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ABSTRACT
We propose a newmodel toward improving the quality of image rec-
ommendations in social sharing communities like Pinterest, Flickr,
and Instagram. Concretely, we propose Neural Personalized Ranking
(NPR) – a personalized pairwise ranking model over implicit feed-
back datasets – that is inspired by Bayesian Personalized Ranking
(BPR) and recent advances in neural networks. We further build an
enhanced model by augmenting the basic NPR model with multiple
contextual preference clues including user tags, geographic features,
and visual factors. In our experiments over the Flickr YFCC100M
dataset, we demonstrate the proposed NPR model is more effective
than multiple baselines. Moreover, the contextual enhanced NPR
model significantly outperforms the base model by 16.6% and a
contextual enhanced BPR model by 4.5% in precision and recall.
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1 INTRODUCTION
One of the foundations of many web and app-based communities
is image sharing. For example, Pinterest, Facebook, Twitter, Flickr,
Instagram, and Snapchat all enable communities to share, favorite,
re-post, and curate images. And yet, these social actions are far
outnumbered by the total number of images in the system; that
is, there may be many valuable images undiscovered by each user.
Hence, considerable research has focused on the challenge of image
recommendation in these communities, e.g,. [8, 15, 19, 20, 23, 24, 31].

However, many of these works mainly leverage user profile and
behavior patterns. Due to the extreme sparsity of user feedback in
image sharing communities and a lack of proper representation,
traditional recommendation including collaborative filtering and
content-based methods face challenges. In contrast, Bayesian Per-
sonalized Ranking (BPR) has shown state-of-the-art performance
for recommendation in implicit feedback datasets [30]. Yet, there
exists some limitations: (i) First, user preferences in BPR are calcu-
lated as the inner product of user latent vectors and image latent
vectors, which assigns equal weight to each dimension of the latent
feature space, meaning the variability of user preferences may not
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be adequately captured; (ii) Second, the matrix factorization com-
ponent of BPR is linear in nature, which has limited expressiveness
when compared to nonlinear methods; and (iii) existing efforts for
distributed BPR typically use partially shared memory which may
limit its scalability.

To overcome these challenges, we propose Neural Personalized
Ranking (NPR) – a new neural network based personalized pair-
wise ranking model for implicit feedback, which incorporates the
idea of generalized matrix factorization. Neural models promise
potentially more flexibility in model design, added nonlinearity
through activations, and ease of parallelization. While recent work
in neural methods for recommendation has focused on modeling
side information [36, 40] or building pointwise learning models
by directly modeling user ratings [10], a key feature of NPR is its
careful modeling of users’ implicit feedback via a relaxed assump-
tion about unobserved items using pairwise ranking that builds
on top of neural network based generalized matrix factorization
components. Further, to alleviate the sparsity of user feedback and
improve the quality of recommendation, we propose to leverage
multiple categories of contextual information. Correspondingly, we
augment the baseline NPR model with multiple contextual pref-
erence clues for deriving Contextual Neural Personalized Ranking
(C-NPR) to better uncover user preferences. In particular, these
preference clues include user tags, geographic features, and visual
factors.

In our experiments over the Flickr YFCC100M dataset, we demon-
strate the proposed NPR model’s effectiveness in comparison to
several state-of-the-art approaches. Moreover, the contextual en-
hanced NPR model significantly outperforms the baseline model
by 16.6% and a contextual-BPR model by 4.5% in precision and
recall. We find that NPR is more effective than BPR when there is
inadequate training data.

2 RELATEDWORK
Research attention on recommendation has shifted towards the
common scenario where only implicit feedback is available, as is
common in social imaging sharing communities. One pioneer work
terms such a scenario as one-class collaborative filtering [29], where
the authors proposed to weight positive and unobserved feedback
differently in fitting the objective function. This idea was further
improved to introduce varying confidence levels [13]. These ap-
proaches are mainly variations of pointwise approaches suitable for
explicit feedback. Pairwise learning for implicit feedback, specifi-
cally Bayesian personalized ranking with matrix factorization (BPR-
MF), typically outperforms pointwise learning counterparts [30].

Image Recommendation.Many works have tackled the problem
of image recommendation, e.g., [8, 15, 19]. For example, Jing et
al. use a weighted matrix factorization model that combines im-
age importance and local community user rating [15]. Sang et al.
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measure the distance of an image and a personalized query lan-
guage through a graph-based topic-sensitive probabilistic model
[31]. Later works begin incorporating a variety of visual features,
including high-level features from deep convolutional neural net-
works. For example, Liu et al. introduce social embedding image
distance learning that learns image similarity based on social con-
straints and leverages Borda Count for recommendation [23]. Lei
et al. propose a comparative deep learning model that learns image
and user representation jointly and identifies the nearest neighbor
images of each user for recommendation [18].

