
Dynamic Contract Design for Heterogenous
Workers in Crowdsourcing for Quality Control

Chenxi Qiu∗, Anna Cinzia Squicciarini∗, Sarah Michele Rajtmajer†, and James Caverlee‡

∗College of Information Science and Technology, The Pennsylvania State University
Email: {czq3, acs20}@psu.edu

† Quantitative Scientific Solutions, Arlington, VA 22203
Email: sarah.rajtmajer@qs-2.com

‡ Department of Computer Science and Engineering, Texas A&M University
Email: caverlee@cse.tamu.edu

Abstract—Crowdsourcing sites heavily rely on paid workers
to ensure completion of tasks. Yet, designing a pricing strategies
able to incentivize users’ quality and retention is non trivial.
Existing payment strategies either simply set a fixed payment
per task without considering changes in workers’ behaviors, or
rule out poor quality responses and workers based on coarse
criteria. Hence, task requesters may be investing significantly in
work that is inaccurate or even misleading. In this paper, we
design a dynamic contract to incentivize high-quality work. Our
proposed approach offers a theoretically proven algorithm to
calculate the contract for each worker in a cost-efficient manner.
In contrast to existing work, our contract design is not only
adaptive to changes in workers’ behavior, but also adjusts pricing
policy in the presence of malicious behavior. Both theoretical
and experimental analysis over real Amazon review traces show
that our contract design can achieve a near optimal solution.
Furthermore, experimental results demonstrate that our contract
design 1) can promote high-quality work and prevent malicious
behavior, and 2) outperforms the intuitive strategy of excluding
all malicious workers in terms of the requester’s utility.

I. INTRODUCTION

Crowdsourcing markets have emerged as a popular platform
for matching available workers with tasks to complete. Pay-
ment to a worker for completing a particular task is typically
set by the task requester. Most existing approaches to pricing
policies set a fixed payment per task, which is consistent across
the set of workers and remains constant for the duration of
work [1], [2]. These approaches often do not account for
past or anticipated quality of work, and are therefore not
optimal for returning value on investment. Some recent works
have improved upon fixed-payment strategies by dynamically
adjusting workers compensation based on their recent quality
of work [3]–[12]. However, these pricing strategies are built
based on the assumption that workers are homogeneous, i.e.,
having the same objective and the same strategy, which leaves
quality of work in jeopardy, especially when dishonest workers
or malicious workers exist in the system. In practice, the
quality of work delivered by crowdsourced workers assigned
to a given task is heterogeneous. Besides different expertise
and dedication, workers might also have different objectives.
While most workers may simply aim at being compensated for
their work, others may aim to divert the task toward a different
outcome (e.g. provide highly positive reviews for a given

product or location), irrespective of whether this outcome
is consistent with reality (e.g. the quality of the product or
location itself).

In this paper, we consider the case of a set of hetero-
geneous workers (i.e., some workers are honest and some
are malicious) completing a set of tasks posted by a task
requester. We design a dynamic contract for repeated tasks
whereby individual contracts derived for each worker, for each
task, may incentivize high-quality work and prevent malicious
behaviors. To provide incentives for high-quality responses
from honest workers and prevent pollution from malicious
ones, we propose a quality-contingent payment strategy to
specify the compensation offered to each worker based on his
past work. In particular, we prove that the proposed pricing
policy outperforms simple exclusion of all suspected malicious
workers, whose malicious behavior may be temporary or
targeted in scope or masked through collusion.

Our approach ensures that the goal of the requester, which is
to maximize his expected utility (i.e. the value he obtains from
the completed work minus the payments made) is met. We call
the effort to maximize a task requester’s expected utility the
contract design problem, and treat it moving forward as a bi-
level programming (BiP) problem.

We note that given the large worker population in most
Crowdsourcing platforms, directly solving the contact design
problem by considering all the workers together will yield
a large number of decision variables involved in BiP, which
is computational intractable. Hence, we decompose the BiP
problem into a set of subproblems, which can be solved in
parallel in the interest of managing complexity. Here, each
subproblem aims to determine the contract for a single worker
and hence only attempts to solve one worker’s problem at
time. Furthermore, decomposition is complicated by potential
underlying interactions amongst workers. For example, a
group of malicious workers may share information for mutual
benefit or make joint decisions to further the same objective
(we refer to these workers as “collusive”). As a solution,
we formulate a subproblem for each collusive community,
wherein a community includes malicious workers who are
suspected to be collusive based on their historical record and
whether they target the same objective.

Finally, to solve each subproblem, we devise an algorithm
that can achieve near optimal solution with low time com-
plexity. We provide both upper bound and lower bound of our
solution (Theorem 4.1).

We validate this method on an Amazon dataset [13] con-
taining 118,142 product reviews, labelled with ground truth
labels on reviewers’ honest or malicious intent. We show that
our contract not only achieves near optimal return for the task
requester, but also incentivises high-quality performance from
honest workers and prevents pollution from malicious workers
through differential compensation strategies. In addition, we
demonstrate that our contract design outperforms a baseline
strategy in which all the malicious workers are simply elimi-
nated.
In summary, our contribution is three-folded:
1) We formulate a new contract design problem, of which
the goal is to design a contract to each worker based on
the worker’s performance and objectives, to consequently
maximize the requester’s utility. To our knowledge, this is
the first work studying dynamic contract in crowdsourcing
with the consideration of heterogeneous workers. Our model
accounts not only for malicious workers, but also for possible
interactions within them, addressing the case where workers
collude together toward a shared malicious goal.
2) To increase the time-efficiency, we propose to decompose
the contract design problem into a set of subproblems, where
each subproblem only deals with the contract for a single
worker or a single collusive community. We design a theoret-
ically proven algorithm for each subproblem, with tight upper
bound and lower bound.
3) We carry out extensive empirical validation using a real
Amazon review dataset. Our results demonstrate that our
design contract is near to the optimal, and also provide higher
compensation to honest workers than to malicious workers.

The remainder of the paper is organized as follows. Section
II describes the model and Section III formulates the BiP
problem. Section IV presents the approach for the problem.
Section V evaluates the performance of our approach. Section
VI lists the related works. Finally, Section VII concludes the
paper with remarks on our future work.

II. THE MODEL

In this section, we introduce the system model underlying
our approach. Throughout the paper, we focus on the case of a
task requester who hires a set of workers to write reviews (e.g.,
for products on Amazon or restaurants on Yelp). As Fig. 1
indicates, the task requester first posts the task, which includes
a set of individual subtasks or rounds. For each worker, the
requester also produces a contract specifying the payment for
completing the task. Each worker decides whether to accept
or decline the task requester’s offer of work and associated
payment. As workers complete tasks, they may be endorsed
by other workers (through likes or upvotes) or receive feedback
through public comments.

The pool of workers selecting tasks includes both honest
and malicious workers. Honest workers aim to provide their

Fig. 1. Framework of the model

services in exchange for compensation, maximizing a utility
directly proportional to financial gain and inversely propor-
tional to effort level, as expended effort represents a “cost”
to the worker in a general sense (in terms of time, energy, or
missed opportunities). For each round, each worker chooses
an amount of effort to invest in order to maximize his expected
utility for the task.

