Combating Crowdsourced Review Manipulators:
A Neighborhood-Based Approach

Parisa Kaghazgaran
Texas A& M University
College Station, TX
kaghazgaran@tamu.edu

ABSTRACT

We propose a system called TwoFace to uncover crowdsourced
review manipulators who target online review systems. A unique
feature of TwoFace is its three-phase framework: (i) in the first
phase, we intelligently sample actual evidence of manipulation (e.g.,
review manipulators) by exploiting low moderation crowdsourcing
platforms that reveal evidence of strategic manipulation; (ii) we then
propagate the suspiciousness of these seed users to identify similar
users through a random walk over a “suspiciousness” graph; and
(iii) finally, we uncover (hidden) distant users who serve structurally
similar roles by mapping users into a low-dimensional embedding
space that captures community structure. Altogether, the TwoFace
system recovers 83% to 93% of all manipulators in a sample from
Amazon of 38,590 reviewers, even when the system is seeded with
only a few samples from malicious crowdsourcing sites.

ACM Reference Format:

Parisa Kaghazgaran, James Caverlee, and Anna Squicciarini. 2018. Combat-
ing Crowdsourced Review Manipulators: A Neighborhood-Based Approach.
In WSDM 2018: WSDM 2018: The Eleventh ACM International Conference on
Web Search and Data Mining , February 5-9, 2018, Marina Del Rey, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.3159726

1 INTRODUCTION

User review aggregators like Amazon, Netflix, and Yelp play a
central role in how we decide what movies to view, products to
purchase, restaurants to patronize, and even doctors to visit. With
this importance, the reviews at the heart of these aggregators are
vulnerable to manipulation [32]. This manipulation - often in the
form of artificial ratings and reviews — can degrade trust in these
online platforms and in their products and services. Indeed, many
previous efforts have explored methods to uncover this manipula-
tion, often by applying machine learning or graph-based algorithms,
e.g., [23], [31], [1], [25], [12], [34]. These methods typically are built
and validated over a dataset of “known” manipulated reviews. And
yet, most make one of several critical assumptions:
e Manual labeling of fake reviews: In the first approach, judges —
often either researchers themselves or a team of labelers at a
review site — assess individual reviews to determine if they are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5-9, 2018, Marina Del Rey, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02...$15.00
https://doi.org/10.1145/3159652.3159726

James Caverlee
Texas A& M University
College Station, TX
caverlee@tamu.edu

Anna Squicciarini
Pennsylvania State University
State College, PA
asquicciarini@ist.psu.edu

fake or not [17], [24]. These methods sometimes rely on unsu-

pervised algorithms (e.g., the output of a proprietary company

algorithm) or on manual and possibly error-prone labeling of
fake reviews without access to a ground truth of the actual intent
of the review writers themselves.

o Ex post analysis of outliers: A second approach is to validate detec-
tion algorithms through ex post analysis of suspicious reviews.
Typically, an algorithm is run over a collection of reviews and the
top-ranked results are examined [31], [1], [34]. This approach
tends to focus on highly-visible fake behaviors (e.g., a reviewer
who posts dozens of reviews in a period of minutes), but may
miss more subtle behaviors.

o Simulation of bad behavior: A recent third approach is to simu-
late the behaviors of malicious workers [19]. In this approach,
volunteers are asked to imagine themselves as fake review writ-
ers and then post fake reviews. While encouraging, this method
necessarily lacks insight into the strategies and motivations of
actual fake review writers.

We seek to complement these foundational studies by leverag-
ing a large collection of actual review manipulators. In contrast to
previous efforts where the critical knowledge of intent to deceive
is missing, we collect a set of review manipulators for whom we
have strong evidence of intent to deceive. Concretely, we monitor low
moderation crowdsourcing sites like RapidWorkers, ShortTask, and
Microworkers, where attacks on review sites can be launched by
malicious paymasters. By tracking these workers from the crowd-
sourcing platform to a target review site like Amazon, we can
identify deceptive review manipulators. In our analysis (see Fig-
ure 4) we find that these review manipulators engage in a deceptive
mix of legitimate reviews (to build reputation and trust) and fraud-
ulent reviews (to cash in on this trust). This two-faced behavior
poses great challenges to traditional detection mechanisms since
the fraudulent reviews may be masked by the large number of le-
gitimate reviews. Indeed, through our investigation of 300 target
products on Amazon and their reviewers, we find that although
malicious and benign reviewers occasionally behave differently
in terms of rating, burstiness of reviews, review length and so on,
these traditional features do not provide strong power to distinguish
between review manipulators and legitimate reviewers.

Hence, we propose in this paper the TwoFace system to uncover
crowdsourced review manipulators who target online review sys-
tems. First, we intelligently sample actual evidence of manipulation
(e.g., review manipulators) by exploiting low moderation crowd-
sourcing platforms that reveal evidence of strategic manipulation.
Since we find that many traditional features do not have strong
power to identify two-faced reviewers with a mix of legitimate
and deceptive reviews, we propose to exploit neighborhood-based

https://doi.org/10.1145/3159652.3159726
https://doi.org/10.1145/3159652.3159726

characteristics of the reviewers themselves. The intuition is that
although individual behaviors may be easy to mask, the collec-
tive campaign organization may be uncovered by exploiting the
network around reviewers and products. Based on this intuition,
we then propagate the suspiciousness of the original seed users
to identify “similar” users through a random walk over a “suspi-
ciousness” graph. In this way, we can identify users who may be
likely to participate in deceptive review campaigns. Note, however,
that users who are distant in the “suspiciousness” graph will rarely
be considered as deceptive reviewers. Hence, our final step is to
uncover these (hidden) distant users who serve structurally similar
roles by mapping users into a low-dimensional embedding space
that captures community structure. In this way, we can distinguish
deceptive reviewers through their community embedding structure.

