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ABSTRACT
Discovering what people are known for is valuable to many
important applications such as recommender systems. Un-
like an individual’s personal interests, what a user is known
for is reflected by the views of others, and is often not eas-
ily discerned for a long-tail of the vast majority of users.
In this paper, we tackle the problem of discovering what
users are known for through a probabilistic model called
Bayesian Contextual Poisson Factorization. Moving beyond
just modeling user’s content, it naturally models and inte-
grates additional contextual factors, concretely, user’s geo-
spatial footprints and social influence, to overcome noisy
online activities and social relations. Through GPS-tagged
social media datasets, we find that the proposed method can
improve known-for prediction performance by 17.5% in pre-
cision and 20.9% in recall on average, and that it can capture
the implicit relationships between a user’s known-for profile
and her content, geo-spatial and social influence.

1. INTRODUCTION
Discovering what people are known for is valuable to many

important applications, including recommender systems and
question-answering sites. For example, item-based recom-
menders can be augmented to customize recommendations
based on what knowledgeable users prefer, rather than rely-
ing on all users [2]. While an individual’s personal interests
are often reflected in the media she consumes and generates,
what a user is known for is reflected by the views of others
and is often not easily discerned. A few high-profile peo-
ple are easily recognized – for example, a researcher may be
interested in basketball, biking, and recommender systems,
though mainly known for recommender systems. But there
is a long-tail of the vast majority of users for whom we have
only limited insight into what they are known for.

And yet accurate identification of a user’s known-for pro-
file is challenging. First, the content that a user chooses to
post on social media is often noisy and ambiguous. What
users are truly known for can be buried among posts about
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daily routines and personal interests. Second, many users
post only infrequently, meaning extreme sparsity for the vast
majority of all users. Third, while a natural step to overcom-
ing this sparsity is the integration of additional contextual
factors (e.g., social links between users), it is not clear how
different contextual factors correlate with users’ known-for
profiles and how we can model these contextual influence
and integrate them together.

Hence, in this paper, we tackle the problem of discovering
what users are known for through a probabilistic factoriza-
tion model called Bayesian Contextual Poisson Factorization
(BCPF). Three of the key features of the proposed BCPF
model are: (i) It is jointly learned on a small fraction of
users whose known-for profiles are already known and the
vast majority of users for whom we have little (or no) infor-
mation. (ii) Moving beyond just modeling the content a user
generates, it naturally models and integrates additional con-
textual factors that provide implicit linkages between users
for improved known-for profile estimation. Concretely, we
investigate the impact of geo-spatial footprints and social in-
fluence as additional contextual signals. (iii) It inherits the
strengths of Bayesian Poisson factorization (BPF), a variant
of probabilistic matrix factorization recently proposed in [9,
10], which demonstrates scalable inference for sparse data
and outperforms traditional matrix factorization [9].

In summary, this paper makes the following contributions:
– First, we define the problem of discovering user’s known-
for profile in social media, and propose a probabilistic method
called Bayesian Contextual Poisson Factorization. This model
can capture the implicit relationships between user’s known-
for profile and her content, geo-spatial and social influence.
We then develop an efficient approximate variational infer-
ence to learn the latent parameters of BCPF.
– Second, we evaluate the proposed method over two Twitter
datasets and against several alternative baselines. Overall,
we see a significant improvement of 17.5% in precision and
20.9% in recall on average over the next-best method.
– Finally, we study the inferred geo-spatial and social influ-
ence latent factors, and observe that the geo-spatial factors
are able to capture the underlying distributions of user’s
known-for profile at different locations. We also show that
friends have different social influence on users with respect
to different topics, and that our model is able to learn this
fine-grained social influence.

Problem Formulation. We assume there exist a set of
users U in a social network, and a set of tags T used to
describe what users are known for with respect to differ-
ent topics or aspects. The known-for profile pu of a user



u ∈ U is defined to be a subset of tags from T which can
best describe what this user is known-for by others, instead
of what u is personally interested-in. To give an example:
suppose Alice is known by others as a chef and frequently
posts many food recipes, but she also posts news and per-
sonal related stories now and then as her personal interest.
We associate Alice with tags “chef” and “recipe” instead of
“news” to best describe her perceived image by others, and
treat “chef” and “recipe” as the known-for profile for Alice.

With the above definition, we can define the task of dis-
covering user’s known-for profile in social media as follows:
User Known-For Profile Discovery. Given the users
Uold whose known-for profiles are already known (labeled
users), identify the known-for profiles for the rest of the
users Unew (unlabeled users) based on Uold. Equivalently,
the task is the same as identifying the top-n tags from T for
unlabeled users as their known-for profiles.