Malicious workers have an additional hidden agenda, e.g.,
to introduce bias through their responses, or add noise to the
collective task. Furthermore, malicious workers may work in-
dependently or in collusion with one another, where collusive
workers will work together to spoil the same set of tasks.

The task requester defines the individualized contract based
on estimated probability of a given worker being malicious
[14], [15], either independently or in collusion with other
workers, to evaluate the worker’s contribution to the re-
quester’s utility.

Note that, although not certain, the requester can estimate an
individual worker’s performance and expected behavior with
some ease, e.g. by comparing a worker’s response with the
estimated true response from a small number of experts or by
the number of positive endorsements a given review receives
(other approaches include [14]–[17]).

Further, in deciding the worker’s price, the requester also
considers other factors, like worker’s obtained feedback and
actual accuracy1.

The task requester can then adjust the contract from one
round to another within the same task.

The object of the requester is to determine an optimal
contract or payment function, so as to obtain as accurate and
valuable reviewsas possible, while minimizing workers’ costs.

A. Workers’ and task requester’s models

Consider the scenario in which a requester hires N workers
{1,2, . . . ,N} to perform a set of T individual tasks. Coordi-
nation of tasks is assumed, i.e., all workers finish one task
before any move to the next. At the start of each task, the
requester posts an updated contract for each worker specifying
the offered compensation for completing that task. The com-
pensation offered to each worker for each task is dependent
on his recent performance, where recent is here defined as
the single preceding task. We use a single preceding task as

1A malicious worker may be biased but still accurate within a certain
acceptable range, sufficient to bring gain to the requester’s utility

Fig. 2. Relationship between the requester and worker i

a proxy for some finite work history largely for simplicity,
but would argue that in the longer-time horizon this decision
is justifiable as the number of tasks considered approaches a
representative sample. Table I lists the main notations that will
be used throughout the model.

TABLE I
NOTATIONS

Notation Description
N The number of workers
T The number of individual tasks
qt

i The feedback of worker i in round t
qt
A j

The feedback of collusive community j in round t
ct

i The compensation to worker i in round t
yt

i The effort level of worker i in round t
fi The contract function to worker i

ψi The strategy function of worker i
ψA j The strategy function of collusive community j
pt The benefit of the requester in round t
ζi The approximated contract function

∆xi,l The contract increment on [di,l−1,di,l)
αi,l The contract slope on [di,l−1,di,l)
wt

i The weight of worker i’s feedback to the requester
U t The utility function in round t. U t

req, U t
HU i, U t

MU i,
and U t

MU A j
represent the utility function of the

requester, honest worker i, malicious worker i,
collusive community j

xi Discrete compensations

We use ct
i to represent the compensation that worker i is

offered for completing the t-th task. Let ct
i be given by

ct
i = fi

(
qt−1

i
)
, (1)

where fi : [0,∞) 7→ [0,∞), called the contract function, is
a mapping from worker i’s feedback (e.g. support rate or
number of positive endorsements) for task t− 1, qt−1

i to his
compensation for task t. We assume that fi is monotonically
increasing with qt−1

i .
Consider Fig. 2 for an exemplified workflow. Here, feedback

reflects the positive gain for the requester generated by the
completion of the task. For example, for Amazon product
reviews, feedback can be measured by the number of positive
“likes” or “helpfulness” endorsements obtained from other
workers as compared to the average number of positive
endorsements for similar products.

According to the contract function provided by the re-
quester, each worker chooses his effort level to maximize his
utility. Let yt

i denote worker i’s effort level at a given round

t, where yt
i is defined in a continuous region R∗ = R+∪0. In

particular, if worker i doesn’t accept the request for the task
in round t, then yt

i = 0. Note that effort level we defined here
takes into account not only the time duration a worker takes to
complete the task, but also the expertise of the worker. In other
words, we define effort level as a combination, e.g., product,
of workers’ working time and expertise. In practice, expertise
and time spent are difficult or impossible to measure, so we
use an appropriate proxy for the given context. In the case of
Amazon product review, for example, this may be length of
generated text.

Malicious workers are dominated by a different utility
function. As discussed, the goal of the malicious worker is
to maximize the influence of a biased response or insert noise
into the dataset, thereby misleading the task requester while
making a reasonable effort, that is an effort that is bounded
by an inherent willingness to do harm.

Formally, for a non-collusive malicious worker i, let ψi be
the strategy function, describing the relationship between the
feedback q of worker i and his effort level y for task t:

qt
i = ψi(yt

i). (2)

We assume ψi is concave and twice differentiable. Suppose a
set of workers A j are not only malicious, but are also colluding
with each other. Then, we consider the workers in A j as a
“single meta worker” and let ψA j describe the relationship
between workers’ sum feedback and their sum effort levels in
each round t:

qt
A j

= ψA j

 ∑
i∈∑l∈A j

yt
l

 . (3)

In reality, it is not straightforward to detect which workers may
be collusive. According to [13], we can safely assume that two
malicious workers collude if they target the same product. The
intuition is that collusive workers are recruited from the same
source and paid to target the same task. We also define a set
of malicious workers A as a collusive community if, for each
worker i ∈A , exists another worker j ∈A that has the same
target product with worker i.

Finally, we define the benefit of the requester getting from
workers’ reviews. On the one hand, the requester cares that
workers’ reviews are useful to the community. This is exem-
plified by how many positive endorsements any given review
obtains. Hence, the contribution of a worker’s review to the
requester should be proportional to the worker’s ability to
collect positive endorsements. On the other hand, the requester
also aims at ensuring workers’ reviews’ “accuracy”, i.e., each
review should be as truthful as possible. In practice, given
the possible level of subjectivity involved in any review of
a given service or product, accuracy is measured by how
close workers’ reviews are to the experts’ reviews, where
experts are defined as the workers whose accuracy and positive
endorsements (along with reputation) are both higher than the
thresholds specified by the system. We use lt

i to represent
the review from worker i in round t and use lt to represent

the average review score given by experts at round t, and
we consider lt as the “ground truth” of the task. The closer
a worker i’s review lt

i to lt , the more valuable the worker’s
review is. Besides accuracy, we also give a penalty to worker
i’s feedback if the worker has probability emal

i to be malicious
and has Ai partners2 In summary, we describe the benefit of
the requester in round t by

pt =
N

∑
i=1

wt
iq

t
i (4)

where
wt

i =
ρ

|lt
i − lt |

−κemal
i − γAi (5)

where ρ , κ , and γ are coefficients of accuracy, malicious
probability, and the number of partners.

III. A STACKELBERG FRAMEWORK FOR OPTIMAL
CONTRACTS

In this section, we model the interaction between the task
requester and workers as a Stackelberg competition (Section
III-B), a strategic game in which the leader makes the decision
first and then the followers move sequentially. In particular,
we consider the task requester as the leader (who specifies
the contract for each worker) and the workers as the followers
(who choose the effort level to complete the task). We
assume that the game takes place in discrete time, where each
iteration of the game represents the completion of one task.