Through experiments, we evaluate the TwoFace system over a
sample from Amazon of 38,590 reviewers and 580,000 reviews. We
discover that social features perform much stronger in distinguish-
ing manipulators and regular reviewers compared to behavioral
features. We also find that manipulators and regular users behave
relatively similar in terms of rating, review burstiness, and so on.
In addition, manipulators who participate in multiple crowdsourc-
ing campaigns play a key role in uncovering other malicious but
not obviously fraudulent reviewers. We observe that many of the
reviewers who write only one review on target products are more
similar to actual malicious reviewers than regular users. Altogether,
the TwoFace system recovers 83% to 93% of all manipulators, even
when the system is seeded with only dozens of examples from
malicious crowdsourcing sites, and outperforms a state-of-the-art
baseline.

2 RELATED WORK

Research in review manipulation typically focuses on identifying
either fake reviews or the coordinated activities of fraudulent review
groups. We highlight here several major research thrusts:

In the first, the content of the reviews themselves may offer indi-
cators of “spam-ness” or deception. Many works here develop text
or NLP models to distinguish fake reviews from legitimate reviews,
e.g. [18-20].

Complementing the review text itself, the behavioral signals re-
vealed by the reviewers or the reviews may yield clues as to which
are fraudulent [13]. For example, [2] detects lock-step behaviors
using temporal patterns in the Facebook graph wherein users and
pages are nodes and “Likes” are edges. A few works address the
temporal behavior of reviews [5, 33], for example by finding bursti-
ness or other synchronized behaviors. Bayesian approaches have
been applied in rating time-series to detect anomalies [10].

In another perspective, graph-based approaches have become
popular in fraud or anomaly detection by modeling users as nodes
and their relationships as edges. Approaches include spectral meth-
ods like eigen-decomposition or singular value decomposition to
cluster similar nodes in the graph [12, 23, 25]. Iterative models to la-
bel nodes as trustworthy or non-trustworthy are proposed in [6, 31].
Markov Random Fields (MRF) and belief propagation approaches
have been used to identify dense and most likely suspicious sub-
graphs [1, 21]. In another view, malicious users are detected through
graph-based measures like neighborhood diversity [34].

@ napianrers ™ amazon.com—)> I

Amazon Reviews |
andReviewers |

Propagation Algorithm
e 1
=> f;
{ ume —] [Uued

v Malicious Seeds

Topranked users

Training Data

123

T & n
Co-Review Graph A"Ja”c‘j"]‘c‘/}" Matrix w,
Testing Data,
Feature Leaming
Output lvid '
5 Input

Evaluation Results

Figure 1: TwoFace overall framework.

A related direction is in detecting dense blocks in a review-rating
matrix [11, 26, 27]. Extraordinary dense blocks correspond to groups
of users with lockstep behaviors, e.g., [11]. Moreover, this method
has been lately extended from matrix to tensor representation to
incorporate more dimensions (e.g., temporal aspects) [26, 27]. How-
ever, these approaches may have difficulty in detecting subtle at-
tacks where there are not such clearly defined dense block charac-
teristics. Finally, some recent work focuses on detecting not just
fake reviews but fake crowd activities, e.g., [30].

3 TWOFACE SYSTEM DESIGN

In this section, we introduce the overall system design for TwoFace
(see Figure 1). TwoFace is designed to be deployed in real-world
scenarios with the following characteristics:

o First, we assume there is only some small, partial evidence of re-
view manipulation. In contrast to many previous efforts, we make
no assumption that there is a large, curated collection of positive
and negative examples of review manipulation. This corresponds
to real-world scenarios of evolving and newly emerging types of
review manipulation.

e Second, we target scenarios in which review manipulation en-
gages in difficult-to-detect behaviors. That is, the review manipu-
lators may engage in a mix of legitimate and deceptive reviews,
so that many traditional content-based or dense-block methods
may have difficulty in finding them.

e Finally, TwoFace is recall-focused. Our goal of uncovering review
manipulators is to identify as many as possible out of the entire
space of reviewers, in contrast to precision-focused approaches
that may miss the vast majority of manipulators. We assume
system operators can expend resources to further examine these
potential manipulators.

In the following, we introduce each of the key components of

TwoFace, before turning to a comprehensive evaluation in Section 4.

3.1 Identifying Suspicious Seeds

Our first task is to identify suspicious users. As we have argued,
most existing methods for identifying deceptive reviews and re-
viewers have focused on indirect approaches, where the ground
truth is necessarily an approximation. For example, previous efforts

What is expected from workers?

Read the product description before writing down a review.
Go to https://goo.gl/7Qf Woh.

Leave a relevant 5-star review with at least 40 words.
Provide proof that you left the review yourself.

Figure 2: An example crowdsourcing task.

* % % % % Best cortisol blocker to reduce high levels
of stress, July 24, 2017

My stress levels have increased lately due to heavy work
loads in my office and that directly impacting my life. I
have gained weight and easily gets tired. I have tried many
products to reduce my cortisol levels which is causing
stress, but those products don’t fetch any results and based
on my uncle recommendation I have tried this product and
it has relieved my stress and assisted in returning my
cortisol levels to a more natural state. I feel more energized
and active than before and the product also helped in
losing body fat. Must try the product.

Figure 3: An example review written by a crowd worker.

have identified users with many reviews in a short burst of time or
with a skewed rating distribution as suspicious [10, 11, 14, 27]. In
contrast, many seemingly “normal” reviewers may be overlooked
in practice if their deceptive reviews are blended in with legitimate
ones.

Sampling Crowdsourcing Sites for Identifying Suspicious Users.