Context-aware Recommendation. To overcome ratings spar-
sity, many recommenders have proposed to incorporate additional
contextual information [1], including but not limited to social con-
nections [14, 25], content [26, 35], and so on. Visual features have
received much attention in recent work, with some methods using
metrics for visual similarity according to social behavior or activity
pattern to identify compatible items [23, 27] and visual enhanced
recommendation [9]. With the rapid growth of location-based so-
cial networks and smart mobile devices, many applications take
advantage of geographical information in modeling video watching
preferences [3], Yelp ratings prediction [12], and most commonly
in point of interest recommendation, where representative work
includes [4, 21, 22, 39, 41]. In our work, we derive and integrate mul-
tiple categories of contextual features for image recommendation.
We show that our proposed method to model user’s preference is
effective and adaptable to different frameworks.

Deep recommendation& rankingwith implicit feedback. Re-
cently, we have seen increasing efforts devoted to recommendation
models based on deep learning [5–7, 10, 11, 18, 34, 37]; note that we
neglect discussion of works that leverage deep learning for deriving
features then can be integrated into traditional recommendation
models. Several of these target the common scenario of implicit
feedback [10, 18, 34]. For example, He and et al. introduce a point-
wise neural collaborative filtering framework which includes an
ensemble of multi-layer perceptron and generalized matrix factor-
ization components that jointly contribute to better performance
[10]. The work that is most relevant to ours is [34], where the au-
thors propose a multi-layer feed forward neural network based
pairwise ranking model which can be applied to personalized rec-
ommendation. Distinct from previous works, we propose a pairwise
ranking based recommendation model that incorporates the idea
of generalized matrix factorization for implicit feedback. We also
provide a framework for explicitly modeling user’s contextual pref-
erence for alleviating sparsity issues.

3 PRELIMINARIES
Our goal is to provide personalized image recommendation, such
that each user is recommended a personalized list of images.

Problem Statement. Formally, we assume a set ofM usersU={u1,
u2,...,uM } and a set of N images I={i1, i2, ..., iN }. We further assume
some users have explicitly expressed their interest for a subset of
the images in I. This preference may be in the form of a “like” or
similar social sharing function. We aim to recommend for each user
a personalized list of images from the set I.

3.1 Matrix Factorization
Toward tackling the problem of personalized image recommendation,
we begin with a straightforward adaptation of latent factor matrix
factorization (MF) [17]. The standard formulation is: the preference
rui of a user u towards an image i is predicted as:

rui = 𝑝Tu 𝑞i + bu + bi + α (1)

where 𝑝u and 𝑞i are the K-dimensional latent factors of user pref-
erence and image characteristics, respectively. The inner product
𝑝Tu 𝑞i of the user latent vector and image latent vector represents
a user’s preference towards an image; it measures how well the
user preferences align with the properties of the image. bu and bi
correspond to user and image bias terms while α is a global offset.

3.2 Bayesian Personalized Ranking
Since users only provide sparse one-class positive feedback (the
“likes”), there is ambiguity in the interpretation of non-positive
images since the negative examples and unlabeled positive exam-
ples are mixed together [29]. In this implicit feedback scenario, we
may only assume users prefer the liked images to those that are
not acted upon. To estimate the latent factors, instead of trying to
model the matrix of “likes" directly in a pointwise setting with a
least square regression formulation, we can construct the learning
objective based on pairwise ranking between images. This idea is
key to Bayesian Personalized Ranking [30], such that observed likes
should be ranked higher than the unobserved ones. The model then
tries to find latent factors that can be used to predict the expected
preference of a user for an item.

Formally, we can adapt BPR to the personalized image recom-
mendation task as follows. Suppose we have a user uh and a pair of
images i j and ik . User uh ’s feedback for i j is positive, and feedback
for ik is unobserved: we denote this relation as j >h k . BPR aims
to maximize the posterior probability p(Θ |j >h k), whereΘ is the
set of parameters we try to estimate. According to Bayes’ rule:

p(Θ |j >h k) ∝ p(j >h k |Θ)P(Θ)

and the likelihood function is defined as:
p(j >h k |Θ) = δ (rhj − rhk )

where δ (·) is the sigmoid function. To simplify notation, We will
use the index of a user and an image. We assume a Gaussian prior
Θ ∼ N (0, λΘI ), where λΘ is a set of model-specific parameters and
I is the identity matrix. The prior provides regularization for the
parameters to prevent overfitting.

Our objective is to findΘ that maximizes the log-likelihood for
all users and all images:

arg max
Θ

∑
uh ∈U,i j ∈Ph,ik ∈Nh

(
ln

(
δ (rhj − rhk )

)
− λΘ

Θhjk 2
)

where Ph , Nh are the sets of images for which uh has provided
positive feedback and uh ’s feedback is unobserved, respectively.Θ
is {pu , qi , bi } for all users and images. With this pairwise setting,
the user bias and global offset in Equation 1 cancel out.

4 NEURAL PERSONALIZED RANKING
In this section, we seek to complement existing matrix factorization
and BPR-based approaches to personalized image recommendation



through the exploration of a new neural network based person-
alized pairwise ranking model. Neural recommendation models
promise some exciting characteristics in comparison with BPR: (i)
First, user preferences in BPR are calculated as the inner product
of user latent vector and image latent vector, which assigns equal
weight to each dimension of the latent feature space. In contrast,
neural methods may be able to capture the variability of user pref-
erences by relaxing this equal weight requirement. (ii) Second, the
matrix factorization component of BPR is linear in nature, which has
limited expressiveness. In contrast, neural methods offer more flexi-
bility by adding nonlinearity through activations. (iii) Finally, many
neural methods may be easily parallelized for scalable computation,
whereas existing work on distributed BPR typically uses partially
shared memory which may limit its scalability. In summary, neural
models promise potentially more flexibility in model design, added
nonlinearity through activations, and ease of parallelization.