A. Contract function approximation

Before formulating the problem, we here discuss how we
represent each contract function through a group of decision
variables. These variables, however, can only describe the
contract with discrete inputs. Since the input of each contract
function (worker’s feedback) is defined in continuous region,
we partition the worker’s feedback region with discrete points,
and approximate the function by assuming compensation
increases linearly in each interval. Then, each contract
function can be represented as a piecewise linear function.

Precisely, as Fig. 3 shows, we partition the effort region of
workers into m intervals [0,δ), [δ ,2δ), ..., [(m− 1)δ ,mδ).
Correspondingly, the influence region of each independent
worker i is partitioned to [di,0,di,1), [di,1,di,2), ..., [di,m−1,di,m),
where each di,l = ψi(lδ) (l = 0,1, ...,m). After that, we can
approximate fi in terms of a set of discrete compensations
xi = [xi,1, ...,xi,m], where each xi,l = fi(di,l) and xi,l ≤ xi,l+1.
Let ∆xi,l = xi,l − xi,l−1, ∆di,l = di,l − di,l−1, αi,l = ∆xi,l/∆di,l ,
and ∆xi,l and αi,l is called the contract increment and contract
slope on [di,l−1,di,l), respectively. Then, the contract function
fi can be approximated by a piecewise linear function ζi:

ζi
(
xi,qt

i
)
= αi,l

(
qt

i−di,l−1
)
+ xi,l−1, qt

i ∈ [di,l−1,di,l) (6)

2As stated before, though non-trivial it is possible to estimate a worker’s
probability of being malicious, e.g., by comparing the worker’s reviews with
“ground truth” (i.e., expertise reviews) [14], or by applying machine learning
techniques to analyze their comments [15].

Fig. 3. An example of contract discretization

where l = 1, ...,m. In the remain part of this part, we call the
segment of the piecewise linear contract function defined in
[di,k−1,di,k) a contract piece on [di,k−1,di,k).

B. Problem formulation

We first respectively describe the objectives and constraints
of the task requester and the workers in detail.
Task requester. The task requester’s goal is to maximize
his benefit in each round with minimum cost. Hence, the
requester’s utility in round t can be expressed as a linear
combination of his benefit in round t, pt , and the total
compensation paid to all the workers in round t+1, ∑

N
i=1 ct+1

i :

U t
req = pt −µ

N

∑
i=1

ct
i, (7)

where µ > 0 is the weight given to the compensation, re-
spectively. Suppose there are N1 honest workers, N2 non-
collusive malicious workers, and N3 collusive communities,
then the requester’s utility can be represented by (without loss
of generality, in the following part, we let the index of honest
workers and non-collusive malicious workers be {1, ...,N1}
and {N1 +1, ...,N1 +N2}, respectively):

U t
req =

N

∑
i=1

wt
iψi
(
yt

i
)
−µ

N1+N2

∑
i=1

ζi
(
xi,ψi

(
yt

i
))

− µ

N3

∑
j=1

ζA j

xi,ψA j

 ∑
i∈∑l∈A j

yt
l

= F1(x1, ...,xN ;yt

1, ...,y
t
N).

where ζA j

(
xi,ψA j

(
∑i∈∑l∈A j

yt
l

))
represents the sum feed-

back from A j. Then, the problem for the task requester is
formulated by:

max F1(x1, ...,xN ;yt
1, ...,y

t
N) (8)

s.t. yt
i ∈ R∗,xi, j ∈ R∗,xi,l−1 ≤ xi,l (9)

i = 1, ...,N, l = 1, ...,m (10)

in which the task requester need to optimize his goal by spec-
ifying each x1, ...,xN . We use Ωreq to represent the problem’s
feasible region (Equ. (9) and Equ. (10)).
Honest workers. The objective of each honest worker i is to
maximize his compensation with low effort. Therefore, in each
round t, by combining each honest worker i’s compensation

in the next round t + 1 and effort levels in round t, we get
their utility:

U t
HU i = ct+1

i −βyt
i = ζi

(
xi,ψi

(
yt

i
))
−βyt

i = F2
i (xi,yt

i). (11)

where β > 0 is the weight assigned to the effort level in the
utility. We formulate the problem for each honest worker i by

max F2
i (xi,yt

i) (12)
s.t. yt

i ∈ R∗ (13)

and use Ωhon
i to represent the feasible region of the above

problem (Equ. (16)).
Non-collusive malicious workers. Besides maximizing the
compensation with less effort, non-collusive malicious workers
also aim to increase the influence (i.e., feedback) of their
reviews to deviate the true value of the products. Accordingly,
in each round t, the utility of a non-collusive malicious worker
i should be a combination of his compensation in the next
round t +1, effort levels and feedback in round t:

U t
MU i = ct+1

i −βyt
i +ωqt

i

= ζi
(
xi,ψi

(
yt

i
))
−βyt

i +ωψi
(
yt

i
)

= F3
i (xi,yt

i). (14)

where ω > 0 are the weight assigned to the feedback in the
utility. We formulate the problem for each honest worker i by

max F3
i (xi,yt

i) (15)
s.t. yt

i ∈ R∗ (16)

and use Ωncm
i to represent the feasible region of the above

problem (Equ. (16)).
Collusive malicious workers. Collusive malicious workers
have the same objective of non-collusive malicious workers.
But different from non-collusive malicious workers, collusive
malicious workers in the same community can share infor-
mation and might upvote each other to increase their positive
endorsements and therefore apparent contribution. Here, we
design the same contract for the malicious workers in the same
community, then the utility of the collusive malicious worker
set A j can be written by

U t
MU A j

= ζA j

xi,ψA j

 ∑
i∈∑l∈A j

yt
l

−β ∑
i∈A j

yt
i +ωqt

A j

= F3
j (xA j ,y

t
A j
).

where yt
A j

= ∑i∈A j yt
i and xA j = xi, ∀i ∈ A j. The problem

formulated for each collusive community A j is

max F3
j (xA j ,y

t
A j
) (17)

s.t. yt
i ∈ R∗,∀i ∈A j. (18)

We use Ωcm
A j

to represent the problem’s feasible region (Equ.
(18)).

Fig. 4. Strategy framework

malicious attack

k

 j

i

auxiliary graph

share the

same object

hij

Fig. 5. The auxiliary graph of the collusive workers.