However, discovering user’s known-for profile is a classic
cold-start problem. Since unlabeled users do not have any
identified tags in their profile, collaborative filtering tech-
niques fail to infer the profiles of unlabeled users since the
corresponding rows of the user-profile matrix are all zeros for
unlabeled users. Thus, to overcome the cold-start situation,
we propose to leverage a user’s contextual information to
extract implicit relationships between their profile and the
context for the task as described in the following.

2. KNOWN-FOR PROFILE DISCOVERY
As a first pass, we can attack the problem of known-for

profile discovery with Bayesian Poisson factorization (BPF),
a variant of probabilistic matrix factorization recently pro-
posed in [9, 10] to model implicit feedback for recommenda-
tion. Due to the assumption of Poisson distribution instead
of traditional Gaussian distribution in modeling the discrete
data, BPF can capture the long-tailed distribution of user
behavior, enjoy scalable inference for sparse data and out-
perform traditional matrix factorization [9]. In our setting,
since a user’s known-for profile is inherently of discrete na-
ture, i.e., either a tag exists in the profile or not, it is a
natural choice to adopt a Poisson distribution instead of a
Gaussian distribution to model user’s contextual influence.

Specifically, given the binary occurrence rut of tag t in
the known-for profile for user u, BPF assumes that rut is
generated according to:

rut ∼ Poisson(θTu θt) (1)

where θu ∈ RK is the latent factor of u representing what
u is known for in a latent space, and θt ∈ RK is the latent
attribute of t. Each component of these latent parameters
is drawn according to a Gamma distribution as follows:

θ·k ∼ Gamma(λa, λb) (2)

where λa and λb are the shape and rate parameter of the
Gamma distribution, respectively. Given a binary matrix of
known-for profiles, BPF can find each user’s latent factors
over the tag’s latent attributes. These inferred latent factors
can be further used to identify other related tags which may
fit the user’s known-for profile.

2.1 Bayesian Contextual Poisson Factorization
While BPF is able to reveal the latent factors for users

whose known-for profiles are already known or partially known,
it will fail to infer the known-for profiles of unlabeled users,

since these users are “zero rows” in the user-tag matrix.
Hence, a natural approach to extend BPF to these missing
users is through the integration of additional contextual in-
formation that may provide implicit linkages between users.

We refer to this extended framework as Bayesian Con-
textual Poisson Factorization since it inherits the strengths
of BPF and is extended to integrate valuable contextual in-
formation. Intuitively, BCPF is designed to learn the in-
fluence of each contextual feature individually and combine
them together for overall representation. Under the assump-
tion of Poisson factorization, since the sum of Poisson ran-
dom variables is still a Poisson distribution, we can linearly
add different contextual influence together without changing
the underlying probabilistic assumption.

In the rest of this section, we present how several impor-
tant contextual factors can be modeled under BCPF – user
content, geo-spatial impact, and social influence – and how
these factors can be integrated into BCPF. Note that the
proposed model is generalizable and other contextual factors
could be incorporated as well. Concretely, we model users in
a heterogeneous graph G = (V,E), consisting of four types
of nodes V = (U,C,L, P ). Each user u has a sample of the
textual content that she posts online, denoted as cu ∈ C,
and a pair of geographical coordinates (llatu , llngu ) ∈ L indi-
cating the approximate location of this user’s posting activ-
ities. The known-for profile of a labeled user from Uold is
denoted as pu ∈ P . All of the above relations are directly
relevant to users themselves, and can be regarded as user
attributes. Furthermore, users may also have social rela-
tions with each other. Together, user attributes and social
relations constitute all edges V between different entities.

Content factor. The first baseline factor is a user’s content
– that is, we assume that a user’s known-for profile can be
reflected by the usage of words in posts. Let Rc be a sparse
matrix describing the usage of words from all users, where
each element ruw is the count of word w adopted by user u.
We then choose to model every count ruw using a Poisson
distribution, with the intensity parameter factorizing over
u’s latent factor θu and w’s latent factor θw as follows:

ruw ∼ Poisson(θTu θw) (3)

where θu and θw are both K-dimensional non-negative vec-
tors with Gamma priors specified in Equation 2.

Factorizing over the word matrix Rc gives us an unsuper-
vised version of users’ latent preference over words. How-
ever, for labeled users Uold, θu should also reflect their known-
for profiles. For instance, if both users are labeled with
“sports”, it is likely that they may share some common words
in their sports-related posts. Thus, to capture this intuition,
θu should also be constrained by users’ known-for profiles.
Let Rp be a binary matrix describing known-for profiles for
all users, where each element rut represents if user u is la-
beled with tag t. Similarly, we model each binary rut with a
Poisson distribution, with its intensity parameter factorizing
over θu and t’s latent factor θt as follows:

rut ∼ Poisson(θTu θt) (4)

where θt is aK dimensional non-negative vector parametrized
with Gamma priors. By sharing user’s latent factor for both
factorization 3 and 4, the model can not only reflect user’s
latent preference over common use of words, but also en-
sure that users with similar profiles have similar θu. Note
however that a user’s posts may be intertwined with other



Figure 1: Geo-spatial distribution of users who are known
for “entrepreneur” (left) and “politics” (right).

non-revealing texts, and thus can be noisy. To enhance the
representation for unlabeled users, we also incorporate each
user’s geo-spatial footprints and social connections to fur-
ther refine the model.