4.1 Model Architecture
The NPR model structure is shown in Figure 1. There are three
inputs to the model, the user and a pair of images, represented as
tuple of index (h, j,k). Then user and image indexes are one-hot
encoded as tuple of vectors (𝑢h , 𝑖j , 𝑖k ). Since there areM users and
N images, the dimensions of𝑢h , 𝑖j , 𝑖k areM ,N , andN respectively.
The output of the proposed model is the ground truth value which
we train the model against:

д(h, j,k) =

{
1 for j >h k

−1 for j <h k

where j >h k denotes that user uh prefers image i j to ik . This defi-
nition transforms the ranking problem into a binary classification
problem, which aims to check whether the pairwise preference rela-
tion holds. Following the input layer, each input is fully connected
to the corresponding embedding layer for the sake of learning a
compact representation of the users and images. The embedding
dimension for both users and images are the same. We denote the
embeddings as 𝑝h , 𝑞j , 𝑞k . Formally,

𝑝h =𝑊u𝑢h , 𝑞j =𝑊i 𝑖j , 𝑞k =𝑊 ′
i 𝑖k .

where 𝑊u ,𝑊i , 𝑊 ′
i are embedding matrices for users and images.

As the model architecture is vertically symmetric, let’s focus on the
substructure marked inside the dotted triangle (see Figure 1). In
the merge layer, user and image embedding vectors are multiplied
element-wise, such that each dimension of the user preference
vector and corresponding image properties are in line. This step is
analogous to traditional matrix factorization. The resulting vector
has the same dimension as the embeddings. More precisely:

𝑚hj = 𝑝h ◦ 𝑞j

where ◦ denotes the element-wise product. The merge layer is
then connected to a single neuron dense layer, which computes
the weighted sum of all dimensions and passes it through a ReLU
nonlinear activation. Compared to traditional matrix factorization,
such a design allows each latent dimension to vary in importance
and supports additional expressiveness through non-linearity. We
adopt ReLU here based on our exploratory experiments, where
we find that alternative activation functions like sigmoid and tanh
suffer from saturation, which leads to overfitting. The output is
preference score rhj :

rhj = a(𝑤T𝑚hj + b1)

where a(·) is the activation function, 𝑤 is the weight vector and b1
is the bias term. This output rhj characterizes the preference of uh
to i j . We denote the preference score from the mirror structure in
Figure1 as r ′hk . Ultimately, the model prediction is rhj − r ′hk .

Figure 1: Neural Personalized Ranking (NPR) Structure

4.2 Objective Function
We define the objective function to maximize as:

1
n

∑
h∈U,(i j ∈Ph,ik ∈Nh

|i j ∈Nh,ik ∈Ph )

ln
(
δ
(
(rhj − r ′hk ) · д(h, j,k)

) )
− λΘ ∥Θ∥

2

where n is the number of training samples and δ (·) is the sigmoid
function. Since we only focus on whether the sign of the output is
the same as д(h, j,k), we employ the product between the predicted
value rhj − r ′hk and the ground truth д(h, j,k) as an indicator for
how the predicted value is aligned with ground truth. A larger value
is acquired if their signs are the same. The regularization term is
slightly different from that defined in the BPR-based model. We
impose the L2-norm to the whole embedding matrix, instead of
on each training sample for simpler implementation. If training
samples are balanced for each user and image, such regularization
will have the same effect as in the BPR model.

4.3 Model Training and Inference
We initialize the weight matrices with random values uniformly dis-
tributed in [0,1]. To train the network, we transform the objective
to the equivalent minimization dual problem and adopt mini-batch
gradient descent (MB-GD), which is a compromise between gradi-
ent descent (GD) and stochastic gradient descent (SGD). MB-GD
converges faster than GD as it has frequent gradient updates while
convergence is more stable than SGD. Besides, MB-GD allows uti-
lization of vectorized operations from deep learning libraries, which
typically results in a computational performance gain over SGD.
Before each epoch, we shuffle the training dataset. Then in each
step, a batch of training tuples is served to the network. The error
gradient is back propagated from output to input and parameters
in each layer are updated. The batch size we use in experiments
is 1,024. The optimization algorithm used for gradient update is
Adam’s[16]. The loss generally converges within 20 epochs given
the amount of training data.

Given a user u, for every image i ∈ Nu , her preference score
rui is predicted from the neural network. In order to obtain the
preference score, we feed the tuple (u, i, i) to the neural network,
and get two values rui and r ′ui from the parallel branches. The



final preference score is calculated as rui = 1
2 (rui + r

′
ui ). Then the

set of images with unobserved feedback are sorted according to
descending predicted preference score. We pick the top ranking
images for recommendation.