Alternatively, we aim to identify users who have been tasked by a
crowdsourcing site. In this way, we can identify with high confi-
dence users who are indeed deceptive even if the majority of their
reviews are legitimate. As an example, consider the task posted to
RapidWorkers in Figure 2. This type of task is common on Rapid-
Workers and related sites like ShortTask and Microworkers. As
an example of the type of review that is created by crowd worker,
Figure 3 shows a sample of a crowdsourced review for a “cortisol
supplement” product sold by Amazon. On examination, this review
displays few (if any) clear signals of it being fraudulently written.

By monitoring such requests, we can begin to study the behav-
iors of fraudulent review writers. Although not representative of all
types of manipulation, this approach does provide the tantalizing
opportunity to study malicious behaviors in the wild. To collect
suspicious users, TwoFace implements two crawlers: one for identi-
fying crowdsourcing tasks and the other crawler has been designed
to collect reviews from a target site. In this paper, we focus on tasks
posted to RapidWorkers that target Amazon and simultaneously
ask for fake reviews, similar to the example shown in Figure 2. Note
that there are many such sites! and many additional targets (e.g.,
Yelp, App Store, Play Store).

Concretely, we crawl all such tasks from July 2016 to February
2017. In total, we identify 300 unique Amazon product IDs. By
linking these IDs to Amazon, we crawl all reviews associated with

1We also checked several other crowdsourcing websites such as ShortTask, Microwork-
ers and Amazon Mechanical Turk (AMT); however, tasks related to promoting products
in Amazon are mainly announced on RapidWorkers.

each targeted product. Altogether we find 21,162 reviews that have
been written by 12,212 unique reviewers. Typically, a target on these
crowdsourcing sites (e.g., a product on Amazon) may be subject to
dozens of fake reviews. We find that the number of required fake
reviews requested by paymasters varies: the average is 13, but some
paymasters ask for only 1, while the maximum requester asked for
75 reviews. Contrary to previous efforts in dense block detection or
in methods that require high numbers of fake ratings, we find that
84% of the tasks require fewer than 20 fake reviews. This indicates
the challenge in identifying fraudulent reviewers.

Two-Faced Reviewers. For each reviewer we encounter, we addi-
tionally collect all of their reviews (which may include products
beyond those targeted by these crowdsourcing sites). Ultimately,
our dataset contains the following information: product ID, review
ID, reviewer ID, review title, review content, rating, and time-stamp.
In total, we obtain 580,000 unique reviews in our original dataset. To
investigate the behavior of fraudulent vs non-fraudulent reviewers,
we sampled reviewers with at least 10 reviews. In the following, we
examine their behavior in terms of rating, review burstiness, review
length, self-similarity, and lexical diversity. For non-fraudulent re-
viewers, we sampled reviewers from the Amazon dataset introduced
in [15], who co-reviewed products beyond those crowdsourcing
products targeted by a crowdsourcing attack.

Ratings. We begin with Figure 4a, which shows the ratings distri-
bution for reviews written by our two types of reviewers. Echoing
previous studies, e.g., [9], we see that crowdsourcing workers tend
to write 4 or 5-star reviews. While crowdsourcing efforts could
be targeted at suppressing the ratings for a competitor, we see in-
stead that most efforts focus on promotion. Compared to legitimate
reviewers, the rate of 5-star reviews is 20% higher for fraudulent
reviewers.

Review Length. We see in Figure 4b the distribution of the review
length in terms of number of words between the two groups. We can
see that reviews by fraudulent reviewers are relatively short. Even
though task requestors require a minimum number of words for
payment, these graphs show that all reviews written by fraudulent
reviewers are not necessarily a response to crowdsourcing tasks
which often require a word count minimum.

Burstiness of Reviews. Intuitively, crowd workers may seek to com-
plete several tasks in a short time to maximize their payoff. Hence,
for each reviewer we measure the standard deviation of the times-
tamp for that person’s reviews — we consider the last 10 reviews for
reviewers with more than 10 reviews. We plot the distribution for
this “burstiness” as seen in Figure 4c. In this case, a small standard
deviation corresponds to many reviews being posted in a short
time window, whereas a higher standard deviation corresponds to
reviews posted over a long time period (and hence, lacking bursti-
ness). Contrary to our hypothesis, burstiness of reviews is not a
strong indicator to distinguish fraudulent and non-fraudulent users.

Self-similarity. Finally, we measure how much a reviewer’s language
mimics previous reviews they have written. Perhaps fraudulent re-
viewers write according to a simple “template”, and so new reviews
tend to repeat language used in previous ones. Here, we measure
the lexical overlap between each two sequential reviews (r;,7;)
written by the same reviewer using the Jaccard similarity (JS).

= Non-Fruadulent
= Fraudulent

mmm Non-Fraudulent
= Fraudulent

1 2 3 4 5 0-10 10-20 20-40 40-60 >60

(a) Rating Distribution (b) Review Length

(c) Review Burstiness in Days

= Non-Fraudulent
= Fraudulent

=W Non-Fraudulent
= Fraudulent

0-10 10-20 20-40 40-60 >60 0-10 10-20 20-30 40-50 >50

(d) Self-similarity

Figure 4: Traditional features show some differences between fraudulent and non-fraudulent reviewers, but their distinguish-

ing power is weak.

Figure 4d shows that non-fraudulent tend not to repeat themselves
(low Jaccard score); whereas fraudulent reviewers tend to rely on
repeated keywords or phrases. Intuitively, reviewers engaged in
crowd-launched manipulation tend to mimic themselves over time
since they are not actually experienced with the actual product.

Based on this mix of somewhat encouraging features, we eval-
uate a variety of classifiers (see Section 4). We find that these tra-
ditional features do a poor job of distinguishing these two-faced
reviewers. Our hypothesis is that traditional signals may fail since
these reviewers engage in a mix of legitimate and deceptive reviews.
Motivated by these observations, we turn to how we can propagate
the suspiciousness of our original seeds for uncovering unknown
fraudulent reviewers.

