
Exploiting Geo-Spatial Preference for Personalized Expert
Recommendation

Haokai Lu
Texas A&M University
hlu@cse.tamu.edu

James Caverlee
Texas A&M University

caverlee@cse.tamu.edu

ABSTRACT
Experts are important for providing reliable and authoritative in-
formation and opinion, as well as for improving online reviews
and services. While considerable previous research has focused
on finding topical experts with broad appeal – e.g., top Java devel-
opers, best lawyers in Texas – we tackle the problem of person-
alized expert recommendation, to identify experts who have spe-
cial personal appeal and importance to users. One of the key in-
sights motivating our approach is to leverage the geo-spatial pref-
erences of users and the variation of these preferences across differ-
ent regions, topics, and social communities. Through a fine-grained
GPS-tagged social media trace, we characterize these geo-spatial
preferences for personalized experts, and integrate these prefer-
ences into a matrix factorization-based personalized expert recom-
mender. Through extensive experiments, we find that the proposed
approach can improve the quality of recommendation by 24% in
precision compared to several baselines. We also find that users’
geo-spatial preference of expertise and their underlying social com-
munities can ameliorate the cold start problem by more than 20%
in precision and recall.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
expert recommendation; geospatial preference; GPS-tagged social
media

1. INTRODUCTION
Finding and recommending experts is a critical component for

many important tasks. For example, the quality of movie recom-
menders can be improved by biasing the underlying models toward
the opinions of experts [1]. Making sense of mobile and social
information streams such as the Facebook newsfeed and the Twit-
ter stream can be improved by focusing on content contributed by
experts. Along these lines, companies like Google and Yelp are
actively soliciting expert reviewers to improve the coverage and re-
liability of their services [8]. More generally and in contrast to sea-
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rch engines and question-answer systems, experts can provide on-
going help for evolving and ill-specified needs, as well as personal-
ized access to knowledge and experience that only experts possess.

Indeed, there has been considerable effort toward expert finding
and recommendation, e.g., [2, 3, 6, 7, 14, 17, 20, 22]. These ef-
forts have typically sought to identify topical experts with broad
appeal, e.g., the top Java developer in an enterprise, the best lawyer
in Texas. However, there is a research gap in our understanding
of both (i) identifying personal experts, that is experts who are
of significance and importance to me, but perhaps not viewed so
more broadly. For example, I may be interested in the expert opin-
ions of nearby local foodies, but less interested in the opinions of
globally popular celebrity chefs; and (ii) how spatial preference for
personally-valuable expertise varies across topics, across regions,
and based on different underlying social communities. For exam-
ple, technologists in Houston, TX may be more interested in the
opinions of experts in nearby Austin and in more distant Silicon
Valley, but less so in the opinions of experts from New York. Simi-
larly, the reach of experts may vary by location, so that tech experts
from Silicon Valley have a larger footprint than do experts from
other regions.

Hence, in this paper, we are interested to study the problem of
personalized expert recommendation by integrating the geo-spatial
preferences of users and the variation of these preferences across
different regions, topics, and social communities. These geo-spatial
preferences are increasingly being revealed through the fine-grained
geo-spatial footprints of Instagram, Foursquare, and Twitter, among
other mobile location sharing platforms. Concretely, we oppor-
tunistically leverage a collection of GPS-tagged Twitter users and
their relationships in Twitter lists, a form of crowd-sourced knowl-
edge whereby user A may label user B with a descriptor (like “tech-
nology”). In isolation these lists allow a user to organize a per-
sonal Twitter stream; in aggregate, the many labels applied to a
target user in many lists can provide a crowdsourced expertise pro-
file of the target user. Specifically, we propose and evaluate a
matrix factorization-based personalized expert recommender that
leverages three key factors:
• Region-based locality, reflecting the variation in spatial prefer-

ence from region to region. For example, Figure 1b and Fig-
ure 1c shows that the preference of users for food experts varies
greatly based on the location of the user (in essence, local users
prefer local foodies). How can these regional differences be cap-
tured and incorporated into a personalized expert recommender?
• Topic-based locality, reflecting the variation in spatial preference

across different topics. For example, Figure 1b and Figure 1e
demonstrate that spatial preference is much less local for the
topic technology than for food. How can this topical variation
be integrated into a personalized expert recommender?