4.4 Implementation Details
Neural network models can easily overfit. Thus we take a few
measures to prevent overfitting. First, we apply dropout to the em-
bedding weights during training. The dropout rate is fine-tuned
for each dataset. Second, if validation loss does not decrease, we re-
duce the learning rate to 20% of its current value, allowing for finer
adjustment to gradient update. Third, early stopping is adopted to
terminate training if there is no decrease on validation loss for 3
epochs. Additionally, we impose L2-regularization to the contex-
tual preference vectors for contextual NPR model, which we will
introduce in the following section, such that the preference score is
not overwhelmed by large contextual feature values. Furthermore,
all regularization coefficients are tuned through grid search.

5 CONTEXTUAL NPR
Although the neural personalized ranking model is promising, it
faces two key challenges. The first is sparsity – very few images
have been liked, so it is difficult to make recommendations for users
who have little feedback as well as to recommend newly posted
images. The second is preference complexity – images are diverse
and there are many reasons for a user to like an image. Hence,
we propose to improve NPR with an enhanced model – contextual
neural personalized ranking (C-NPR) – by leveraging multiple cate-
gories of auxiliary information that may help overcome the sparsity
issue while also providing clues to user preferences.

5.1 Geo, Topical, Visual Preference
Based on the Flickr YFCC100M dataset [33] (see Section 6.1), we
begin here by highlighting evidence for the impact of three sources
of contextual information on image preference, before formally
defining the contextual NPR model.
Evidence of Spatial Preference. Figure 2 shows the percentage
distribution of “liked” images in decreasing order across the regions
where these images were taken. Here we aggregate each user’s top-
10 regions where their liked images come from. The kth boxplot
is generated from all users who have liked images from at least k
regions. We observe that the median percentage of liked images
from the top region is above 33%; that is, at least half of all users
have 33% of their liked images from a single region (though not
necessarily the same region for each user). Suppose a user has no
preference of regions, a single region would at most contain 9% of
her liked images (as the largest region contains 9% of the images).
Thus we conclude there is a strong tendency for a user to favor
images from certain regions, especially from a few of them as the
percentage decreases sharply as the region number increases.
Evidence of Topic Preference.We consider each unique user tag
as a potential topic. Figure 3 shows users’ liked image distribution
over the tags that have been applied to those images. We list the
results for the top-10 tags of each user (not necessarily the same set
of tags for each user). The kth boxplot summarizes users that have
more than k tags labeled to the set of liked images. We observe

that ∼75% of users have at least one common tag shared among
more than ∼35% of their liked images. Even the median ratio for
the 10th tag attached to liked images is much higher than the
percentage of most frequent tags in the whole dataset. Thus we
conclude that users have topic preferences for the images they like.
As the percentage decreases slowly with k , we ascribe this to users
having multiple favored tags.
Evidence of Visual Preference. Finally, we explore clues for
user’s visual preference by comparing image similarity across three
sampled sets, with each containing 100,000 image pairs. The sets are
constructed in the following manner: (i) Randomly sample image
pairs; (ii) Randomly sample a user, then sample a pair of image
from her liked images; and (iii) For each image, pick its most so-
cially alike images. Here we represent each image as a vector of
user’s who like it, then identify similar images with high cosine
similarity score. Next, we calculate the cosine similarity of the afore-
mentioned image pairs based on their visual feature vectors. The
similarity distributions for these three sets are shown in Figure 4.
We observe that image pairs liked by a user tend to be more similar
in visual appearance than randomly picked image pairs, with a me-
dian similarity around 0.25 vs. 0.20. For image pairs that are liked
by similar groups of users, the pairwise visual similarity is even
higher, reaching 0.30. All three findings are statistically significant
with p-value less than 1e-8. Hence, we conclude that users have
visual preference for images that they like, and that there exists
group of users that share similar preferences.

5.2 From NPR to C-NPR
This evidence of clear variation in user preference motivates our
need to augment NPR. Formally, with the contextual feature vector
𝑓𝑖 for image i , we then seek to uncover user’s preference latent
vector 𝑓𝑢 to 𝑓𝑖 such that the vector product 𝑓𝑢 ◦ 𝑓𝑖 captures how
user preference is aligned with the image’s contextual features.

We modify the neural network structure of each branch in Fig-
ure 1 to accommodate for modeling contextual preference. The
new architecture for a branch incorporating visual, geo, and topic
contextual features and preferences is shown in Figure 5. Aside
from the user and image input, each category of contextual features
of image �̄�i , 𝑡i , �̄�i is served as an extra input. Each corresponding
contextual preference hidden layer is fully connected above user
input and is to be learned. Then the user’s preference to the contex-
tual feature is calculated with the element-wise product to measure
how features and preferences are aligned. Specifically, the visual,
topic, and geo latent vectors of user uh are calculated as:

𝑣h =𝑊v𝑢h , 𝑡h =𝑊t𝑢h , 𝑔h =𝑊д𝑢h

where𝑊v ,𝑊t ,𝑊д are the weight matrices. The visual, topic, and
geo preference of user uh to image i j are:

𝑒vhj = 𝑣h ◦ �̄�j

𝑒thj = 𝑡h ◦ 𝑡j

𝑒
д
hj = 𝑔h ◦ �̄�j

Then the general preference𝑚hj and contextual preferences are
concatenated in the merge layer. Formally:

𝑚′
hj =

[
𝑚hj 𝑒vhj 𝑒thj 𝑒

д
hj

]T



Figure 2: Geo preferences: Users tend to
“like” images from only a few regions.