Consequently, we can formulate the Bi-MIP problem as
follows:

max F1(x1, ...,xN ;yt
1, ...,y

t
N)

s.t. (x1, ...,xN ;yt
1, ...,y

t
N) ∈Ωreq

yt
i = arg max

y′∈Ωhon
i

F2
i (xi,y′) i = 1, ...,N1

yt
i = arg max

y′∈Ωncm
i

F2
i (xi,y′) i = N1 +1, ...,N1 +N2

yt
A j

= arg max
y′∈Ωcm

A j

F3
j (xA j ,y

′) j = 1, ...,N3

IV. METHODOLOGY

In this section, we present our methodology to solve the BiP
formulated in the last section. Fig. 4 shows the framework of
our strategy: We first cluster collusive malicious workers based
on their targeted products (Section IV-A), and obtain the effort
function for each worker or collusive community by fitting the
function with real data (Section IV-B). After that, we decom-
pose BiP into a set of subproblems, where each subproblem
only deals with the contract design for a single worker or a
single cluster. Finally, we solve each subproblem with a time-
efficient algorithm with theoretic bound (Section IV-C).

A. Collusive workers clustering

Recall that we assume that two malicious workers are
collusive if they target the same product. We define a group

of malicious workers A as a collusive community if, for each
worker i ∈ A , exists another worker j ∈ A that writes a
review for the same product as the one reviewed by worker
i. Accordingly, we can create a auxiliary graph G = (U ,H),
where H denotes the set of virtual edges and a virtual edge
hi, j, is a connection between any pair of workers i and j
who share the same target (as Fig. 5 shows). Then, finding
collusive communities is equivalent to finding the connected
components in G . In particular, we apply depth-first search
(DFS) to find each connected component [18]. Based on
the results of clustering, we are able to distinguish collusive
workers and non-collusive workers with a given probability
(see Section V for some empirical evidence supporting this
approach).

B. Effort function fitting&Problem decomposition

In this part, we aim to construct an effort function that
has the best fit to a given set of data points composed of
workers’ effort levels and feedbacks. To this end, we fit real
review data from 18,176 non-collusive honest workers, 1,312
non-collusive malicious workers and 212 collusive malicious
workers in Amazon (we will introduce the data set later in
Section V) to the polynomial functions with different orders
and compare their norm of residual (NoR) in Table III, which
is a measure of the deviation between the correlation and the
data, i.e., a lower norm signifies a better fit. By comparing
the NoR and the complexities of different fitting curves, we
finally choose quadratic functions as effort functions

ψi(yt
i) = r2y2

i + r1y1
i + r0. (19)

As we already estimated all the collusive worker commu-
nities using the clustering algorithm and the effort functions
for all the workers by fitting the function to real data, now
we decompose the BiP problem into a set of subproblems.
First, the objective function of the requester (Equ.(17)) can be
written as:

F1(x1, ...,xN ;yt
1, ...,y

t
N) =

N1

∑
i=1

F1,1
i

(
xi,yt

i
)
+

N2

∑
i= j

F1,2
A j

(
xA j ,y

t
A j

)
where F1,1

i (xi,yt
i) = wt

iψi (yt
i)−µζi (xi,ψi (yt

i)) and

F1,2
A j

(
xA j ,y

t
A j

)
= wt

A j
ψA j

(
∑

l∈A j

yt
l

)

− µζA j

(
xA j ,ψA j

(
∑

l∈A j

yt
l

))
. (20)

Here, each F1,1
i (xi,yt

i) and F1,2
A j

(
xA j ,y

t
A j

)
respectively repre-

sent the utilities that the requester obtains from a non-collusive
worker i and a collusive worker set A j. Furthermore, there
is no correlation between the utilities of any pair of non-
collusive workers, or any pair of collusive communities, or any
non-collusive worker and collusive community. Consequently,

we can decompose the Bi-MIP into a group of independent
subproblems subi (i = 1, ...,N1) for each honest worker i:

max F1,1
i (xi,yt

i) (21)
s.t. (xi,yt

i) ∈Ω
req
i , (22)

yt
i = arg max

y′∈Ωhon
i

F2
i (xi,y′) (23)

sub′i (i = N1 +1, ...,N1 +N2) for each non-collusive malicious
worker i:

max F1,1
i (xi,yt

i) (24)
s.t. (xi,yt

i) ∈Ω
req
i , (25)

yt
i = arg max

y′∈Ωncm
i

F3
i (xi,y′) (26)

and sub′′j (j = 1, ...,N3) for each collusive community A j

max F1,2
A j

(
xA j ,y

t
A j

)
(27)

s.t. (xA j ,y
t
A j
) ∈Ω

req
A j
, (28)

yt
A j

= arg max
y′∈Ωcm

A j

F3
j (xA j ,y

′) (29)

where Ω
req
i = {(xi,yt

i) : yt
i ∈ R∗,xi, j ∈ R∗,xi,l−1 ≤ xi,l} and

Ω
req
A j

= {(xA j ,y
t
A j
) : yt

i ∈ R∗,xi, j ∈ R∗,xi,l−1 ≤ xi,l , ∀i ∈A j}.

C. Contract function building

Even though each subproblem has much smaller scale
compared to the original BiP problem, we cannot directly
apply the existing optimization approaches (e.g., subgradient
methods or interior point methods [19]) due to the non-
convexity of the problem. As a solution, we devise a time-
efficient algorithm that can achieve near optimal solution. The
idea is motivated by the observation that each worker’s utility
is twice differentiable within any effort interval [(l−1)δ , lδ)
(l = 1, ...,m), indicating that the worker’s maximum utility
within [(l− 1)δ , lδ) can be derived given the contract piece
[xi,l−1,xi,l). Therefore, in the first step, we build a contract
function for each effort interval [(l−1)δ , lδ), called candidate
contract, such that the maximum utility in [(l − 1)δ , lδ) is
higher than the maximum utility in any other effort intervals.
It implies that, under the candidate contract of [(l−1)δ , lδ),
workers will always select the effort interval in [(l−1)δ , lδ)
in order to maximize their utility. In addition, when building
each candidate contract function, we also try to minimize the
contract increment (or slope) for each contract piece in order
to maximize the requester’s utility.

After building the candidate contracts for the effort intervals,
we select the candidate contract that maximizes the requester’s
utility as our final solution. Note that there must exist a
candidate contract under which the optimal effort level falls in
the same interval with that of the optimal contract, indicating
that this candidate contract is close to the optimal contract as
we try to maximize the requester’s utility when building it.
Then, our final contract is close to the optimal contract since
the final contract is no worse than any candidate contracts. In
what follows, we will introduce the details of our algorithm,

and we will formally analyze how we approach the optimal
solution in Theorem 4.1. Here, due to the lack of space,
we only analyze the case of non-collusive malicious workers.
Comparing the utility of honest workers (Equ. (11)) and non-
collusive malicious workers (Equ. (14)), we can consider
honest workers as a special case of non-collusive malicious
workers by setting ω = 0, where ω is the weight assigned to
feedback in non-collusive malicious workers’ utility. Hence,
the construction of the contract for honest workers follows the
same procedure with that of non-collusive malicious workers.
The calculation of contracts for both non-collusive malicious
workers and collusive malicious workers are also same since a
collusive community can be treated as a “single meta-worker”.