3.2 Propagating Suspiciousness

In this and the following section, we propose two complementary
perspectives on propagating the suspiciousness of a known suspi-
cious user. The first — based on a traditional random walk over the
user-user graph — exploits the locality of suspiciousness within the
graph. The main intuition is that suspicious users will tend to clus-
ter in the graph. The second - based on recent advances in network
embeddings - exploits the structure of the graph around suspicious
users. So even if two users are distant in the graph, they may be
considered similar in terms of their malicious activities. Intuitively,
the campaign network structure around fraudulent reviewers in a
site like Amazon may be similar even if the specific reviewers have
not been encountered before.

Reviewer-Reviewer Graph. Our approach is built on reviewer-
reviewer interactions. These interactions are mapped to a co-review
graph in which each reviewer is represented as a node and if two
reviewers write a review on the same product, then there exists
an edge between them. Formally, we model the reviewer network
as a graph G = (V,E) wherein V is a set of reviewers and E is
a set of undirected edges that connect reviewers. In our experi-
ments (see Section 4), we consider two scenarios: un-weighted and
weighted edges. In the first setting, if two users u; and u; (i # j) have
written reviews on multiple common products, this connection is
represented as a single edge. In the second setting, we represent
the number of common products as a weight value for the edge
w(ui, uj).

The number of nodes connected to user u is its degree D(u).
The co-review matrix corresponding to the un-weighted graph is
calculated as:

0 if (uj,uj) ¢ E

m(uj,uj) = .
i Uj {ﬁ 1f(u,-,uj)€E

Accordingly, the co-review matrix corresponding to weighted
graph is calculated as:

0 if (uj,uj) ¢ E
YkeD(u;) WU uk) if(ui, uj) € E

Note that the values in each matrix are normalized transition
probabilities.

m(u;j, uj) =

Random Walk Propagation. Our approach for propagating sus-
piciousness is inspired by the TrustRank algorithm proposed in
[6]. We aim to compute a suspiciousness score for each user based
on their connectivity to other users in the co-review graph. The
intuition is that fraudulent users write reviews on similar products,
so they may form a dense sub-graph of suspicious reviewers.

We briefly describe the algorithm and report the results in Section
4. The input to the algorithm is the co-review matrix (m), a seed set
(s), teleportation parameter («), the number of iterations (n), and
the number of nodes (|V|). The output is a suspiciousness vector

().

Algorithm 1 Suspiciousness Rank

1: e = 0y //Restart Vector
2: fori=1to|V]|do

3: if u; € s then

4: e(l) =1

50 €= ﬁ

6: r=e

7. for j=1tondo

8: r=amlr+(1-a)e
9: returnr

The restart vector e is initialized in steps 2-4 based on the seed
set, i.e, the values are one in the corresponding indices of seed set
items and zero in other places. Step 5 computes the /1 norm of
vector e so that the aggregate sum of the vector is equal to 1. In step
6, the suspiciousness score vector r is initialized to e. Finally, the

scores are calculated in steps 7-8 using a biased PageRank with e
as a restart vector referring to the seed set of fraudulent reviewers.
In each iteration, the suspiciousness score of a node propagates
among its neighbors and is dampened by the teleportation factor
a. The score vector r shows the probability of reaching each node
when the random walk, rooted at one of the nodes in the seed set,
is traversing the graph. In other words, the final scores measure
how relatively close a node is to the initial seeds. This approach
ranks reviewers based on their level of suspiciousness and suggests
reviewers that should be examined further by an expert.

Seed Selection. A key question is how the seeds for the random
walk propagation are selected in the first place. First, we need to
identify a small set of users as seeds that we certainly know are
fraudulent and then propagate their suspiciousness to other users
using iterative approaches. In some works, e.g., [6], initial seeds
are selected based on human judgment. Here, we consider three
different scenarios for seed selection that could arise in practice:

o If we find a user with tens of reviews on targeted products and
notice that all of his purchase statuses are unverified, then we
conclude that this user is a critical player working on behalf of
crowdsourcing websites. We call such reviewers highly malicious
users. Therefore, we pick reviewers with the maximum number
of such reviews as seeds. The intuition is that such reviewers may
be connected directly to other potential fraudulent reviewers in
the co-review graph. Therefore, propagating their suspiciousness
would lead to identifying fraudulent reviewers more accurately.
We call this approach the “best” choice of seeds.

e The second approach is to pick a few number of fraudulent
reviewers randomly and propagate their suspiciousness. This
approach is more indicative of real-world scenarios since we are
not always guaranteed to have found the best (most connected)
reviewers. For example, malicious users might use different ac-
counts to write fake reviews in order to avoid detection models.
We call this approach the “random" choice of seeds.

o The third approach is to pick a few number of fraudulent review-
ers randomly among reviewers with only a few reviews on target
products. The intuition here is that a system operator at a user
review site like Amazon may have discovered some fraudulent
reviewers, but only the weakest connected ones. How well does
the suspiciousness propagation work in this case? We call this
approach the “worst” choice of seeds.

In practice we find that there is a great variance in the quality
of seed selection approaches. To illustrate, we show in Figure 5
the Precision@k over the top-k ranked reviewers when we initial-
ize the suspiciousness propagation algorithm with seeds from the
best, random, and worst cases. In the real-world cases of random
and worst, we see that the fraction of reviewers that are actually
fraudulent drops precipitously with an increase in k. That is, while
there may be some localness in the co-reviewer graph which helps
identify nearby fraudulent reviewers, many fraudulent reviewers
are not closely connected to the seeds (hence, the low precision@k
as k grows). We do see that in the extreme case of picking the most
prolific seeds (which we argue is rare in practice), there is good
locality and good precision@k. Even so, for large choices of k, the
quality drops off too.