Figure 3: Topic preferences: Users tend to
“like” images with similar tags.

Figure 4: Visual preferences: Pairs of
“liked” images tend to be more visually
alike than random pairs.

Figure 5: NPR with Contextual Information

Finally, the merge layer is further connected to a single neuron
dense layer as before. The updated preference score is:

rhj = a(𝑤′𝑇𝑚′
hj + b1)

Additional contextual information about each image can be incor-
porated following the same steps as stated above. In summary, each
new feature vector is served as an extra input to the neural network,
and a corresponding preference embedding layer is augmented on
top of user input. Then the element-wise product is adopted to
model consistency between preferences and intrinsic properties of
the image, followed by concatenation of all preference components
and a weighted sum.

5.3 Modeling Geo, Topical, and Visual
Given the evidence of user preferences, we turn here to model these
features for integration into the C-NPR model.

Figure 6: Image Heatmap Figure 7: Geographic Regions

Deriving Spatial feature.We assume the area of interest is geo-
graphically partitioned into K regions and each image is taken from
one of the regions. Instead of gridding into blocks of equal area
which has been used previously [21, 28], we propose to partition
areas into regions according to image density, where the shape and

size of a region doesn’t have to be consistent and could be irregular.
The reason is images are not distributed homogeneously (generally,
dense around cities and tourist attractions and sparse elsewhere).
Focusing on density helps to reduce the irrelevant areas and the size
of each region we drill down into, which allows for more precise
modeling. We apply the mean shift clustering algorithm, which
builds upon the concept of kernel density estimation (KDE), to iden-
tify geographical clusters of images. It works by placing a Gaussian
kernel on each image coordinate in the dataset. Then by iteratively
shifting each point in the data set until they reach the top of their
nearest KDE surface peak. The only parameter to set is the band-
width, with which it attempts to generate a reasonable number
of clusters based on the density. The clustering result is shown in
Figure 7, where each dot represents an image and the cluster of
points represents a region. In total, there are 217 regions with a
bandwidth of 100km.

We assume the probability that a user likes an image in one
region is influenced by her likes status in other regions. If a user
has liked images from region p, then she has a larger probability
of favoring an image in a region closer to p. Previous work in POI
recommendation assumes the influence distance of a POI is fixed
according to a normal distribution N(0,σ 2) [21]. However, it is
commonly perceived that influence for regions of the same size
should be different, not to mention the diverse shape and size in our
scenario. Thus we assume each region p has an influence according
to a normal distribution N(0,σ 2

p ), where σp is the standard devia-
tion of distance from each image coordinate to the cluster center. To
this end, the influence frompi topj is defined as: fi j = 1

σpi
K(d (i, j)σpi

),
where pi and pj are the regions that image i and j belong to and the
relation between image and region is many to one. d(·) is the Haver-
sine distance between the center of two regions,K(·) is the standard
normal distribution and σpi is the standard deviation which we
adopt as the bandwidth of the kernel function. Thus the influence
from each region to all other regions is represented as a row vector.
The advantage is it encodes the idea of kernel density estimation
where the estimated geographical density of u’s liked image dis-
tribution at pj is: d

j
u =

∑
pi ∈Pu

ni
σpi |Pu |

K(d (i, j)σpi
), where ni is u’s

number of likes within pi , Pu is the set of regions that u has likes. It
can be written as the dot product of two vectors. However, different
from the KDE, a user’s preference vector is learned.



Deriving Topic Features. To extract the topical theme associated
with each image, we aggregate the user-generated tags, title, and
description (if any) for each image. This text not only acts as a de-
scriptor of concrete objects, scenes, andweather, but also sheds light
on abstract and hidden knowledge about the images like emotion
and background theme, which supplements the visual appearance.
We ignore tags which have occurred fewer than d times in the
dataset and apply dimensionality reduction over 58k unique tags.1

Deriving Visual Features. Recently, high-level visual features
extracted from deep convolutional neural networks have revolu-
tionized the state-of-the-art performance in image recognition [32]
and image captioning [38]. Here, the output of fc6 layer of the
Places Hybrid-CNN is adopted as the image feature [42], which
contains 4,096 dimensions. This CNN was trained on 1,183 cate-
gories which includes 205 scene categories from Places Database
and 978 object categories from ImageNet (ILSVRC2012) images.
Dimension reduction is further applied for reducing computation
complexity. The existing approach for visual BPR [9], which learns
an embedding kernel for visual dimension reduction while training
the recommendation model, turns out to be less efficient than di-
rectly utilizing the full set of 4,096 features. Hence, we propose to
reduce visual feature dimension separately from model training.2

6 EXPERIMENTS
In this section, we conduct a set of experiments to evaluate neural
personalized image recommendation. Specifically, we first intro-
duce the data preparation workflow and basic experimental setup.
Then we compare NPR with baseline models, followed by report-
ing performance of contextual enhanced models. We drill down
to discover the impact of each category of contextual information.
We further look into the performance of the proposed model in the
typical cold start scenario. Finally, we discuss the characteristics
of NPR and BPR in terms of amount of training data required and
convergence rate.