Geo-spatial factor. To demonstrate how geo-spatial loca-
tion may reflect what a user is known for, we first show heat
maps of users in US who are known for “entrepreneur” and
“politics” in Figure 1 based on a sample of crowd-generated
Twitter lists (described more fully in Section 3). As we can
observe, for both topics, these well-known users are mostly
distributed in a few areas, with a majority focused in San
Francisco for “entrepreneur” and in Washington D.C. for
“politics”. This suggests that (i) for a specific tag, users do
not distribute evenly across the entire geo-scope and may
concentrate in a few areas; (ii) geo-spatial distributions of
well-known users may vary by different topics.

Given the above observations, how can we use geo-spatial
coordinates to enhance the representation of users? We no-
tice from Figure 1 that users known for certain topical tags
often appear in clusters, i.e., they concentrate in several
discrete regions. In light of this, we introduce a region-
dependent variable to represent a region’s affinity over tags.

Concretely, we assume that the geographical space is par-
titioned into I regions. Each user can then be assigned into
the region where she belongs, which gives a matrix Rul.
Each region corresponds to a K-dimensional location latent
factor, denoted θl, indicating the region’s affinity over tags.
If we consider that each rut in the matrix Rp is only depen-
dent on user’s location, then rut can be generated through
the following Poisson distribution:

rut ∼ Poisson(θTluθt) (5)

where lu represents the region where user u belongs, and
the intensity parameter is determined by the inner product
of the corresponding location and tag latent factor. Simi-
larly, each component of θl has a conjugate Gamma prior
as specified in Equation 2. Thus, through the explicit han-
dling of tag’s dependence over locations, it is expected that
θl could indicate which tags are mostly dominant for the
corresponding region.

Social influence factor. Homophily in social networks
[22] suggests that people tend to connect with others who
are similar to themselves. Indeed, there already exists some
works [19, 21] exploiting social relations for item recommen-
dations. Here, we would like to explore how social relations
may benefit user known-for profile discovery. An immediate
problem is that user’s social relations are often noisy, i.e., if
a friend of a user is known for a tag, it does not necessarily
mean that the user is also known for the tag. In Figure 2, we
randomly select two Twitter users who are known for eight
tags, and examine the proportion of followers who have the
same tag in their known-for profiles. We can see that even

Figure 2: Proportion of followers who have the same tag in
their known-for profile as the users. user1: red; user2: blue.

though user1 is known for“ad”, very few followers of the user
are also known for “ad”. On the contrary, a significant por-
tion of followers of user2 are known for “ad”. This indicates
that users may have different degree of social influence.

Thus, to capture this observation, we introduce a social
influence parameter θf for each friend f of all users, indicat-
ing the degree of social influence of this friend on any user
who follows her. Thus, if we have a total of M friends, the
influence parameters constitute a vector of Θf with dimen-
sion M . Then, given user u’s friends Nu, if we consider that
each rut in the matrix Rp is only dependent on user’s friends’
known-for profiles, then rut could be generated through the
following Poisson distribution:

rut ∼ Poisson(
∑
f∈Nu

θfrft) (6)

where rft is the element in the matrix Rft indicating if friend
f has the tag t. The intensity parameter is obtained by
aggregating all of the friends’ latent influence for the user.

However, since each friend may be labeled with multiple
tags, it is very likely that this friend has different levels of
influence for different tags, as shown in Figure 2. In the
figure, many people following user2 have the tag “pr mar-
keting” and “ad”. Thus, although user2 is also known for
“entertainment”, it is obvious that this user is more influen-
tial on “pr marketing” and “ad”. As a result, if a new user
starts to follow her, it is very likely that this user follows her
because she is also known for “pr marketing” or “ad”.

Hence, to capture this intuition, we assume that for each
friend f of all users’ friends, there is a latent factor θft for
each tag t. This parameter is used to capture the degree of
influence that f has over t. Thus, if we have a total of N
tags, the influence parameters constitute a M by N matrix
Θft. Thus, given user u’s friends Nu, similarly as above, rut
can be generated through the following:

rut ∼ Poisson(
∑
f∈Nu

θftrft) (7)

where the intensity parameter is obtained by aggregating all
of the friends’ latent influence for this user and the corre-
sponding tag. Consequently, Equation 7 is able to model
the above scenario where the new user is more likely to have
the tag “pr marketing” or “ad” instead of “entertainment” if
she follows user2. Similarly, each nonzero component of Θft

is put on Gamma priors for inference.