—— Best Choice —=- Random Choice ~ --::- Worst Choice

1.00 4
0.95 A
0.90 A
0.85 1
0.80 A
0.75 A

Precision

0.70 A
0.65 A
0.60 A
0.55 A

0.50 A

0 200 400 600 800 1000 1200 1400 1600
@k

Figure 5: Precision@k for different seed selection ap-
proaches.

3.3 Uncovering Distant Users

While traditional random walk methods exploit the locality of sus-
piciousness within the graph, they may miss reviewers who are not
closely connected to the original seeds. In particular, in crowdsourc-
ing scenarios, different fraudulent users may participate in different
crowdsourcing tasks, so there would not be a direct link between
them. Therefore, we need more sophisticated models to capture
this relationship. In this section, we adopt a framework for learning
feature representations of nodes in the network. Concretely, we
explore using network embeddings to classify similar nodes even
if two users are not directly connected but may have the same
structural role in the graph. For example, Figure 6 shows that even
though node 5 and node 10 act in two distinct communities, they
play the same structural role in their own community.

N
N

Figure 6: Same structural role in distinct communities. Here
nodes 5 and 10 serve similar roles as we surmise different
crowd campaigns may also be organized.

Reviewer Graph Embeddings. In node classification, the goal
is to predict the most accurate labels for the nodes [29]. On the
other hand, in supervised machine learning approaches, a set of
informative features is required. When it comes to the problem of
node classification in networks, it means feature representation
of the nodes is required. The idea of network feature learning is
inspired by the recent advances in natural language processing [16]
such as the Skip-gram model. In summary, the Skip-gram algorithm
goes over the words in a document, and builds a feature vector
- the word embedding— for every word in the vocabulary such
that it can predict its nearby words (i.e., words within a window).
The continuous feature representation of words are learned by

optimizing the likelihood objective function — Stochastic Gradient
Descent (SGD) - and is based on the distributional hypothesis
which declares words in similar contexts tend to be semantically
similar [7]. In essence, similar words tend to have similar word
neighborhoods.

Inspired by the Skip-gram model, a few recent works have pro-
posed models for feature learning from networks where a network
is “document” and the nodes are treated as “words” [4, 22, 28]. Sim-
ilar to a document that is an ordered sequence of words, a network
can be turned into an ordered sequence of nodes.

In this paper, we adopt the recent learning approach proposed
in [4] in which feature learning in networks is formulated as a
maximum likelihood optimization problem. Function f :— R?
maps nodes to their feature representation which are used in clas-
sification tasks later on. d indicates the number of dimensions of
the feature vector, so f is a matrix of size |V| X d. For each node
u € V, N(u) C V is the set of its neighborhoods. Depending on
the neighborhood sampling strategy, N (u) includes either immedi-
ate, embedding, or mixture neighbors. The goal is to optimize the
objective function given by f:

maxg Z log pr (N (u)|f (u))

uev
This function maximizes the log-probability of observing N (u)
as the neighborhood of node u given its feature representation f (u).
In our case, each node is a reviewer. Assuming the probability of
observing n; in neighborhood of u is independent from observing
any other node in the neighborhood of u, the probability function
can be treated as:

priNWIf@) =[] priulfm)
n;eN(u)

Moreover, node u and its neighbors n; have equal effect over each
other in the feature space. Therefore, their conditional probability
is modeled as a softmax function with dot product of their feature
vectors:

exp(f(u).f(n;
ool) — LU -F)
Zoev exp(f(u).f(v))
Putting it altogether, the objective function in Equation 3.3 can
be re-written as follows wherein Z,, = Y, ey exp(f (u).f (v)):

maxy Z {— log Z,, + Z f(u)f(m)}

ueV n; €N (u)

The remainder is to wisely determine neighborhood nodes i.e.,
N (u). The notion of neighborhood in a text document is defined
by a sliding window over sequential words. However, due to the
nature of networks, they do not have such a linear representa-
tion and a new notion of neighborhood is needed. Grover et. al
in [4] proposed an efficient sampling strategy known as node2vec.
Traditional neighborhood sampling approaches are Breadth-first
Sampling (BFS) and Depth-first Sampling (DFS). BFS samples nodes
which are in immediate neighborhood of node u, while DFS sam-
ples ones which are in increasing distance from u. node2vec enables
interpolating between BFS and DFS. Briefly, a biased random walk
explores the neighborhood of a node in a mixture of BFS and DFS

ways by tuning two parameters — Return and In-out — parameters.
In our case, we transform each reviewer (node) into an embedding
that captures its neighborhood structure.

Putting it all Together. So far, we have suggested two complemen-
tary approaches to address the problem of uncovering fraudulent
reviewers. The first one is based on traditional ranking algorithms
which scores users based on their suspiciousness and is completely
unsupervised. The other is to adopt an embedding feature repre-
sentation of the reviewers. Here, we propose to combine these two
approaches into a supervised classification framework:

o First, we take as input our seeds sampled from a crowdsourcing
platform. Typically, we may have one to dozens of seeds.

o Then we propagate the suspiciousness of these reviewers via the
random walk.

o After transforming every reviewer into its graph embedding
representation, we then train a classifier where the positive ex-
amples (the fraudulent reviewers) are drawn from the ranked
list of suspicious users. The negative examples (the legitimate
reviewers) are drawn randomly from a held out set of reviewers.

4 EXPERIMENTS

In this section, we first introduce our ground truth. Then, we report
the results of evaluating the complementary methods on our dataset
to identify active users in review manipulation tasks. Finally, we
compare our approach with a number of alternatives.

4.1 Data Preparation

As we mentioned above, there are 12,212 reviewers who wrote a
review on target products. We sampled 50% of them randomly. To go
one step further, considering the products those sampled reviewers
are associated with — 238,000 products — we sampled their reviewers
from an Amazon dataset introduced in [8, 15]. Finally, our expanded
dataset contains 38,590 reviewers over whom the co-review graph
is built.