6.1 Data
The dataset we use for evaluation is based on the Flickr YFCC100M
dataset [33]. We select images with geo-coordinates and that are
located in the US mainland. We further crawl the image “likes”
from the Flickr API and we select images with greater than 30 likes
overall and users with more than 10 liked images.

The resulting datasets are listed in Table 1, where the sparsity
for the small dataset and large dataset is 0.96% and 0.16%, respec-
tively, which means only 0.96% and 0.16% of the possible user-image
relations is available. These two datasets represent two different
levels of feedback sparsity. And effective sparsity for training data
is half of the reported value after train/test split. The geographical
heatmap of the large dataset is shown in Figure 6; we notice the
majority of images come from populated areas or famous tourist
sites, as shown in red.

1We compare principal component analysis (PCA) and Latent Dirichlet Allocation
(LDA) for carrying out this task. We report PCA-based results due to its better
performance.
2We compare recommendation performance with reduced feature from PCA and
stacked auto-encoder (AE) as well as with full set of features. Both PCA and AE
perform similarly and provide a good trade-off between efficiency and accuracy, thus
we only report PCA due to the space limit.

Dataset #Users #Images #Feedback Sparsity
Small 1,891 2,013 36,827 0.96%
Large 27,782 21,720 961,506 0.16%

Table 1: Post-processed Datasets Statistics

6.2 Experimental Setup
All experiments for BPR-basedmodels were performed on a desktop
machine with 60GB memory and 8 core Intel i7-4820k3.7GHz. NPR-
based models are trained using Nvidia GeForce GTX Titan X GPU
with 12 GB memory and 3,072 cores.
Constructing the Training Set.We randomly partition the liked
images of each user into 50% for training and validation and 50% for
testing. The validation set split ratio is 0.3. The loss on the validation
set is used for tracking training progress. The training set consists
of tuples (h, j,k) where h, j, k correspond to user index, positive
image index, and negative image index, respectively. Including
every pair of positive and negative combination for each user in
training would be costly. Yet practically, evaluation metrics saturate
even with a much smaller set of training tuples. Thus we propose
to use a sampling method for generating training tuples.

To generate each training tuple, we first randomly sample a user
u from user set U, then randomly sample a positive image i j from
Pu , and finally randomly sample k negative images ik from Nu to
pair with i j . We repeat this process until generating the expected
number of training data tuples. The influence of k on performance
is discussed later; we set k to 10. All reported results in this paper
are based onmodels trained over a set where the number of sampled
users equals to five times the number of observed “likes".

Although it is very likely that we end up leaving part of the
positive samples unused, the model based on this sampling strategy
exhibits better overall performance and requires less training data
to converge compared with sampling negatives for each positive
sample. The model is trained in a balanced way among every user
and not biased towards users that have more likes.
Evaluation Metrics. We adopt precision@k, recall@k and F1-
score@k for evaluating personalized ranking. Precision measures
the fraction of correctly predicted images among the retrieved im-
ages. Recall measures the fraction of relevant images that have been
picked over the total relevant images. F1@k is a weighed average
of Prec@k and Rec@k. All measures are averaged across all users.

Prec@k =
1
N

N∑
i=1

|GT (ui ) ∩ Pred (ui )@k |
k

where GT (ui ) is the ground truth liked image for ui in test data,
and Pred(ui )@k is the top k recommended images for ui .

Rec@k =
1
N

N∑
i=1

|GT (ui ) ∩ Pred (ui )@k |
|GT (ui ) |

F 1@k =
2 · Prec@k · Rec@k
Prec@k + Rec@k

Baselines.
• NCF. Neural collaborative filtering is a pointwise model com-
posed of multi-layer perceptron and generalized matrix factoriza-
tion components [10]. All the configurations adopted are similar
according to original paper including 4 hidden layers, 64 hidden
units and pre-training. We sample 5 negative examples for each
positive, which was shown to be optimal in the original paper.



• Multi-layer perceptron based pairwise ranking model. A person-
alized pairwise ranking model based on multi-layer perceptron
was introduced [34]. We adopt a setting with 3 hidden layers,
with each layer containing 200, 100, and 100 units, respectively.

• BPR and its variants. We consider the basic pairwise ranking for
matrix factorization model shown in Equation (1). In addition, we
can also integrate the proposed contextual factors into traditional
BPR. Indeed, a visual preference-enhanced version of BPR model
has been previously introduced by He et al.[9]. Hence, we also
consider a visual (VBPR), topic (TBPR), geo (GBPR), and combined
version of BPR (C-BPR).

• NPR. This is the neural network based model for personalized
pairwise ranking as shown in Figure 1.

• NPR-noact. This is the NPR model without nonlinear activation.
• Contextual NPR. This includes NPR considering only visual
(VNPR), topic (TNPR), and geo (GNPR) contextual information.