As we already estimated the effort function by fitting the
function to real data, we use ξi(yt

i) = fi(ψi(yt
i)) to represent

the mapping from worker i’s effort level to his compensation,
and use ξ

(k)
i to denote the mapping for the candidate contract

of [(k− 1)δ ,kδ). In ξ
(k)
i , let x(k)i,l denote the compensation

when the effort is lδ , let ∆x(k)i,l = x(k)i,l − x(k)i,l−1, and let α
(k)
i,l =

∆x(k)i,l /∆di,l .

The procedure to obtain ξ
(k)
i is composed of two parts:

P1. For each effort interval [(l − 1)δ , lδ), analyze the
relationship between its contract piece (x(k)i,l−1,x

(k)
i,l) and

the worker’s maximum utility in the interval.
P2. Construct the contract function ξ

(k)
i to satisfy the two

principles 1) worker i’s optimal effort level falls in
[(k−1)δ ,kδ) and 2) the requester’s utility is maximized
when worker i choose the optimal effort level.

Part 1. We use yt
i,l to denote the effort level that maximizes

worker i’s utility in effort interval [(l−1)δ , lδ):

yt
i,l = arg max

yt
i∈[(l−1)δ ,lδ)

F3
i (xi,yt

i). (30)

To derive yt
i,l , we consider the following three cases:

Case I: ∂F3
i (xi,yt

i)

∂yt
i
≤ 0, ∀yt

i ∈ [(l− 1)δ , lδ). F3
i (xi,yt

i) is non-
increasing when yt

i ∈ [(l−1)δ , lδ). Then, yt
i,l = (l−1)δ .

Case II: ∂F3
i (xi,yt

i)

∂yt
i
≥ 0, ∀yt

i ∈ [(l− 1)δ , lδ). F3
i (xi,yt

i) is non-
decreasing when yt

i ∈ [(l−1)δ , lδ). Then, yt
i,l = lδ .

Case III: ∃y ∈ ((l − 1)δ , lδ) s.t. ∂F3
i (xi,yt

i)

∂yt
i
|yt

i=y = 0. Since
ψi (yt

i) is concave and twice differentiable, we can derive that
∂ 2F3

i (xi,yt
i)

∂yt2
i

=
(

α
(k)
i,l −β

)
ψ ′′i (y

t
i)≤ 0, which implies that worker

i’s utility is maximum at y and hence yt
i,l = y. As ψ ′i (y

t
i)

is monotonically decreasing, ψ ′i (y
t
i) has its inverse function

ψ
′−1
i (yt

i). Consequently, we have yt
i,l = ψ

′−1
i

(
β/α

(k)
i,l

)
. Partic-

ularly, if ψi(yt
i) is a quadratic function: ψi(yt

i) = r2yt2
i + r1yt

i +
r0, then

yt
i,l =

β

2r2

(
α
(k)
i,l +ω

) − r1

2r2
. (31)

Lemma 4.1 gives necessary and sufficient conditions for the
three cases:

Lemma 4.1: A contract piece on [(l − 1)δ , lδ) is in
Case I if α

(k)
i,l ∈

(
−∞, β

2r2(l−1)δ+r1
−ω

]
, is in Case II

if α
(k)
i,l ∈

[
β

2r2lδ+r1
−ω,∞

)
, and is in Case III if α

(k)
i,l ∈(

β

2r2(l−1)δ+r1
−ω, β

2r2lδ+r1
−ω

)
.

Proof Case I: As ∂F3
i (xi,yt

i)

∂yt
i

is monotonically decreasing, to

guarantee ∂F3
i (xi,yt

i)

∂yt
i
≤ 0 when yt

i ∈ [(l−1)δ , lδ), we only need
to make sure

∂F3
i (xi,yt

i)

∂yt
i
|yt

i=lδ ≤ 0 ⇒ α
(k)
i,l ≥

β

2r2(l−1)δ + r1
−ω. (32)

Case II: Similarly, to make ∂F3
i (xi,yt

i)

∂yt
i
≥ 0 when yt

i ∈ [(l−1)δ ,
lδ), we need

∂F3
i (xi,yt

i)

∂yt
i
|yt

i=(l−1)δ ≥ 0 ⇒ α
(k)
i,l ≤

β

2r2lδ + r1
−ω. (33)

Case III: Finally, to guarantee that

∃y ∈ [(l−1)δ , lδ) s.t.
∂F3

i (xi,yt
i)

∂yt
i
|yt

i=y = 0, (34)

we need to make sure ∂F3
i (xi,yt

i)

∂yt
i
|yt

i=(l−1)δ > 0 and
∂F3

i (xi,yt
i)

∂yt
i
|yt

i=lδ < 0. which implies that

β

2r2(l−1)δ + r1
−ω < α

(k)
i,l <

β

2r2lδ + r1
−ω. (35)

Part 2. Construct each candidate contract ξ
(k)
i :

We build ξ
(k)
i by iteratively constructing contract pieces

with the increasing order of effort level intervals [0,δ), ...,
[(m− 1)δ ,mδ). To make sure that worker i’s optimal effort
level falls in [(k−1)δ ,kδ), when constructing ξ

(k)
i on interval

[(l− 1)δ , lδ) in iteration l, we need to satisfy the following
equations:{

F3
i (xi,yt

i,l)−F3
i (xi,yt

i,l−1)> 0, when l ≤ k
F3

i (xi,yt
i,l−1)−F3

i (xi,yt
i,l)> 0, when l ≥ k+1

(36)

That is, when worker i’s effort level falls on the left side (right
side) of [(k− 1)δ ,kδ), worker i tends to increase (decrease)
the effort level to increase his utility.

On the other hand, to maximize the utility of the requester,
when building each contract piece, we need to find the
minimum compensation slope satisfying Equ. (36).

According to the analysis above, determining the contract
pieces defined on [kδ ,∞) is trivial: Let xl = xl−1 for each l =
k+1, ...,m, then worker i’s utility with effort level in [kδ ,∞) is
always lower than that in [(k−1)δ ,kδ), since his effort level
in [kδ ,∞) is higher than in [(k−1)δ ,kδ), but with the same
compensation.

Now, we turn our attention to the contract pieces defined in
[0,kδ). The basic idea is to reduce the contract slope α

(k)
i,l for

each contract piece while satisfying Equ. (36). As we analyze
in step 1, there are three cases to consider: For Case I, worker

i always choose the lowest effort level in each effort interval.
As we aim to incentivise workers to increase their effort level
when it is in [0,kδ), we try to avoid building contract piece in
Case I. As for Case II, Lemma 4.1 has proved that constructing
a contract piece in case II always has higher contract slope than
in Case III.