Ground Truth. In total, Table 1 shows the number of reviewers
who wrote a review on a specific number of target products in
our dataset (which include 12,212 reviewers in total). For example,
87 reviewers wrote reviews on more than 20 products targeted by
the crowdsourcing site. Our dataset naturally contains a mix of
reviewers and their reviews: some are legitimate reviews, some are
the result of targeted crowdsourced efforts, while others may also
be fraudulent but outside the purview of our sampling method (e.g.,
launched via an unobservable channel like private email). Hence,
we create two datasets — one based on a conservative assumption,
and one that is a slight relaxation:

Targets 1 2 3-5 6-8 | 9-20 | >20
Reviewers | 9,096 | 1,669 | 1,093 | 126 | 141 87

Table 1: Distribution of reviewers based on number of target
products they are associated with.

Conservative definition of fraudulent reviewers. We consider a re-
viewer to be a fraudulent reviewer if they have reviewed two or
more products that have been targeted by a crowdsourcing effort.

1.001
0.954
0.90 -
0.85

1.00 4
0.95
0.904
0.85
0.80 0.80 1
0.754
0.70 4

0.65 1

0.75

Precision

0.701

0.65 1

Best Choice
--- Random Choice
Worst Choice

0.60 1 0.60 1

0559 ...

0.551

0.50

1004 -
0.95 1
0.90 1
0.85 4
0.80 1
0.75 4
0.70 1

0.65 -
0.60 1
0.55 4

800 1000 1200 1400 1600 050 0

@k

0 200 400 600 200 400 600

(a) All three seed selection approaches.

800
@k

(b) Random selection with error bars.

800 1000 1200 1400 1600
@k

0.50 T T T T
1000 1200 1400 1600 0 200 400 600

(c) Worst selection with error bars.

Figure 7: Precision@k for un-weighted graph with different seed selection approaches and 5 initial seeds.

Intuitively, workers may aim to maximize their income by partici-
pating in many tasks (and hence, targeting many products). On the
other hand, it is unlikely that a random user will write a legitimate
review on two different crowdsourcing products in a short period
of time, considering Amazon’s selection of millions of products [3].
Making this conservative assumption, in our sampled dataset, we
identify 1,650 of 38,590 reviewers as fraudulent reviewers and label
the rest (36,940 reviewers) as non-fraudulent. Note that, 4,565 re-
viewers labeled as non-fraudulent still wrote one review on a target
product. Of course, there may still be some unknown fraudulent
reviewers in this set of 4,565 reviewers, but it gives us a baseline to
compare against the clearly prolific fraudulent reviewers.

Relaxed definition of fraudulent reviewers. In an alternative way to
identify fraudulent users, we can relax our conservative assumption
and instead label all the reviewers associated with crowdsourcing
products (i.e., 6,215 of 38,590) as fraudulent reviewers and label the
rest as non-fraudulent reviewers. In this way, any reviewer who
has reviewed a targeted product is labeled as fraudulent. While
certainly overstating the number of fraudulent reviewers, this re-
laxed definition may give us more insights into the capability of
our approach.

4.2 Propagating suspiciousness

Revisiting our initial approach to identify fraudulent reviewers by
propagating suspiciousness, we report here an additional exper-
iment where we consider five seed users. Again, we identify the
best, random, and worst choice of seeds. We repeat this selection
20 times (since users are randomly chosen either from the entire
set or from the least connected reviewers) and report in Figure 7
the variation of precision@k for different approaches in picking
initial seeds. Here, we report all three approaches in (a), then we
show the random approach with error bars in (b), and the worst
approach with error bars in (c). The variability suggests that seed
selection alone cannot identify fraudulent reviewers. This echoes
our previous figure (see Figure 5), yet here we see that the “worst”
approach can sometimes do better than random as we increase
k. We attribute this result to the fact that some of the fraudulent
reviewers have been more active in crowdsourcing manipulation in
the past and so they are uncovered as actual fraudulent reviewers
at k <= 500.

4.3 TwoFace detection

Given these results, we now turn to evaluating the quality of the
end-to-end TwoFace system. Recall that TwoFace takes as input
the seeds, the suspiciousness propagated scores, and the graph
embeddings for the co-review graph.

Choice of Classifier. The first question is what classification al-
gorithm to apply for distinguishing between fraudulent and non-
fraudulent reviewers? Here, we consider six alternatives: logistic
regression, SVM, Naive Bayes, Decision Tree, Random Forest, and
a one-class version of SVM. One-class SVM builds a classifier using
instances from only one class — fraudulent in our scenario — and
then classifies new instances from both classes. We include this al-
ternative to validate our use of legitimate reviewers in the training,
even though our sample of legitimate reviewers is taken from a
random sample of Amazon (and so, may erroneously include some
fraudulent reviewers).

Figure 8 shows the performance of different classifiers in the
presence of 10% labeled data, where the results are averaged over
20 runs. We report the Precision and Recall for the Fraudulent class
as well as F1-macro for the whole dataset. It should be noted that
the other class which is abundant (95% of the dataset) always has
high Precision and Recall. We observe that Logistic Regression and
one-class SVM give us higher Recall, 91% and 88% respectively,
but Logistic Regression performs better in Precision. While Ran-
dom Forest and SVM give higher Precision, 84% and 73% respec-
tively, they have a poor Recall i.e., many of fraudulent users remain
unidentified. Therefore, we do our further analysis using Logistic
Regression.