Integrating contextual factors. So far, we can generate
independent known-for profiles through user’s content, ge-
ographical coordinates and social relations. However, it is



Algorithm 1: Generative Process for BCPF

Input: hyper-parameter λwa , λwb , λua , λub , λla, λlb, λ
t
a, λtb,

λfta , λftb
for each word w in the vocabulary, draw

word topic factor θw ∼ Gamma(λwa ,λwb )
for each user u, draw user content factor

associated with tags, θu ∼ Gamma(λua ,λub )
for each word w used by user u, draw

the occurrence count ruw ∼ Poisson(θTu θw)
for each discretized region l, draw region factor

associated with tags, θl ∼ Gamma(λla,λlb)
for each friend tag pair (f ,t), draw

friend social influence on t, θft ∼ Gamma(λfta ,λftb )
for each tag t, draw tag factor associated with

user content and region, θt ∼ Gamma(λta,λtb)
for each tag t in user u’s known-for profile, draw

binary rut ∼ Poisson(λut), where λut is determined
by Equation 8.

natural to combine all types of contextual influence to form
a better representation for users. Since the sum of Poisson
distributions is still a Poisson distribution, we can combine
the generative process specified by Equation 4, 5 and 7 to-
gether to obtain the overall intensity parameter of the sum
Poisson distribution as:

λut = αθTu θt + βθTluθt + γ
∑
f∈Nu

θftrft (8)

where α, β and γ are the tradeoff weights for content, geo-
spatial and social contributions, respectively. The entire
generative process of BCPF is described in Algorithm 1.

2.2 Prediction
We have specified a Bayesian probabilistic model over the

latent parameters Θu, Θw, Θl, Θft and Θt, and the ob-
served discrete data matrix Rp, Rc, Rul and Rft. To pre-
dict the known-for profiles for new users, we need to es-
timate the posterior distributions of the latent parameters
p(Θu,Θw,Θl,Θft,Θt|Rp,Rc,Rul,Rft) given the observed
data. Once we have the posterior distributions of the la-
tent factors, we can predict the known-for profiles for new
users with the expectation of the sum of weighted Poisson
distributions. This leads to computing the expectation of
the intensity parameter λut, which gives:

E(rut) = αE(θu)TE(θt)+βE(θlu)TE(θt)+γ
∑
f∈Nu

E(θft)rft

where all expectations are with respect to the posterior dis-
tributions. By making use of a new user’s contextual infor-
mation, we can predict the ranking of the tags for this user
by their expected occurrence.

2.3 Learning with Variational Inference
Since it is not tractable to compute the exact posterior of

the latent factors Θ, we propose to use variational methods
[15] for approximate inference. Variational inference casts
the approximation process as an optimization problem. By
defining a freely parameterized family of distributions over
latent variables, variational methods seek to fit its parame-
ters so as to minimize the KL-divergence between the defined
distribution and the posterior distribution. In our case, vari-

ational inference solves the following minimization problem:

q∗(Θ) = argminqKL(q(Θ)||p(Θ|Rp,Rc,Rul,Rft)) (9)

where q∗(Θ) is the optimized variational distribution that
is used as the proxy for the exact posterior. To facilitate
the inference, we first introduce several auxiliary latent vari-
ables [9] for Equation 3 and 8. Specifically, let’s assume
zuwk ∼ Poisson(θukθwk), where

∑
k zuwk = ruw, and zcutk ∼

Poisson(αθukθwk), zlutk ∼ Poisson(βθlukθtk), zutf ∼
Poisson(γθftrft), where

∑
k z

c
utk+

∑
k z

l
utk+

∑
f∈Nu

zutf =
rut. Since the sum of a set of Poisson random variables
is still a Poisson distribution, these auxiliary variables can
still preserve the marginal distribution of ruw and rut when
marginalized out. Thus, our latent variables include latent
parameters Θ and auxiliary latent variables Zuw, Zut.

Before solving Equation 9, we need to derive the complete
conditionals, i.e., the conditional distributions of a latent
variable given all other variables, for each of Θ, Zuw and
Zut. Since each of Θ has conjugate Gamma priors, the com-
plete conditionals for Θ are also Gamma distributions. For
auxiliary latent variables, we follow the conclusion from [14]
that given a vector Zut of Poisson distributed count, Zut is
distributed as a multinomial conditioned upon the observed
sum rut. Similarly, Zuw is also a multinomial given ruw.
Thus, all complete conditionals can be derived.