(a) Food experts (b) Users for SF-based food experts (c) Users for Chicago-based food experts

(d) Tech experts (e) Users for SF-based tech experts (f) Users for Chicago-based tech experts

Figure 1: Spatial distribution of experts (a,d) and for the users who have listed experts (b,c,e,f) based on geo-tagged Twitter lists.

• Social-based locality, reflecting the social connections between
users and experts. For example, are users who are connected in
an underlying social network more “similar” in their preferences
for experts? Are experts who are more tightly coupled in the
underlying social network preferred by the same set of users?
Through extensive experimental validation, we find that each of

these factors – region, topic, and social-based locality – improves
the quality of personalized expert recommendation. And together,
the proposed model achieves around 24% improvement in preci-
sion and 21% improvement in recall versus both a collaborative
filtering and a baseline matrix factorization based recommender.
Furthermore, we also find that the proposed approach can amelio-
rate the cold start problem when users have few experts on their
lists, leading to more than 20% improvement over the baseline in
precision and recall.

2. RELATED WORK
Many previous works [2, 3, 14, 22] have focused on finding

general topic experts in many domains (e.g., enterprise corporate,
email networks), with a recent emphasis on social media and mi-
croblogging sites [7, 17, 20]. Weng et al. [20] proposed a PageRank-
based approach to find topic experts by taking advantage of both
topical similarity between users and social link structure. Pal and
Counts [17] introduced a probabilistic clustering followed by a within-
cluster Gaussian ranking framework to find topic authorities using
nodal and topical features on Twitter. Ghosh et al. [7] proposed
and built a system called Cognos to find topic experts by relying
on Twitter Lists (though not with any geo-spatial information, as
in this work). Recently, Cheng et al. [6] addressed the problem
of identifying local experts on Twitter. Our work extends on these
prior efforts by focusing on personalized experts and in investigat-
ing the impact of region-based, topic-based, and social community-
based locality on personalized expert recommendation.

With the rapid growth of location-based social networks in re-
cent years, many applications [5, 9, 12, 13, 15, 21] have started
to take advantage of geo footprints such as point-of-interest (POI)
recommendation on social networks. Ye et al. [21] explored the
spatial clustering phenomenon and proposed a unified POI recom-
mendation framework combining user preference, geographical in-
fluence, and social influence. Cheng et al. [5] proposed a multi-
center Gaussian model to model user’s check-in behavior, which
is used as input for a generalized matrix factorization framework.
Liu et al. [13] proposed a geographical probabilistic factor analysis

framework, which jointly models the effect of geographical dis-
tance, user preference, POI popularity and user mobility. Another
different application that utilizes geographical footprints is the rat-
ing prediction problem in Yelp [9], where Hu et al. observed weak
positive correlation between a business’s ratings and its neighbor’s
ratings, and used this observation to improve rating predictions. In
contrast, we are focused on preferences for experts, rather than on
particular POIs or venues.

3. PERSONALIZED EXPERT RECOMMEN-
DATION: OVERVIEW

In this section, we introduce the problem of personalized expert
recommendation and outline our core approach.

3.1 Problem Statement
We assume there exists a set of users U = {u1, u2, ..., uN},

where N is the total number of users. From this set U , there are
a number of recognized experts denoted as E = {e1, e2..., eM},
whereM is the total number of experts. Each user has a preference
over some of these experts, expressed as a personalized expertise
list. For example, Alice may prefer Beth to Candace in the topic of
“Java programming”, but have no opinion on Doug. We then define
the problem of personalized expert recommendation as: Given a
user ui, identify the top-n personally relevant experts to ui. That is,
can we further identify experts Eva and Frank that are of personal
interest to Alice?