Accordingly, to reduce contract slopes, we try to build
each contract piece in Case III, i.e., is to find each α

(k)
i,l ∈(

β

2r2(l−1)δ+r1
−ω, β

2r2lδ+r1
−ω

)
such that Equ. (36) is satis-

fied. By plugging Equ. (31) (worker i’s optimal utility in Case
III) into Equ. (36), we obtain

F3
i (xi,yt

i,l)−F3
i (xi,yt

i,l−1)

=

 β 2

4r2

1(
α
(k)
i,l +ω

)(
α
(k)
i,l−1 +ω

) + r0−
r2

1
4r2
−di,l−1

×

(
α
(k)
i,l −α

(k)
i,l−1

)
(37)

According to Lemma 4.1, α
(k)
i,l > β

2r2(l−1)δ+r1
−ω and α

(k)
i,l−1 <

β

2r2(l−1)δ+r1
−ω , indicating that α

(k)
i,l −α

(k)
i,l−1 > 0. Hence, to

meet Equ. (31), we need to guarantee

(38)

from which we derive that α
(k)
i,l needs to be larger than

β 2(
α
(k)
i,l−1+ω

)
(r1+2r2δ (l−1))2 . Then, we set the slope of the contract

piece on [(l−1)δ , lδ) by

α
(k)
i,l = β

2/
((

α
(k)
i,l−1 +ω

)
(r1 +2r2δ (l−1))2

)
+ ε

(k)
i,l −ω,

(39)
where ε

(k)
i,l is a small positive real number given by

ε
(k)
i,l = 4β r2

2δ
2
(
(r1 +2r2δ (l−1))2 (r1 +2r2δ l)

)
. (40)

The following two equations show that α
(k)
i,l given by Equ.

(39) is always in
(

β

2r2(l−1)δ+r1
, β

2r2lδ+r1

)
:

α
(k)
i,l −

(
β

2r2(l−1)δ + r1
−ω

)
=

β 2

∆x(k)i,l−1

∆d(k)i,l−1

(r1 +2r2δ (l−1))2
+ ε

(k)
i,l −

β

2r2(l−1)δ + r1

≥ β

r1 +2r2δ (l−1)
+ ε

(k)
i,l −

β

2r2(l−1)δ + r1
> 0 (41)

α
(k)
i,l −

(
β

2r2lδ + r1
−ω

)
=

β 2

∆x(k)i,l−1

∆d(k)i,l−1

(r1 +2r2δ (l−1))2
+ ε

(k)
i,l −

β

2r2lδ + r1

<
β (r1 +2r2δ (l−2))

(r1 +2r2δ (l−1))2 + ε
(k)
i,l −

β

2r2lδ + r1

=
−4β r2

2δ 2

(r1 +2r2δ (l−1))2 (r1 +2r2δ l)
+ ε

(k)
i,l = 0 (42)

Lemma 4.2: The compensation paid to each worker in ξ
(k)
i

is upper bounded by −2β r2kδ 2

2r2(k−1)δ+r1
+βkδ .

Lemma 4.3: Let ct,(k)
i,min be the minimum compensation paid

to worker i given that worker i’s optimal effort level falls in
[(k−1)δ ,kδ). Then, ct,(k)

i,min is lower bounded by β (k−1)δ .
The proofs for both the above Lemmas are reported in Ap-
pendix for lack of space.

After collecting all the candidate contract functions ξ
(1)
i ,

..., ξ
(m)
i , we pick up the one in which the requester has the

highest utility when the worker selects the optimal effort level,
denoted by ξ

kopt
i , where

kopt = argmax
k

(
ξ
(k)
i (yt

i,k)−βyt
i,k +ωψi(yt

i,k)
)
, (43)

Consequently, we can derive the contract fi from ξi by

fi(di,l) = ξ
kopt
i (lδ), l = 1, ...,m. (44)

Theorem 4.1 provides the upper bound and lower bound
of the requester’s utility using the contract calculated by our
algorithm.

Theorem 4.1: The utility that the requester obtain from
worker i is upper bounded by maxl{ψi(lδ)−µ(l−1)δ} and
lower bounded by ψi((kopt−1)δ)+ 2β r2koptδ

2

2r2(kopt−1)δ+r1
−µkoptδ .

Proof 1) Upper bound: In the case that worker i’s optimal
effort level falls in [(l−1)δ , lδ), according to Lemma 4.3, the
compensation paid to worker i is lower bounded by β (l−1)δ ,
which implies that the utility gained from worker i is upper
bounded by ψi(lδ)−µ(l−1)δ . Finally, the upper bound of the
requester’s utility is derived from the maximum value of max-
imum utility of all the case, i.e., maxl{ψi(lδ)−µ(l−1)δ}.
1) Lower bound: According to Lemma 4.2, using the contract
designed by our algorithm, the requester’s utility

U t
req = ψi(yt

i,kopt
)−ξ

kopt
i (yt

i,kopt
) (45)

≥ ψi((kopt−1)δ)+
2β r2koptδ

2

2r2(kopt−1)δ + r1
−µkoptδ .

In Fig. 6, we depict the utility of the requester using our
designed contract for a single honest worker, as well as the
lower bound and upper bound derived by Theorem 4.1. For
the parameters in workers and the requester’s utility, we set
µ = 10, β =α = 1, and κ = γ = 0.1 and still use this setting in
our performance evaluation part (Section V). From the figure,
we find that the utility got from our method get closer to the
upper bound as the number of intervals in the effort region
increases. Note that the optimal utility must be within the gap
between our calculated utility and its upper bound. Hence, we
can conclude the requester’s utility converge to the optimal as
the partition in effort region goes denser.

V. PERFORMANCE EVALUATION

Our empirical analysis is based on a dataset of crowd-
sourced product reviews from Amazon.com. Like most online
retailers, Amazon relies on consumers to provide feedback on
purchased items in the form of posted reviews. Reviews and

0 50 100 150 200

4.0

4.1

4.2

Number of effort intervals

T
he

 r
eq

ue
st

er
’s

 u
til

ity

The utiltiy achieved
by our algorithm

lower bound

upper bound

Fig. 6. Numeric result of the requester’s upper bound and lower bound.

reviewers are endowed with additional information, includ-
ing possible designation as an expert reviewer, whether the
reviewer’s purchase was “verified”, and the number of other
customers who found the review helpful.

The notion driving this process is that real customers will
volunteer their time to write a short review of a product in
service to the system that in turn helps them in making future
purchases. However, the importance of reviews for product
sales brings with it the motivation and potential for malicious
behavior. Product representatives may opt to hire workers to
generate positive reviews of products they have not necessarily
purchased or tried [20]. These reviews bring up the average
number of stars and search-engine visibility of these products.
If malicious reviews are well-written and deemed “helpful” by
others, they will rise to the top of the page and garner even
further visibility.
Dataset. We consider an Amazon dataset [13] containing
118,142 product reviews generated by 19,686 reviewers for
75,508 different products 3. The dataset includes ground
truth labels for 1,524 malicious reviewers obtained by
crawling underground Internet sites which recruit workers
to write biased reviews on Amazon. Reviewed items include
electronics, books, beauty products and medications. This
dataset was previously studied in the context of detecting fake
product reviews; here we leverage that work to serve as a real-
world trace of the presence of malicious behavior in reponses
to a crowdsourced task.We parametrize our model as follows:
1) Feedback of a review: the number of positive upvotes (i.e.,
voted as “helpful”) awarded by other workers.
2) Expertise of a worker: the average feedback (upvotes) over
all reviews written by that worker;
3) Length of a review: the number of characters included in
the review;
4) Effort level for a review: the product of the worker’s
expertise and the length of the review.
Collusive worker clustering. We first identify the collusive
communities among malicious workers using our collusive
worker clustering algorithm. We note that our approach for
detecting clusters of malicious workers appears effective, as

3our dataset, although used by [13] to detect malicious reviewers has not
been studied for the purpose of pricing strategy.