Variational inference assumes q(Θ, Zuw, Zut) is in the same
exponential family with the complete conditionals [10]. Thus,
we employ the following mean field variational family, where
each latent variable is independent with each other and gov-
erned by its own variational parameters:

q(Θu,Θw,Θl,Θft,Θt, Zuw, Zut) =
∏
u,k

q(θuk|ηauk, ηbuk)

∏
w,k

q(θwk|ηawk, ηbwk)
∏
l,k

q(θlk|ηalk, ηblk)
∏
t,k

q(θtk|ηatk, ηbtk)

∏
f,t

q(θft|ηaft, ηbft)
∏
u,w,k

q(zuwk|φuwk)
∏
u,t,k

q(zcutk|φcutk)

∏
u,t,k

q(zlutk|φlutk)
∏

u,t,f∈Nu

q(zutk|φutf )

where ηa· and ηb· are the shape and rate parameter of the
variational Gamma distributions; and φut· is the parame-
ter of the variational Multinomial distributions. To obtain
optimal values for ηa· , η

b
· , φuw· and φut·, we need to solve

the minimization in Equation 9. Since variational inference
requires that the natural parameter of each q(·) is the expec-
tation of the natural parameter of the corresponding com-
plete conditional under q(·) [11], we just need to compute
the expectation of the natural parameters of each complete
conditional. To give an example, we show how to compute
parameter ηatk and ηbtk. The expectation of the natural pa-
rameters on the complete conditional of θtk gives:

ηatk = λat +
∑
u

rutφ
c
utk +

∑
u

rutφ
l
utk

ηbtk = λbt + α
∑
u

ηauk
ηbuk

+ β
∑
u

ηaluk
ηbluk

(10)

where we have applied the fact that the expectation of a
Gamma random variable is equal to the ratio of the shape
parameter over the rate parameter. Similarly, we can de-
rive the formula to compute other latent parameters. For
auxiliary latent variable Zut, the expectation of its natural



Algorithm 2: Variational inference for BCPF

Input: hyper-parameter λwa , λwb , λua , λub , λla, λlb, λ
t
a, λtb,

λfta , λftb , data matrix Rp, Rc, Rul, Rft

repeat
Initialize all variational parameters ηa· , η

b
· , φut·, φuw·

for each ruw
Update φuwk for each k with
φuwk ∼ exp(ψ(ηauk)− ln(ηbuk) + ψ(ηawk)− ln(ηbwk))

Normalize φuw·
for each rut

Update φcutk for each k, φlutk for each k, and
φutf for each f ∈ Nu with Equation 11

Normalize φut·
for each w, update ηawk and ηbwk for each k with

ηawk = λaw +
∑
u ruwφuwk, ηbwk = λbw +

∑
u

ηauk

ηb
uk

for each u, update ηauk and ηbuk for each k with
ηauk = λau +

∑
w ruwφuwk +

∑
t rutφ

c
utk

ηbuk = λbu +
∑
w

ηawk

ηb
wk

+
∑
t

ηatk
ηb
tk

for each l, update ηalk and ηblk for each k with
ηalk = λal +

∑
t

∑
u I(lu = l)rutφ

l
utk

ηblk = λbl +
∑
t

∑
u I(lu = l)

ηatk
ηb
tk

for each t, update ηatk and ηbtk for each k with Equation 10
for each f and each t, where rft > 0

Update ηaft and ηbft with
ηaft = λaft +

∑
u I(f ∈ Nu)rutφutf

ηbft = λbft +
∑
u I(f ∈ Nu)rft

until Converge

parameter of the complete conditional leads to

φcutk ∼ α exp(ψ(ηauk)− ln(ηbuk) + ψ(ηatk)− ln(ηbtk))

φlutk ∼ β exp(ψ(ηaluk)− ln(ηbluk) + ψ(ηatk)− ln(ηbtk))

φutf ∼ γrft exp(ψ(ηaft)− ln(ηbft))

(11)

where ψ(·) is the digamma function; and we have applied the
fact that E(ln(X)) = ψ(ηa)−ln(ηb) whenX ∼ Gamma(ηa, ηb).
Similarly, we could obtain the formula for Zuw. We then use
coordinate ascent to update each variational parameter by
turns to obtain the locally optimal values. The overall up-
date algorithm is shown in Algorithm 2.

The complexity of Algorithm 2 is largely determined by
the product of K and the maximum number of non-zeros of
the matrix Rc, Rp and Rft. Thus, learning is quite efficient
for a sparse data matrix. Here, we omit detailed complexity
analysis due to the space limit.

3. EXPERIMENTAL EVALUATION
In this section, we conduct several experiments to evaluate

the proposed BCPF for user known-for profile discovery.