3.2 Recommendation by Matrix Factorization
We tackle personalized expert recommendation using latent fac-

tor matrix factorization [10]. We assume there is a factor pi associ-
ated with each user ui and a factor qj associated with each expert
ej . The model defines a rating score between the list and the expert,
denoted as yij , and factors the score into a latent space through pi
and qj as follows:

yij = pTi qj + bj (1)

Through this factorization, we can think of qj as the latent prop-
erties for expert ej , pi as the latent preference of user ui and bj
as the popularity bias for ej . However, unlike the standard rec-
ommendation task, we do not have a rating score for each expert
on the lists. Instead, we only have the implicit feedback for a list,
which assumes a user prefers an expert who is already on the list
to an expert who is not. Accordingly, the learning objective should



be based on the pair-wise ranking between experts. In recommen-
dations when only implicit feedback is available, the one-class col-
laborative filtering approach [4, 18, 23] can be used for learning a
rank order among items. Similar efforts have been targeted at tag
recommendation [19], tweet recommendation [4], and event-based
groups [11, 23]. Here, we adapt the Bayesian Personalized Ranking
(BPR) criterion proposed by Rendle et al. in [18] to our problem.

Formally, for a user ui, an expert ek and an expert eh, suppose ui

puts ek on the list while not eh, we denote this pair as eui
k � eui

h ,
and the likelihood for this preference under BPR can be written as:

p(eui
k � e

ui
h ) = σ(yik − yih) where σ(x) =

1

1 + e−x

Therefore, the likelihood for all users could be written as:

p(R|Θ) =
∏

e
ui
k
∈Pui ,e

ui
h
∈Nui ,ui∈U

p(eui
k � e

ui
h )

where R is the set of all preference pairs, Θ is the set of all param-
eters, Pui is the set of experts included on ui’s list and N ui is the
set of absent experts for ui. If Θ has a prior density p(Θ), we can
derive a bayesian version of the likelihood, where the prior is used
to prevent the overfitting of the parameters as a form of regulariza-
tion. Thus, the posterior log-likelihood to maximize is

p(R|Θ) =
∑

e
ui
k
∈Pui ,e

ui
h
∈Nui ,ui∈U

ln(σ(yik−yih))−regularization

which can be learned through stochastic gradient descent (SGD) by
iterating each of the preference pairs and updating the correspond-
ing parameters.

4. REGION, TOPIC, AND SOCIAL-BASED
LOCALITY

While promising, the baseline matrix factorization approach ig-
nores the geo-spatial preferences of users and the variation of these
preferences across different topics, regions, and social communi-
ties (as suggested by Figure 1’s intuitive support for these notions).
Hence, we turn in this section to demonstrating how these factors
manifest in real-world Twitter-based data and how each of these
factors can be incorporated into a new personalized expert recom-
mendation matrix factorization framework.

4.1 Data and Metrics
We begin by highlighting the data used here and two statistical

measures – expert entropy and expert spread – to characterize re-
gion and topic-based locality. We then turn to the social properties
of the dataset to demonstrate social-based locality.

Data. We use the geo-tagged Twitter lists collected in [6]. In total,
there are about 12 million crowd-generated lists and 14 million geo-
tagged listings, where a geo-tagged listing indicates a direct link
from a list creator to an expert where both of their geo-locations are
known. That is, each user ui ∈ U is associated with geographical
coordinates coordui . Furthermore, for each list, there exist asso-
ciated labels that list creators use to indicate the topic of that list.
In the following analysis, we selected lists which include the most
frequent unigram labels indicating typical topics as follows: news,
music, tech, sports, celebs, and food. Additionally, we randomly
sampled lists which include any unigram occurring more than 200
times in list labels. We denote this randomly sampled list data as
“general”. Furthermore, we excluded experts who have only oc-
curred in one list and also excluded lists which includes only one
expert. After filtering, we have the geo-tagged Twitter list data