How Many Seeds Do We Need? In practice, the TwoFace system
may have access to only a small fraction of all fraudulent review-
ers. Hence, we study here the impact of the number of fraudulent
reviewers on the quality of classification. Specifically, we consider
samples of our entire dataset ranging from 1% to 10% of all review-
ers; in this case, 1% corresponds to about 16 fraudulent reviewers
and 370 non-fraudulent ones. We additionally consider both the
weighted and unweighted graph for suspiciousness propagation
as input to the method. Table 2 shows their performance in the
presence of 1% to 10% of labeled data. As we increase the number
of seeds, Recall increases from 76% to 92% and 83% to 93% in un-
weighted and weighted cases respectively while Precision remains
relatively constant — 30% to 35%. This encouraging result shows
that TwoFace can obtain high Recall even in the presence of very

EEm Random Forest
One-class SYM

EE |ogistic Regression
. SVM

I Naive Bayes
Decision Tree

90 -
80 -
70 -
60 -
50 -
40 -
30 A
20 -

10 A

Recall Precision F1-Macro

Figure 8: Comparing classifiers.

few seeds. Since the weighted and un-weighted cases perform rel-
atively close, we focus our discussion on the un-weighted graph
going forward.

| Training [1% | 2% [3% [4% | 5% | 6% | 7% | 8% | 9% | 10%

l un-Weighted Graph

Recall 76 | 85 | 88 | 90 | 91 | 91 | 92 | 92 | 92 | 92

Precision | 34 | 33 | 32 | 30 | 30 | 30 | 30 | 30 | 30 | 30

Fl-macro | 72 | 71 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70

Weighted Graph

Recall 83 | 88 | 89 | 8 | 92 | 92 | 92 | 93 | 93 | 93

Precision | 35 | 33 | 34 | 34 | 32 | 32 | 32 | 32 | 32 | 32

Fl-macro | 73 | 72 | 72 | 72 | 71 | 71 | 72 | 71 | 71 72

Table 2: Increasing the number of seed users available to
TwoFace.

The Impact of Suspiciousness Propagation. In an earlier exper-
iment, we saw that suspiciousness propagation alone is insufficient
for uncovering fraudulent reviewers. Here, we investigate the im-
pact of using the highly-ranked reviewers that are output from the
suspiciousness ranking approach as input to our TwoFace classifi-
cation. That is, do we really need to propagate suspiciousness? Or
can we just use the initial seeds we sample from the crowdsourcing
platform alone? In Figure 9, we show the impact of suspiciousness
propagation on feature embedding classification. For example, if we
rely only on the original seeds from the crowdsourcing platform we
achieve around 71% for Recall of fraudulent reviewers; in contrast,
if we feed a small number of highly-ranked users from the suspi-
ciousness propagation algorithm into classifier, we see that Recall
jumps to 83% with just 1% of seeds. This finding demonstrates the
importance of propagating the suspiciousness of these seed users
through the random walk over the co-review graph.

Relaxing the Ground Truth. As we can see from Table 2 Preci-
sion is in the 30% range which may seem surprising (even though
Recall is quite high). This means that many of the non-fraudulent
users have been misclassified as fraudulent, which could burden
resources that are required to further examine these reviewers. To
further explore this issue, we evaluate the TwoFace approach on the

95

90 1

85 1

80 1

Recall

751

701

65 A —— Crowdsourcing Seeds
-=-- Highly-ranked Seeds

60 T T T

5 6 7 8 9 10 11
%Training

o
un
N
w
PN

Figure 9: Impact of suspiciousness propagation in identify-
ing fraudulent users

alternative “relaxed” ground truth in which every reviewer with at
least one review on a target product is considered as fraudulent. In
this alternative scenario, we find in Table 3 that precision jumps to
77%, while Recall increases even more to around 90%. This encour-
aging result suggests that many of the reviewers who only reviewed
one target product historically are connected to other fraudulent
reviewers and may need further examination by an expert.

Recall | Precision | F1-macro
Conservative 83 35 72
Relaxed 91 77 89

Table 3: Relaxing the ground truth definition.

Comparing with Alternatives. Finally, we compare the proposed
TwoFace system with alternative methods including classification
over traditional features and the state-of-the-art D-cube method
[27]. For traditional features, we adopt the standard features de-
scribed in our previous analysis of fraudulent reviewers, including
rating, burstiness of reviews, review length, and self-similarity. We
evaluate a variety of classifiers and report the best results which
are from Logistic Regression. For D-cube — a dense block detection
approach — we try many different number of dense blocks and
report its best results when the number of blocks is 30 and 40. For
a fair comparison, we also consider the relaxed ground truth for
these methods. For TwoFace, we adopt Logistic Regression and use
the highly-ranked users from our suspiciousness propagation as

seeds.
Recall | Precision | F1-macro
TwoFace System 91 77 89
Traditional Features 61 24 54
D-cube [27]/ 30 blks 69 34 50
D-cube [27]/ 40 blks 82 24 64

Table 4: Comparison of TwoFace with alternatives.

Table 4 shows that TwoFace system outperforms the two other
approaches. The low performance of traditional features — 61%
Recall and 24% Precision - indicates that fraudulent reviewers

do not always behave abnormally and their rating distribution or
burstiness might be similar to non-fraudulent reviewers. On the
other hand the D-cube approach [27] which aims to detect dense
blocks, i.e., a group of reviewers who write a review on a specific
number of products in a short time, is the most similar scenario to
crowdsourcing manipulation. It takes number of blocks as input and
returns the most dense blocks. As a result, by increasing the number
of blocks it returns more fraudulent reviewers — 82% versus 69%
Recall with 40 and 30 blocks respectively. However, by increasing
the number of blocks, we see that many non-fraudulent reviewers
will be misclassified as fraudulent — 24% and 34% Precision. Since
crowdsourcing campaigns do not form dense blocks, we see that
TwoFace provides the best overall performance with 91% Recall
and 77% Precision.