Data. Our data is based on a sample of about 12 million
Twitter lists collected from 2013 to 2014. Twitter lists [3,
8] are crowd-generated, for which a labeler can put a user
on a tagged list, if the labeler thinks the user is known for
the topic indicated by the tags. Thus, if a user is labeled by
different labelers with certain tags, for example, “chef” and
“recipe”, then we consider this user is known for these topics.
In our experiments, we use the threshold of three labelers to
determine the existence of a tag in user’s known-for profile.
In addition, we also filter out infrequent tags with fewer than
20 users to focus on quality tags. We randomly sample two

Table 1: Geo-tagged Twitter data.

Loc # of users # of tweets # of following links
US 10,552 317,436 24,676
World 19,776 594,929 30,853

Loc # of tags # of records sparsity
US 1,011 85,994 0.81%
World 1,456 136,625 0.47%

datasets (see Table 1), one in the US and one across the
world. We also crawled about 30 recent tweets for each user
and sampled her social relations.

Experimental Setup. For evaluation, we randomly par-
tition all users into 60% for training, 30% for testing, and
10% for cross-validation. For the dimension K of the latent
factors, we empirically select 100 for all methods. For the
tradeoff weights α, β and γ in Equation 8 for BCPF, we
set them to 1, 1.2 and 0.2 via cross-validation. To initialize
the hyper-parameters of the Gamma priors in BCPF, we fol-
low [10] and set them to 0.3 plus a small random variations
on geo-spatial and social latent factors for sparse solutions;
for user content and word variational parameters, we adopt
LDA [5] and use document topic distribution and topic word
distribution to initialize ηuk and ηwk, respectively. In the
modeling of geo-spatial influence, it is assumed that the ge-
ographical space is partitioned into discrete regions. Here,
we adopt k-means clustering instead of a simple gridding by
clustering users’ geo-coordinates. We choose a clustering-
based approach because the geo-spatial distribution of users
exhibits a clustering effect, as shown in Figure 1. For evalua-
tion metrics, we adopt Precision@k (Prec@k) and Recall@k
(Rec@k). Prec@k measures the percentage of the correctly
identified tags over the top k predicted tags. Rec@k rep-
resents what percentage of true tags can emerge in top k
predicted tags. Both measures are averaged over all testing
users. In our experiments, we select k to be 5 and 10.

Baselines. We compare BCPF with the following baselines:
– k-Nearest Neighbors. In this baseline, we extract content
features from user’s sampled tweets, and apply kNN to find
n most similar users to the testing user u. We then com-
pute tag’s score according to sut =

∑n
i wuirit, where wui is

the similarity between user u and i, and select top k tags
for prediction. We use two approaches to compute textual
similarity, one with the bag-of-words model (kNN-BoW),
another with the topic model (kNN-LDA) [5].
– One-Vs-Rest multi-label ranking [4]. We train a One-Vs-
Rest multi-label classifier with bag-of-words on user’s tweets.
Logistic regression is used as the classification method to
have a probabilistic output for ranking tags.
– Wsabie [29]. Wsabie is an embedding-based model which
learns a mapping from a feature space to the joint space
with the tags. Here, we train the model with WARP loss on
bags-of-words of user’s tweets, and use the learned user and
tag embeddings for ranking tags.
– Content-based Poisson Factorization (C-PF). This is the
method where we only keep the content factor in BCPF. It
can be considered a form of CTPF proposed in [10] where
we treat user’s tweets as documents, and user’s known-for
profiles as binary ratings. We also ignore the topic offsets
since the testing users are in complete cold-start situation.
– Geo-spatial CPF (GC-PF). This is the method in which



we keep both content and geo-spatial factor in BCPF.
– Social influenced CPF (SC-PF). This method keeps both
content and social influence factor in BCPF.

3.1 Effectiveness of BCPF
How well does the proposed BCPF perform compared to

alternative baselines? In Table 2, we report Prec@k and
Rec@k for all methods. Overall, BCPF gives the best re-
sults for all metrics and both datasets. Specifically, it gives
an average improvement of 17.5% in precision and 20.9% in
recall over the best content based method C-PF. This indi-
cates the superiority of BCPF by exploiting geo-spatial and
social influence factors other than user’s content.

In content-based methods, neighborhood-based methods
generally provide the worst performance of all since only lo-
cal information can be used in prediction. Here, LDA based
kNN performs better than BoW based kNN, since LDA
can take advantage of the global topic information in users’
posts. Supervised methods, however, give relatively better
performance than neighborhood methods, as shown by One-
Vs-Rest multi-label ranking and Wsabie. Both methods are
trained with multiple labeled tags for each user on the BoW
features, where Wsabie obtains embeddings for each user
and tag. However, One-Vs-Rest clearly outperforms Wsa-
bie, although Wsabie is more efficient and requires less com-
putation time. C-PF, however, gives the best performance
of all content-based methods, indicating the superiority of
joint modeling by learning labeled users’ profiles on content
features and unlabeled users’ texts.