Table 1: Geo-tagged Twitter list data.
topic # of lists # of experts # of listings sparsity(%)
news 35,539 20,295 287,321 0.04

music 17,945 7,896 160,286 0.11
sports 16,018 5,395 139,838 0.16

food 10,476 5,485 96,661 0.17
celebs 9,783 4,090 104,004 0.26

tech 13,046 10,760 125,178 0.26
general 30,000 36,217 289,528 0.03

statistics shown in Table 1. In the following sections, we refer to
list creators as users and list members as experts.
Metrics. We discretize the continental US surface with a 1◦ by
1◦ geodesic grid to map the coordinates to discrete regions.1 For-
mally, we have a total number of K grids, which we call regions.
We denote K regions as R = {ri|i = 1, 2, ...,K}, to which each
coordinate inside the US can be mapped. Furthermore, we assume
for an expert e, there are totally ne users who put e on their lists.
Among them, we let Ue be the set of users for expert e, and Ue

ri be
the set of users from the region ri. Thus, the probability of expert

e’s user from the region ri can be defined as peri =
|Ue

ri
|∑

ri∈R
|Ue

ri
| .

With these preliminaries, we quantity the geographical characteris-
tics of expertise with:
Expert entropy. The expert entropy is defined as

H(e) = −
∑
ri∈R

peri log(peri)

This measure indicates the degree of randomness in spatial distri-
bution of the users for an expert. It ranges from 0 when all users
for the expert are only from one region, to logK when user’s distri-
bution is uniform across all regions. Thus, it implicitly reflects the
level of an expert’s recognizability across the entire country.
Expert spread. While entropy provides insights into the spatial
distribution of users, it lacks explicit consideration for the distance
between a user and an expert. Hence, we define another measure
called expert spread as follows:

S(e) = Medianui∈Ue(d(coorde, coordui))

where d is the distance between two locations, computed with Haver-
sine function to account for the shape of the earth. The expert
spread indicates how far a typical user is from an expert, thus can
be considered as the localness of an expert.

4.2 Region-Based Locality
In Figure 1b and 1c, we observed that food experts from San

Francisco and Chicago are preferred by users nearby. How does
this observation manifest according to our statistical measures? To
that end, we select experts from the following cities: San Francisco
(SF), New York (NY), Chicago, Houston, Denver and Seattle. We
first show the average expert entropy for these cities with respect
to different topics in Table 2. As can be observed from the ta-
ble: (i) Experts from different geo-locations have different levels
of recognizability across the country; and (ii) Generally, experts
from SF and NY are popular in more regions than those from other
geo-locations, indicating that SF and NY have a greater impact on
expertise curation for users on Twitter.

In Figure 2a, we examine expert spread for these cities. We can
see that generally, experts from different geo-locations have differ-
ent levels of locality, with experts from Chicago and SF having the
1
1◦ by 1◦ is approximately 70 miles by 50 miles at latitude 40◦. We also tested a

finer mesh of 0.1◦ by 0.1◦, which gave quantitatively similar results.



Table 2: Average expert entropy for different cities.
topic SF NY Houston Chicago Seattle Denver
news 2.461 2.342 2.021 1.950 1.836 1.884
music 2.514 2.386 1.946 1.996 2.105 2.162
sports 2.518 2.703 1.956 2.281 2.217 2.060
food 1.689 2.105 1.315 1.172 1.439 1.327

celebs 3.274 2.777 3.013 2.781 2.950 2.842
tech 2.323 2.400 2.262 2.249 2.098 1.917

general 1.954 1.932 1.645 1.610 1.606 1.585

(a) (b)

Figure 2: CDF of expert spread (a) for different cities and (b) for
different topics.

smallest and largest expert spread. This indicates that compared to
other cities, Chicago has the most local influence on expertise cura-
tion while SF reaches the farthest. Combined with the observations
from Table 2, we conclude that experts from different regions may
have different levels of locality, i.e., some may reach a wider geo-
graphical scope but others may be only locally popular.
Integrating region-based locality. Since the observed region-based
locality reflects collective opinion, how can we integrate it into per-
sonalized expert recommendation? That is, if we know the geo-
location of a user, can we recommend experts who are popular
around the user’s geo-location? As can be observed in Figure 1,
an expert’s popularity is not necessarily linear in the distance be-
tween user and expert; rather, it is often in the form of “clusters”,
i.e., experts may be popular in one region but not in other regions.
Thus, we introduce the concept of “regional popularity”, where we
parameterize the popularity of each expert by regions, with the re-
gional popularity to be learned from training.