Honest NCM CM

effort level
feedback

726740

990

3.05

4.15

6.77

Fig. 7. Comparison of the three types of workers.

discussed next. We identify a total of 212 collusive workers in
47 collusive communities, where Table II lists the distribution
of the size of the collusive communities. After clustering the
malicious workers, we compare the average effort levels and
average feedback for honest workers, non-collusive malicious
(NCM) workers and collusive malicious (CM) workers in Fig.
7. From the figure, we observe that though the effort levels
of the three types of workers are similar, collusive malicious
workers have much higher feedback than the other two types.
We suggest that this effect is a result of malicious workers in
the same collusive community upvoting each others’ reviews.

TABLE II
DISTRIBUTION OF COLLUSIVE COMMUNITY SIZE

Size 2 3 4 5 6 ≥10
Percentage (%) 51.2 22.0 7.3 2.4 9.8 4.9

Effort function fitting. We fit the effort function of three types
of workers respectively. For honest workers, we use 18176
data points (including feedback and effort level) from honest
workers to fit the honest workers’ effort function, and use
1312 data points and 212 data points to fit the effort function
of non-collusive malicious workers and collusive malicious
workers, respectively. Table III lists the NoRs of different
fitting functions, which measure the deviation between the
correlation and the data. From Table III, we observe that the
norm of residual of all fitting curves are close. Considering the
complexity of the functions, we choose quadratic functions as
the effort functions of workers.

TABLE III
COMPARISON OF NOR FOR DIFFERENT FITTING FUNCTIONS

linear quad cubic 4th 5th 6th
Honest workers 13.8 13.7 13.7 13.7 13.7 13.7
NC-Mal workers 2.60 2.60 2.60 2.59 2.59 2.59
C-Mal workers 11.3 11.3 11.3 11.3 11.3 11.3

Performance of our contract design algorithm. For perfor-
mance evaluation, we first select 200 honest workers (those
who have at least 20 reviews in history) and draw their paid
compensation and the compensation’s lower bound (derived
by Lemma 4.3) in Fig. 8(a), with the number of intervals in
effort region m equals to 10, 20, and 40, respectively. By
comparing the three figures in Fig. 8(a), we find that the
gap between the compensation and its lower bound becomes

smaller as the number of intervals increases, which indicates
the compensation converges to the optimal as the partition in
workers’ effort region goes denser.

We also compare the average, 5th percentile, and 95th
percentile compensation paid to all the honest workers, non-
collusive malicious workers, and collusive malicious workers
in Fig. 8(b), with µ = 1.0, 0.9 and 0.8. Recall that µ is the
weight assigned to the compensation paid to workers in the
requester’s utility. From the figure, we have two observations:
(1) the workers’ compensation increases as µ decreases and
(2) the compensation paid to the three types of workers
follows: honest workers > non-collusive malicious workers >
collusive malicious workers. For observation (1), as µ is the
weight given to the compensation paid to workers, a lower µ

indicates a “generous” requester, who cares more about the
benefit brought by workers’ feedback, but less about the cost
paid to workers. As for observation (2), recall that, in the
requester’s utility, we have a penalty for the weight of feedback
(defined by Equ. (5)) from non-collusive malicious workers
(penalty is κemal

i) and collusive malicious workers (penalty
is κemal

i + γAi). Considering the penalties, the requester will
value the feedback from collusive and non-collusive workers
less compared to honest workers when designing the contract,
which consequently leads to less compensation paid to collu-
sive and non-collusive malicious workers.

In addition, as shown in Fig. (8)(c), we compare the re-
quester’s utility of our contract design and a baseline approach,
in which all the malicious workers are simply excluded from
the system. As shown, our contract design outperforms the
baseline method. This is because that, when assigning weights
to workers’ feedback, our strategy can take advantage of some
of the malicious workers, specifically those who might be
biased but are still accurate within a certain acceptable range.
As for the malicious workers whose reviews are too distant
from the average reviews by experts, the weight of their
feedback will be close to 0, and hence will be automatically
eliminated by our method.

VI. RELATED WORK

Many current crowdsourcing platforms offer a limited capa-
bility to the requester in designing the pricing policies, mostly
limiting them to a single fixed price [1], [2], [21]. These
approaches do not take into account the change of workers’
behaviors, and hence cannot incentivise a high-quality work
from workers. Recently, more efforts have been devoted to
studying dynamic pricing strategies, in which the worker’s
compensation can be adjusted based on their performance
for tasks [3]–[10]. For example, Thanh et al. [7] formulated
the dynamic pricing problem as a multi-armed bandit (MAB)
problem, and applied bandit algorithms to maximize the num-
ber of tasks. Zhang et al. [5] studied three crowdsourcing
models, involving cooperation and competition among the
service providers.

Singer [8] has initiated a budget feasibility framework, of
which the objective is to design incentive compatible mech-
anisms to maximize a requesters utility under a budget. The

20 40 60 80 100 120 140 160 180 200

4

6

8

10

C
om

pe
ns

at
io

n

20 40 60 80 100 120 140 160 180 200

4

6

8

10

20 40 60 80 100 120 140 160 180 200

4

6

8

10

User ID

m = 10

m = 20

m = 40

(a) Comparison of the compensation paid to 200 workers in our strategy (dark
blue) and the compensation’s lower bound (green).

Honest NCM CM
0

2

4

6

8

W
or

ke
r’s

 c
om

pe
ns

at
io

n

µ = 1.0
µ = 0.9
µ = 0.8

(b) Compensation comparison of d-
ifferent types of workers

Our contract Baseline
0.9

1

1.1

1.2

1.3

1.4

1.5x 10
5

T
he

 r
eq

ue
st

er
’s

 u
til

ity

µ = 1.0
µ = 0.9
µ = 0.8

(c) Utility comparison of our con-
tract design and a baseline method

Fig. 8. Real data analysis from the Amazon review trace.

framework has been adapted to different settings [4], [5], [9],
[10]. For example, Zhang et al. [4] focused on incentivizing
crowd workers to label a set of binary tasks under strict
budget constraint. Singer and Mittal [5] presented constant-
competitive incentive compatible mechanisms to maximize the
number of tasks with a budget limit, and to minimize payments
given a fixed number of tasks to complete. Ho et al. [22]
formalized an online task assignment problem with budget
limit, and presented a framework for matching workers with
requesters based on the workers’ expertise.

Though the above dynamic pricing strategies have their
own merits, all of them rely on the two assumptions: 1) the
worker effort level is directly observable, and 2) workers are
homogenous with the same objective and strategy. In contrast
to the existing works, our work completely removes both
assumptions.

