
at �rst and then decreases. With the increase of the missing ra-
tio, the turning point becomes closer to 0, which inspires us to
choose a smaller µ to alleviate the substitution error. In sum, these
observations illustrate that: (1) A suitable shrinkage on the approx-
imately substituted tensor could alleviate the previous ��ing error
and result in be�er completion e�ectiveness. (2) �e higher the
missing ratio is, the smaller the forge�ing factor we should choose
to alleviate the hysteresis e�ect of our framework in capturing the
low-rank subspace for multi-aspect streaming tensor completion.

5 RELATEDWORK
�e related work can be categorized into two main topics as follows:
Dynamic Tensor Factorization. Tensor factorization methods
have received widespread concerns and achievements under static
se�ing [16, 23]. Increasingly massive amount of real-world dynamic
data nowadays requires an extensive concern on the problem of
dynamic tensor factorization [15]. Nion and Sidiropoulos [22] pro-
posed two adaptive PARAFAC algorithms adopting the recursive
least square and simultaneous diagonalization tracking methods to
solve the online third-order tensor factorization. Phan et al. [24]
partitioned a large-scale tensor into small grids and proposed a
grid-based scalable tensor factorization method which could also
be used in dynamic tensor factorization. Zhou et al. [38] proposed
an accelerated online algorithm that can track the CP decomposi-
tions of incremental N th-order tensors. However, all of them are
not directly applicable to multi-aspect streaming situations and the



completion task. Kasai [15] substituted the stochastic gradient de-
scent method with recursive least square method and improved the
algorithm proposed by Mardani et al. [20] focusing on the problem
of subspace learning and imputation for streaming tensors. Besides
CP decomposition, dynamic tucker decomposition methods were
also proposed [31, 32, 37]. Some of them were not only focusing on
one-mode increasing condition [13, 30], but also giving possible so-
lutions for all-mode incremental update using matrix-based online
methods such as incremental SVD [19] without considering about
missing entries. Finally, it is worth to mention that though not a
factorization method, the histogram-based approach [8] conducted
on multi-aspect streaming tensor analysis can be treated as one of
the pioneer researches on the multi-aspect streaming pa�ern.
Low-Rank Tensor Completion. Since the real-world multidi-
mensional datasets are o�entimes raw and incomplete because
of missing at random and limited permissions [11, 18], low-rank
tensor completion problem has been a�ractive to researchers and
practitioners in data mining, online learning, computer vision, sig-
nal processing, etc. Generalized from matrix cases, a wide range
of approaches have been proposed such as trace-norm based meth-
ods [9, 17, 29, 35], factorization-based approaches [1, 5, 34], tensor
completion with auxiliary information [2, 11, 21], and online ten-
sor imputation [15, 20]. Although both theoretical analysis and
various practical applications have been considered, to our best
knowledge, no existing work has been conducted on the low-rank
tensor completion with general multi-aspect streaming pa�erns.

6 CONCLUSION AND FUTUREWORK
In this paper, we focus on the multi-aspect streaming tensor comple-
tion problem and propose an updatable CP completion framework
MAST. �e proposed framework can e�ectively capture the low-
rank subspace of multi-aspect streaming tensor sequences so as to
achieve the completion purpose. To further enhance the e�ective-
ness, we also tailor the general framework toward a special case
where time is one mode of the multi-aspect streaming tensors. By
conducting experiments on various real-world applications, we em-
pirically validate the e�ectiveness and e�ciency of our proposed
framework. Future work will center on investigating dynamic
Tucker-based tensor completion methods and incorporating scal-
able tensor mining techniques [27, 28] into our framework.
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