5 CONCLUSION AND FUTURE WORK

We have explored how monitoring tasks on sites like RapidWork-
ers can uncover fraudulent reviewers on sites like Amazon. The
proposed TwoFace framework complements previous efforts by pro-
viding a new approach for identifying these types of reviewers. The
main intuition is to: (i) exploit the locality of suspiciousness within
the graph through a random walk to find suspicious users who tend
to cluster; and (ii) exploit the structure of the graph around suspi-
cious users to uncover campaign network structures for identifying
fraudulent reviewers who are distant in the graph. Our results are
encouraging, indicating that TwoFace can indeed uncover many
fraudulent reviewers. In our ongoing work, we are expanding our
coverage both in terms of crowdsourcing sites and targets of ma-
nipulation (e.g., App Store, Play Store, Yelp). We are also eager to
further explore how linguistic evolution may provide new insights
into the strategies of review manipulation to complement our focus
in this paper on the network properties of the reviewers.

Acknowledgement. This work was supported in part by AFOSR
grant FA9550-15-1-0149.

REFERENCES

[1] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion Fraud
Detection in Online Reviews by Network Effects.. In ICWSM.

[2] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and
Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep
behavior in social networks. In WWW.

[3] Paul Grey. 2015. How Many Products Does Amazon Sell?, https://export-x.com,
Last Access: 01/10/2017.

[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855-864.

[5] Stephan Giinnemann, Nikou Giinnemann, and Christos Faloutsos. 2014. Detect-
ing anomalies in dynamic rating data: A robust probabilistic model for rating
evolution. In SIGKDD.

[6] Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. 2004. Combating web
spam with trustrank. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30. VLDB Endowment, 576-587.

1 Zellig S Harris. 1954. Distributional structure. Word 10, 2-3 (1954), 146-162.

[8] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In Proceedings

of the 25th International Conference on World Wide Web. International World Wide

Web Conferences Steering Committee, 507-517.

[9] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Gunneman, Leman Akoglu, Mohit

Kumar, Disha Makhija, and Christos Faloutsos. 2015. BIRDNEST: Bayesian

Inference for Ratings-Fraud Detection. arXiv (2015).

Bryan Hooi, Neil Shah, Alex Beutel, Stephan Giinnemann, Leman Akoglu, Mohit

Kumar, Disha Makhija, and Christos Faloutsos. 2016. Birdnest: Bayesian infer-

ence for ratings-fraud detection. In Proceedings of the 2016 SIAM International

Conference on Data Mining. SIAM, 495-503.

[10

(1]

[12

[13

[14

[15

(16

[17

(18

=
L

[20

[21

[22]

[23

[24

~
2

[26

[27

[28

[29

(31]

[32

(33]

(34]

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 895-904.

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shigiang Yang. 2014.
Inferring strange behavior from connectivity pattern in social networks. In
PAKDD.

Parisa Kaghazgaran, James Caverlee, and Majid Alfifi. 2017. Behavioral Analysis
of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond. In
ICWSM.

Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Arjun Mukherjee,
and Jidong Shao. 2017. Bimodal distribution and co-bursting in review spam
detection. In Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 1063-1072.
Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 43-52.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie S Glance. 2013.
What yelp fake review filter might be doing?. In ICWSM.

Myle Ott, Claire Cardie, and Jeff Hancock. 2012. Estimating the prevalence of
deception in online review communities. In Proceedings of the 21st international
conference on World Wide Web. ACM, 201-210.

Myle Ott, Claire Cardie, and Jeffrey T Hancock. 2013. Negative Deceptive Opinion
Spam.. In HLT-NAACL.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T Hancock. 2011. Finding decep-
tive opinion spam by any stretch of the imagination. In ACL.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos.
2007. Netprobe: a fast and scalable system for fraud detection in online auction
networks. In WWW.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701-710.

B Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and
Christos Faloutsos. 2010. Eigenspokes: Surprising patterns and scalable commu-
nity chipping in large graphs. In PAKDD.

Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection:
Bridging review networks and metadata. In SIGKDD.

Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. 2014. Spotting
suspicious link behavior with fbox: An adversarial perspective. In ICDM.
Kijung Shin, Bryan Hooi, and Christos Faloutsos. 2016. M-zoom: Fast dense-block
detection in tensors with quality guarantees. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 264-280.
Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. D-cube: Dense-
block detection in terabyte-scale tensors. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining. ACM, 681-689.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. ACM, 1067-1077.

Grigorios Tsoumakas and Ioannis Katakis. 2006. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining 3, 3 (2006).
Bimal Viswanath, Muhammad Ahmad Bashir, Muhammad Bilal Zafar, Simon
Bouget, Saikat Guha, Krishna P Gummadi, Aniket Kate, and Alan Mislove. 2015.
Strength in numbers: Robust tamper detection in crowd computations. In Proceed-
ings of the 2015 ACM on Conference on Online Social Networks. ACM, 113-124.
Guan Wang, Sihong Xie, Bing Liu, and S Yu Philip. 2011. Review graph based
online store review spammer detection. In ICDM.

Elizabeth Weise. 2016. Amazon bans ’incentivized’ reviews, goo.gl/K8Woqd, Last
Access: 01/10/2017. USATODAY .

Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu. 2012. Review spam
detection via temporal pattern discovery. In SIGKDD.

Junting Ye and Leman Akoglu. 2015. Discovering opinion spammer groups by
network footprints. In ECML-PKDD.

	Abstract
	1 Introduction
	2 Related Work
	3 TwoFace System Design
	3.1 Identifying Suspicious Seeds
	3.2 Propagating Suspiciousness
	3.3 Uncovering Distant Users

	4 Experiments
	4.1 Data Preparation
	4.2 Propagating suspiciousness
	4.3 TwoFace detection

	5 Conclusion and Future Work
	References