Concretely, we assume the geographical space is partitioned into
K regions. For an expert ej and a region ri, we assume there is a
popularity parameter sij associated with ri and ej . This parameter
is used to capture the degree of popularity that expert ej receives
in region ri. Thus, if we have a total of M experts, the popularity
parameters constitute the matrix S of dimension K by M , which
represents regional popularity for all experts. Each column s.j rep-
resents the popularity ej receives in all regions. Then, given a user
ui, the popularity ej receives at the region where ui is from is de-
noted as sc(ui)j , where c(x) is a function mapping a user to its
region. We use scij instead of sc(ui)j for convenience. By inte-
grating the matrix S to the original matrix factorization, we have:

yij = pTi qj + scij (2)

We denote Equation 2 as the Geo-Enhanced factorization (GEF).
Note that GEF is reduced to Equation 1 when K = 1. The GEF
approach has the advantage over the baseline matrix factorization
of explicitly capturing and learning expert regional popularity.

Table 3: Average expert entropy and expert spread (miles) when
CDF = 0.5 for different topics.

topic food news tech sports music celebs
entropy 1.661 2.048 2.235 2.247 2.267 2.868
spread 290 630 950 580 830 1060

4.3 Topic-Based Locality
In the previous analysis of expertise, we observed that expert

entropy can be impacted by geo-locations (see Table 2). Addition-
ally, this table also implies that expert entropy can be impacted by
the choice of topic. To further observe the geo-spatial distribution
of expertise for different topics, we list the average expert entropy
for the six sample topics in Table 3. As we can see, celebs has the
largest entropy, which indicates that users interested in celebrity are
most widely spread across the country; while food has the small-
est entropy, indicating that users interested in food experts are most
concentrated in certain regions. This is intuitively reasonable since
a celebrity is very likely to have a better chance of being known in
the whole country than a food expert from a certain location.

In Figure 2b, we show the cumulative density function against
expert spread for different topics. We can see that, for a fixed spread
value, the topic food gives the largest cumulative probability, indi-
cating that users interested in food are closest to the experts; while
users interested in celebrity are farthest. We also show the expert
spread when the CDF is 0.5 in Table 3. We can see that the top-
ics with increasing expert spread are ordered as: food < sports <
news < music < tech < celebs, with food having the smallest expert
spread of 290 miles, and celebs having the largest expert spread of
1060 miles, which is almost half the distance from the west coast
to east coast of the US. Combined with the previous observation
on expert entropy, we can conclude that the topic food is the most
local among all, with users mostly concentrated in local regions of
experts, while the topic celebs is the least local, with users scat-
tered across the country. In another word, users interested in food
tend to select food expert nearby, while users interested in celebrity
do not have such geographical constraints, and users interested in
other topics fall in between.

Overall, we can conclude that expert’s regional popularity can
vary by topic; in other words, users may have different regional
preference for experts because of their topic interests.

Integrating topic-based locality. Now that we have observed that
topic locality can influence user’s preference for experts, it is im-
portant that user’s interests should be aligned with the interests of
the experts to be recommended. Since each Twitter list is labeled
with certain keywords, we can aggregate all of the labels for an
expert in all lists he appears. As a result, an expert ej has a descrip-
tion dej consisting of the aggregated labels. We then introduce
a user latent topic factor tui , representing ui’s topical preference,
and expert topic factor t̄ej , representing the topical property of ej .
Thus, the inner product tTui

t̄ej indicates an affinity score of user ui

and expert ej with respect to topic. Here, t̄ej is treated as known
through dej , and tui is treated as unknown to be learned. The rea-
son to model in this way is that labels for lists often have only one
term, e.g., lists with one term label “food” occupy about 60% per-
cent of total lists with any “food” in its labels. But often, a list
is very focused on finer aspects of a topic. For example, a list la-
beled with “food” may include many “wine” experts, implying that
we should also consider expert candidates labeled with “wine”. By
making tui unknown, we are forcing the model to learn topic as-
pects of a user from those of experts she selected. For convenience,
we use ti instead of tui and t̄j instead of t̄ej afterwards. Thus, our



(a) (b)

Figure 3: (a): CDF for similarity between experts; (b) CDF for the
probability of an expert on a list.