Reproducibility. For all models, the user and image latent factor
dimensions are set to 100 empirically for a trade-off between perfor-
mance and computation complexity as well as for fair comparison.
The number of visual feature dimensions is 128, the number of
topic dimensions is 100 for the small dataset and 500 for the large
dataset. The number of geographic dimensions is the same as the
number of geo clusters which is 155 and 217 for small and large
dataset, respectively.

For the NPR-based approach, we adopt mini-batch gradient de-
scent where the batch size is set to 1,024. The dropout rate for the
small dataset was set to 0.6 and for the large dataset was set to
0.45. The regularization parameters are fine-tuned. For example,
on the large dataset λu=λi=1e−7, λv=λд=1e−6, and λt=1e−5. For
BPR-based approaches, we initialize the learning rate to 0.02 and
decrease it to 97% its current value in each consecutive iteration,
which has been shown to be effective to help convergence in fewer
iterations [12]. And generally, training converges within 80 iter-
ations. The regularization parameters are fine-tuned and shared
among all BPR baselines, concretely, λu=λi=λb=0.02, λv=λд=0.01
and λt=0.1.

6.3 NPR vs. Alternatives
We begin by investigating the quality of NPR versus each of the
baselines for personalized recommendation without contextual
information. We report the average precision@k, recall@k for k
at 5, 10, 15 in Figure 8 for the small dataset and 9 for the large
dataset. We observe that NPR and BPR are neck and neck, with
BPR slightly superior (less than 1%) in precision and recall. This
indicates BPR-MF is a strong baseline. Although the MF component
is linear, the logistic objective function brings in nonlinearity. Both
approaches consistently substantially outperform other baseline
approaches in precision and recall. Moreover, the pairwise method
generally yields better results. For example, NPR improves the
precision and recall over the pointwise model NCF by 50% for the
large dataset and improves the precision and recall. This illustrates
the relaxed assumption for unobserved samples helps to reduce the
recommendation bias. The nonlinear activation function lead to
an average of 3.8% increase in precision and 3.3% increase in recall
on the small dataset, and even larger 11.5% and 12.5% increase in
precision and recall on the large dataset. By bringing in nonlinearity,

the representativeness of the model is enriched. We observe the
performance metrics are generally lower on the large dataset; the
reason is that recommendation becomes more difficult given more
images and increasing sparsity. However, the performance gap
between approaches expands with increasing sparsity, indicating
the great opportunity for the proposed approach when feedback is
lacking.

Figure 8: Average Precision and Recall for Baseline Models
on the Small Dataset

Figure 9: Average Precision and Recall for Baseline Models
on the Large Dataset

6.4 Comparing Contextual Enhanced Models
To evaluate the impact of incorporating each category of contextual
information in recommendation, we present precision and recall
at k for each contextual enhanced NPR and BPR model over the
large dataset in Tables 2 and 3. We observe that modeling additional
contextual factors improves over the basic NPR and BPR method.
Concretely, TNPR gives an average improvement of 10.1% in preci-
sion and 12.6% in recall over the NPR baseline on the large dataset.
This indicates that rich textual side knowledge acts as an effective
filter for sifting relevant images. VNPR performs slightly better
than NPR, with an improvement of 4.6% and 5.4% in precision and
recall. The lesson here is learning personal visual preference does
help to connect users with images that have appearance agreement.
Furthermore, GNPR gives an average of 3.6% percent and 5.5% per-
cent increase in precision and recall. This confirms the importance
of modeling user’s geographical region which is consistent with
our observation in Section 5.1, where we notice the user’s strong ge-
ographical preference. Since for social image sharing sites, users do
have connections focusing around their home location and places
they are familiar with, we see that images in these regions may
be more likely to be related with the user. Finally, we observe that
C-NPR achieves an average of more than 16% increase in precision
and recall. This implies that the proposed model is effective in in-
tegrating various categories of contextual information jointly to



make better recommendation. We observe similar trends in C-BPR
models.

Method p@5 p@10 avg ∆ r@5 r@10 avg ∆
NPR 0.1280 0.1137 - 0.0531 0.0909 -
VNPR 0.1354 0.1177 +4.6% 0.0563 0.0952 +5.4%
TNPR 0.1411 0.1250 +10.1% 0.0599 0.1021 +12.6%
GNPR 0.1326 0.1178 +3.6% 0.0564 0.0953 +5.5%
C-NPR 0.1504 0.1317 +16.6% 0.0644 0.1081 +16.6%

Table 2: Integrating Contextual Information in NPR

Method p@5 p@10 avg ∆ r@5 r@10 avg ∆
BPR 0.1302 0.1148 - 0.0544 0.0920 -
VBPR 0.1366 0.1188 +4.2% 0.0577 0.0961 +5.3%
TBPR 0.1384 0.1217 +8.5% 0.0588 0.0992 +8.0%
GBPR 0.1331 0.1171 +2.1% 0.0562 0.0950 +3.3%
C-BPR 0.1445 0.1255 +10.6% 0.0619 0.1034 +13.1%

Table 3: Integrating Contextual Information in BPR

6.5 NPR and BPR with Contextual Information
First, even though the NPR base model performs similarly with
BPR, we observe that C-NPR leads by an average of ∼4.5% higher
precision and recall over C-BPR on the large dataset and ∼1.5%
increase on the small dataset. We ascribe this improvement to
the neural network based model flexibly adjusting weights for
each feature dimension and nonlinear activation enriching the
expressiveness. Second, the higher increase for the large dataset
indicates the C-NPR model could be more beneficial than the C-
BPR model for recommendation under the real-world scenario of
extreme feedback sparsity.