Furthermore, we can see from the table that both GC-
PF and SC-PF provides better performance against only
content-based C-PF, respectively. Specifically, GC-PF gives
an average improvement of 8.07% in precision and 11.1% in
recall, respectively. SC-PF gives an average improvement of
10.9% in precision and 11.2% in recall, respectively. This in-
dicates that geo-spatial features and parameterized social in-
fluence can both improve the identification of user’s known-
for profile. Given the overall improvement of the combina-
tion of these features, we can also conclude that these factors
are able to complement each other.

3.2 Geo-spatial Factor Analysis
In the modeling of geo-spatial influence on user’s known-

for profile, we discretize the US/world area into geograph-
ical regions, and treat user’s location as the region where
she belongs. An important question here is how to select
the number of regions I. As we can imagine, if I is too
small, the model may not be able to reflect the geo-spatial
distribution of user’s known-for profile; if it is too large, re-
gions may be too small, thus leads to sparse observations.
To that end, we select I for k-means clustering from 10 to
200, and run GC-PF with each value for ten random initial-
izations of parameters. In Figure 3, we show how precision
and recall changes with respect to the number of regions
for both datasets. We can see that as I goes up, precision
generally also increases. However, the performance plateaus
when it is large. We attribute this to: first, when the num-
ber of regions increases, we obtain finer-grained geo-spatial
characterization of tags; second, when it is large enough, a
finer-grained discretization does not help distinguish tag’s
local distributions. It may even result in sparse counts in
regions and also increases model complexity, thus degrading
the final performance. Note that it requires less number of

Figure 3: Box plot for precision@5 with respect to the num-
ber of regions. Left: US; Right: world.

Table 3: Top ranking tags for different areas obtained from
latent location factors and tag factors.

Los Angeles D.C. SF Chicago
la dc sf chicago

celebrity politics geek chi
star progressive bay area illinois
tv baltimore dev pr

artist us technology advertising
actor conservative mobile social media

famous people government startup marketing
entertainment politico software marketer

regions, i.e., larger partition of areas, for the US dataset than
world to get to the best average performance. The reason is
that the world data may be more diverse in terms of the geo-
spatial distribution of user known-for profiles, thus requiring
finer-grained geo-segments to reach the best performance.

To further examine the inferred region factors, we show in
Table 3 the top ranking tags associated with selected areas.
In particular, we compute the affinity score between a loca-
tion and a tag by taking the expected inner product of the
latent factor of the location and the tag, denoted as E(θTl θt).
We can see from the table that, generally, the top ranking
tags can reflect the common knowledge of the characteris-
tics of those selected areas. For example, it is very likely
that a user from the Washington D.C. area is well known
for her political activities/comments. Thus, these inferred
region factors are capable of nudging user’s known-for profile
toward her region characteristics.

3.3 Social Influence Factor Analysis
We have seen from the previous experiments that social

influence plays an importance role in representing user’s
known-for profile by looking at her connections. In order to
get a further understanding of how social influence varies for
different friends and tags, we consider the following meth-
ods using social influence: (i) naive SC-PF (nSC-PF), where
we replace θf with a single parameter θnaive in Equation 6
for all friends and tags; (ii) user weighted SC-PF (uSC-PF),
which models social influence by a vector of dimension M ,
with each element indicating the level of a friend’s social in-
fluence for all tags (see Equation 6); and (iii) SC-PF, which
models each friend’s social influence for every tag of hers by
matrix Θft. We compare these methods with C-PF to see
which method models social influence the best. Note that
we also include the content factor as a basic representation
for users since not all users have social connections.



Table 2: Comparison of performance with alternative methods. BCPF generally gives the best performance by integrating
the contextual influence of textual, geo-spatial and social factors, and these factors are able to complement each other.

Method
US World

Precision Recall Precision Recall
@5 @10 @5 @10 @5 @10 @5 @10

kNN-BoW 0.114 0.098 0.120 0.181 0.083 0.072 0.099 0.151
kNN-LDA 0.150 0.127 0.155 0.226 0.120 0.100 0.137 0.200
One-Vs-Rest 0.166 0.140 0.176 0.250 0.136 0.112 0.161 0.227
Wsabie 0.159 0.137 0.169 0.244 0.116 0.101 0.134 0.201
C-PF 0.188 0.160 0.194 0.279 0.147 0.126 0.168 0.246
GC-PF 0.199 0.174 0.212 0.312 0.159 0.138 0.186 0.277
SC-PF 0.209 0.177 0.217 0.309 0.165 0.138 0.189 0.270
BCPF 0.222 0.188 0.240 0.336 0.173 0.147 0.201 0.295

Figure 4: Comparative performance of the methods mod-
eling social influence. SC-PF performs best by making it
dependent on both friends and tags. Left: US; Right: world.

Table 4: User’s inferred social influence θf by uSC-PF and
social influence θft for top ranking tags by SC-PF.