VII. CONCLUSION

In this paper, we presented a dynamic contract strategy to in-
centivise high-quality work from heterogeneous workers. Both
theoretic analysis and experimental results prove that our con-
tract design achieves a near optimal solution. Our experiments
prove that our approach can incentivise high-quality honest
workers while prevent pollution from malicious workers.

Next, we plan to account for more sophisticated malicious
workers or collusive malicious workers, and will study how the
contract functions are supposed to deal with these behaviors.
We also plan to extend our model from review tasks to a more
general case, which can be applied to different crowdsoucing
applications, like classification.

REFERENCES

[1] J. J. Horton and L. B. Chilton. The labor economics of paid crowd-
sourcing. In Proc. of EC, 2010.

[2] Long Tran-Thanh, Trung Dong Huynh, Avi Rosenfeld, Sarvapali Ram-
churn, and Nicholas R. Jennings. Budgetfix: Budget limited crowdsourc-
ing for interdependent task allocation with quality guarantees. In Proc.
of AAMAS, 2014.

[3] Yanjiao Chen, Baochun Li, and Qian Zhang. Incentivizing crowdsourc-
ing systems with network effects. In Infocom, 2016.

[4] Qi Zhang, Yutian Wen, Xiaohua Tian, Xiaoying Gan, and Xinbing Wang.
Incentivize crowd labeling under budget constraint. In Infocom, 2015.

[5] Yaron Singer and Manas Mittal. Pricing mechanisms in crowdsourcing
markets. In Proc. of WWW, 2013.

[6] Xiang Zhang, Guoliang Xue, Ruozhou Yu, Dejun Yang, and Jian Tang.
Truthful incentive mechanisms for crowdsourcing. In Infocom, 2015.

[7] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings. Efficient
crowdsourcing of unknown experts using multi-armed bandits. Frontiers
in Artificial Intelligence and Applications, 2012.

[8] Y. Singer. Budget feasible mechanisms. In Proc. of FOCS, 2010.
[9] Y. Singer. How to win friends and influence people, truthfully: Influence

maximization mechanisms for social networks. In Proc. of WSDM, 2012.
[10] S. Dobzinski, C. Papadimitriou, and Y. Singer. Mechanisms for

complement-free procurement. In Proc. of EC, 2011.
[11] Yibo Wu, Yi Wang, Wenjie Hu, Xiaomei Zhang, , and Guohong

Cao. Resource-aware photo crowdsourcing through disruption tolerant
networks. In Proc. of ICDCS, 2016.

[12] Ioannis Boutsis and Vana Kalogeraki. On task assignment for real-time
reliable crowdsourcing. In Proc. of ICDCS, 2015.

[13] Amir Fayazi, Kyumin Lee, James Caverlee, and Anna Squicciarini.
Uncovering crowdsourced manipulation of online reviews. In Proc. of
SIGIR. ACM, 2015.

[14] Tianyi Wang, Gang Wang, Xing Li, Haitao Zheng, and Ben Y. Zhao.
Characterizing and detecting malicious crowdsourcing. In Proc. of
Sigcomm, 2013.

[15] Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y. Zhao. Man
vs. machine: Practical adversarial detection of malicious crowdsourcing
workers. In Proc. of Usenix Security, 2014.

[16] John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. Ensuring
quality in crowdsourced search relevance evaluation: The effects of train-
ing question distribution. In SIGIR 2010 workshop on crowdsourcing
for search evaluation, pages 21–26, 2010.

[17] David Oleson, Alexander Sorokin, Greg P Laughlin, Vaughn Hester,
John Le, and Lukas Biewald. Programmatic gold: Targeted and scalable
quality assurance in crowdsourcing. Human computation, 11(11), 2011.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms 2nd Edition. The MIT Press, 2001.

[19] Frederick S. Hillier. Linear and Nonlinear Programming. Stanford
University, 2008.

[20] David Streitfeld. The best book reviews money can buy. New York
Times, 25, 2012.

[21] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive
task assignment for crowdsourced classification. In Proc. of ICML, 2013.

[22] C.-J. Ho and J. W. Vaughan. Online task assignment in crowdsourcing
markets. In Proc. of AAAI, 2012.

APPENDIX

Proof of Lemma 4.2

Proof In Case III,
Since 1(

α
(k)
i,l +ω

)(
α
(k)
i,l−1+ω

) ≥ (2r2lδ+r1)(2r2(l−1)δ+r1)
β 2 and α

(k)
i,l −

α
(k)
i,l−1 ≤

β

2r2lδ+r1
− β

2r2(l−2)δ+r1
= −4β r2δ

(2r2lδ+r1)(2r2(l−2)δ+r1)
, we

have

k

∑
l=1

(
F3

i (xi,yt
i,l)−F3

i (xi,yt
i,l−1)

)
(46)

≤
k

∑
l=2

(
(2r2(l−1)δ + r1)(2r2lδ + r1)

4r2
− (r1 +2r2δ (l−1))2

4r2

)

× −4β r2δ

(2r2lδ + r1)(2r2(l−2)δ + r1)

<
k

∑
l=2

−2β r2δ 2

2r2lδ + r1
<

k

∑
l=2

−2β r2δ 2

2r2(k−1)δ + r1
=

−2β r2kδ 2

2r2(k−1)δ + r1

Accordingly,
ct

i,k = F3
i (xi,yt

i,l)+βyt
i,k =

k

∑
l=1

(
F3

i (xi,yt
i,l)−F3

i (xi,yt
i,l−1)

)
+βyt

i,k

<
−2β r2kδ 2

2r2(k−1)δ + r1
+βek (47)

k

∑
l=1

(
F2

i (xi,yt
i,l)−F2

i (xi,yt
i,l−1)

)
≤

k

∑
l=2

(
(2r2(l−1)δ + r1)(2r2lδ + r1)

4r2
− (r1 +2r2δ (l−1))2

4r2

)

× −4β r2δ

(2r2lδ + r1)(2r2ei,l−2 + r1)
(48)

<
k

∑
l=2

−2β r2δ 2

2r2lδ + r1
(49)

<
k

∑
l=2

−2β r2δ 2

2r2(k−1)δ + r1
(50)

=
−2β r2kδ 2

2r2(k−1)δ + r1
(51)

Accordingly,

ct
i,k = F2

i (xi,yt
i,l)+βyt

i,k

=
k

∑
l=1

(
F2

i (xi,yt
i,l)−F2

i (xi,yt
i,l−1)

)
+βyt

i,k

<
−2β r2kδ 2

2r2(k−1)δ + r1
+βek (52)

Proof of Lemma 4.3.

Proof For the sake of contradiction, assume that ct,(k)
i,min < β (k−

1)δ , then F3
i (xi,yt

i,k) = ct,(k)
i,min−βyt

i,k < β (k− 1)δ −βyt
i,k ≤ 0.

It implies that, using the optimal effort level yt
i,k, worker i has

utility lower than 0, which is even lower than the utility with
0 effort level. A contradiction.