Method p@5 p@10 r@15 r@5 r@10 r@15
C-NPR(S) 0.2987 0.2371 0.1977 0.1866 0.2842 0.3471
C-BPR(S) 0.3034 0.2335 0.1945 0.1874 0.2801 0.3419
C-NPR(L) 0.1504 0.1317 0.1192 0.0644 0.1081 0.1430
C-BPR(L) 0.1445 0.1255 0.1141 0.0619 0.1034 0.1363
Table 4: Compare Contextual NPR and Contextual BPR

6.6 Cold Start
In this experiment, we focus on the cold-start scenario which is
commonly encountered in recommendation where we have a lim-
ited number of positive user feedbacks for training the model. Here
we select users who have fewer than seven liked images to exam-
ine the performance of the proposed model on the large dataset
in the cold-start setting. Interestingly we observe in Table 5 that
the proposed C-NPR model outperforms the baseline NPR model
by average ∼21% in precision and recall. Additionally, each con-
textual model exhibits better performance than the NPR baseline,
with TNPR taking the lead showing an average improvement of
∼13% in precision and recall. This implies these contextual factors
help to alleviate the sparsity in the cold-start setting. Moreover, the
lager improvement compared with ordinary setting again validates
our claim that contextual information is especially helpful when
feedback is rare.

Method p@5 p@10 p@15 r@5 r@10 r@15
NPR 0.0723 0.0598 0.0518 0.0643 0.1063 0.1381
VNPR 0.0775 0.0628 0.0554 0.0683 0.1131 0.1455
TNPR 0.0820 0.0678 0.0584 0.0731 0.1206 0.1558
GNPR 0.0775 0.0644 0.0563 0.0685 0.1120 0.1455
C-NPR 0.0893 0.0721 0.0626 0.0769 0.1282 0.1668

Table 5: NPR Cold-start Performance

6.7 Number of training samples
In this experiment, we explore how performance of different models
is influenced by the amount of training data used as well as by the
number of negative samples for each positive one. As mentioned
in Section 6.2, the training data generation procedure is as follows:
for NPR-1 and BPR-1, we first randomly sample a user, then sample
one positive (liked) image for the user and followed by one negative
(unobserved/ disliked) image of the user. For NPR-10 and BPR-10
instead, we randomly sample ten negative image for each positive
image while keeping other steps the same. The total number of
training tuples generated is measured in terms of the number of
positive feedbacks in the original dataset. In Figure 10, the hori-
zontal axis represents the number of times (of positive feedback)
to sample and the vertical axis is the F-1 score@10. We observe
that BPR-1 and NPR-1 achieve increasing F-1 score with gradual
increase in training data. However, the performance of NPR-1 and
BPR-1 models have disparate properties. First, the increase for the
NPR-based model is relatively gentle, while steeper for the BPR-
based model. Furthermore, the NPR model performs much better,
for example, it gains 0.23 for F-1 score@10 at 5 times of sampling
while the BPR-based model only reaches 0.17. The difference in
performance is more severe when training data is lacking. Interest-
ingly, we also notice that the neural network based model generally
achieves better performance with inadequate training data. We at-
tribute this to the linear model having less powerful expressiveness,
hence incurring overfitting more easily and vice versa for nonlinear
models. The performance gap doesn’t decrease even after we adjust
the regularization parameters to their optimal setting. To note, the
same phenomenon was observed on the large dataset. After we
decoupled the negative samples sampled for training, we notice
better F1 score for both approaches, yet the performance curve
gradually saturates as we continue serving more training data. This
indicates the models would stop improving as the size of training
data is no longer the bottleneck. To our best knowledge, this is the
first effort to compare such differences in behavior of these two
categories of models, and we hope this observation will provide
some reference for further research.

7 CONCLUSION
In this paper, we tackle the problem of personalized image recom-
mendation. We propose Neural Personalized Ranking (NPR) – a new
neural network based personalized pairwise ranking model for im-
plicit feedback, which incorporates the idea of generalized matrix
factorization. We further build an enhanced model by augmenting
the basic NPR model with users’ multiple contextual preference
clues and derive corresponding features that can be incorporated
into both the NPR and the BPR frameworks to better uncover user



Figure 10: Performance w.r.t Training Sample Size

preferences. Through extensive experimental validation, we demon-
strate the proposed NPR model significantly outperforms several
state-of-the-art approaches. Moreover, we observe the superiority
of contextual enhanced NPR model over the baseline model.

In future work, we are interested to incorporate user information
like demographics into the framework for improving the quality of
recommendation, especially for new users. Additionally, we would
like to extend the current model with additional contextual informa-
tion, for example, modeling the temporal evolution of preferences
by revising certain model components with LSTM. Furthermore,
we are eager to develop a distributed model for large scale recom-
mendation.
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