User θf top-1/θft top-2/θft

@UnderTheBar 0.00290
entrepreneur health

0.0230 0.0226

@skwigg 0.00425
fit nutrition

0.0217 0.0190

@mollyblock 0.0143
marketer pr

0.104 0.0226

@bikehugger 0.210
bicycle cycling
0.435 0.303

As we can see from Figure 4, overall, social connection is
able to improve the performance for predicting user’s known-
for profile. Specifically, we can make the following two con-
clusions: (i) it is generally better to differentiate social in-
fluence for different friends, rather than treating all friends
with the same influence; (ii) it is generally better to differen-
tiate social influence for different tags of each friend, rather
than treating all tags of each friend with the same influence.

Table 4 shows the inferred social influence for different
users and their top-ranking tags, which further exemplifies
the observation that users may have different social influence
on their followers with respect to different tags. In particu-
lar, user @UnderTheBar shows little influence on his follow-
ers’ known-for profiles even if he may have tens of thousands
of followers. This indicates that users who follow @Under-
TheBar are not necessarily also known for “entrepreneur”
or “health”. On the contrary, @mollyblock has much larger
social influence on her followers for her tag “marketer”, in-

dicating that users following @mollyblock are more likely
to also be known for “marketer”, even if @mollyblock has
fewer followers than @UnderTheBar. One explanation for
this observation is that people connect with others for dif-
ferent reasons on social media, and that popularity itself is
not necessarily an indicator of one’s social influence.

4. RELATED WORK
User profiling is an important task, with many efforts

building user’s topic interests for personalized search [7, 24],
targeted advertising [1] and social media systems [6, 27, 34].
For example, Dou et al. [7] built user interest profile by pre-
defined topic categories for personalized webpage re-ranking.
Ahmed et al. [1] proposed a statistical framework to ex-
tract user’s dynamic interest profile for behavioral targeting.
Chen et al. [6] built topic profiles of users with bag-of-words
model to recommend conversations in Twitter. Zhao et al.
[34] improved user’s topic interest profile by joint factoriza-
tion of user’s topic matrix and behaviors. User profiles are
also used to provide recommendations for online activities
such as commenting on news stories [25] and mentions in
micro-blogging systems [27]. Besides user’s topic interest
profile, other works [16, 17, 23] focus on inferring user’s at-
tribute and demographics profile such as gender and educa-
tion. For example, Mislove et al. [23] proposed community
detection based approaches to infer user’s college and ma-
jor. Li et al. [16] presented a weakly-supervised approach to
extract user’s job and education. Our work is different from
the above works in that we tackle the problem of discovering
what users are known for instead of user’s topic interests.

Contextual information in social media has been widely
used in previous works [10, 13, 19, 21, 26, 28, 31, 33] to
learn better user profiles and improve task performance. A
seminal work by Singh and Gordon [26] proposed collective
matrix factorization to simultaneously factor several matri-
ces encoding contextual information for better prediction of
user-movie ratings. Wang and Blei [28] proposed collabora-
tive topic regression to learn latent user preference by mod-
eling both ratings and content. Similarly, Gopalan et al.
[10] also modeled both user’s ratings and content but with
Poisson factorization. Jamal et al. [13] proposed a context
dependent factor model to learn general latent factors of
entities in social networks for better recommendation. Tem-
poral information has also been used in [31] to learn both
user-oriented topics and time-oriented topics. Other con-
textual information used to learn user preference includes
domain-specific communities [33] and social relations [19,



21] which are used to regularize latent factors between so-
cially connected users. In our work, instead of using social
regularization for latent factors, we learn both user and tag
dependent social influence from the data with Poisson dis-
tribution for fine-grained modeling of social relations.

Geographical footprints have also been widely explored in
many location-based applications [12, 18, 20, 30, 32, 35].
One of the most popular applications is POI recommen-
dation, where geographical influence is combined with user
preference for better performance [18, 30]. Other works have
used geographical influence for rating prediction in Yelp [12],
activity recommendation with GPS history [35], expert rec-
ommendation [20] and event-based group recommendation
[32]. In contrast, we are focused on geo-spatial influence for
user known-for profile discovery in social media.

5. CONCLUSION
In this paper, we tackled the problem of discovering what

users are known for in social media. By integrating user’s
textual, geo-spatial and social influence, we proposed Bayesian
Contextual Poisson Factorization to overcome the noisiness
of user’s posting activities and social relations. Experimen-
tal results showed that BCPF can improve known-for pre-
diction by 17.5% in precision and 20.9% in recall on aver-
age. We also showed that user’s connections have varying so-
cial influence for different topics, confirming our fine-grained
modeling of social influence by making it dependent on both
users and topics. In our future work, we are interested in
exploring the impact of additional contextual signals beyond
the textual, geo-spatial and social influence studied here.
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