Topic-Enhanced factorization (TEF) can be written as:

yij = pTi qj + tTi t̄j (3)

Here, we treat each label as a dimension of t̄j . Through the explicit
handling of each user’s topic aspects, it is expected that user’s inter-
ests are aligned with the interests of the experts to be recommended.
Fusion of region and topic-based locality. Naturally, we can inte-
grate both region and topic-based locality into the model. We adopt
a linear model for the integration of Equation 2 and Equation 3, re-
sulting in our Geo-Topic Enhanced factorization (GTEF):

yij = pTi qj + scij + tTi t̄j (4)

The intuition is when we know the region of a user and her topic
aspects (by looking at the labels of her selected experts), we can
recommend an expert both topically and geographically relevant.

4.4 Social-Based Locality
In addition to the modeling of region and topic based locality, we

are also interested to explore if social connections among users and
experts can improve expert recommendation. Our intuition is that
(i) people who are connected by social ties have a higher probability
to have similar interests; (ii) people who are socially related may
have a higher probability to select who they follow as experts.

As evidence of social-based locality, in Figure 3a, we compare
the similarity of experts for two cases: (i) when one expert follows
the other; (ii) when no tie exists between two experts. Here, sim-
ilarity of experts is defined as the cosine similarity computed by
viewing each expert as a vector of all users, with each element be-
ing a value indicating whether the expert is listed by the user or
not. Thus, a large similarity of two experts indicates that they often
occur on the same list. We can observe that experts who follow the
other generally have a larger similarity. We also compare the prob-
ability of an expert selected on a list in Figure 3b for two cases: (i)
when experts are followed by the user; and (ii) when experts are not
followed by the user. We can see that the chance for an expert to be
listed by a user is boosted significantly when that expert is already
followed by the user. Based on these observations, we individually
model three kinds of social relationships:
User-user relationship. In this case, the following relationship
is from a list creator to another list creator. When one user fol-
lows another, we assume that their preference is more similar to
each other than those who do not. In terms of modeling, we adopt
the approach of regulating their latent factors as in [16]. Formally,
suppose there are user ui and uj , assume Fu

i is the set of users ui

follows, the social regularization incurred by user user relationship
can be written as:

N∑
i=1

∑
f∈Fu

i

w(ui, uf )||pi − pf ||2

wherew(ui, uf ) represents the similarity between ui and uf . Thus,
if ui and uf is more similar, the latent preference factor pi and pf
is also closer. Here, we use cosine similarity of users as the weight-
ing scheme. The cosine similarity of users is computed by viewing
each user as a vector of all experts, with each element taking a value
— 1 if the expert is on the list, 0 if not.
Expert-expert relationship. In this case, the following relation-
ship is from an expert to another expert. Using a similar approach
as in the previous case, we regulate their latent factors so that ex-
perts following the other have similar latent factors. Formally, as-
sume Fe

i is the set of experts ei follows, the social regularization
incurred by expert expert relationship can be written as:

M∑
j=1

∑
f∈Fe

j

w(ej , ef )||qj − qf ||2

wherew(ej , ef ) represents the similarity between ej and ef . Here,
we also use cosine similarity of experts as the weighting scheme.
User-expert relationship. In this case, the following relationship
is from a user to an expert. Unlike the previous two kinds of social
ties, this relationship links two different entities, and so the regu-
larization approach is ill-suited here. Instead, we explicitly model
these relationships with a bias term added to Equation 4 as follows:

yij = pTi qj + scij + tTi t̄j + θibij (5)

where bij takes a boolean value 1 if ui follows ej , and 0 if not. θi
is a weighting parameter to be learned. Thus, by adding a person-
alized bias term for each user, the model can take advantage of the
following ties between user and expert.

4.5 Model Training
Combining the social regularization and Equation 5, the final ob-

jective function to maximize can be written as:∑
e
ui
k
∈Pui ,e

ui
h
∈Nui ,ui∈U

ln(
1

1 + e−(yik−yih)
)

− β1
2

N∑
i=1

∑
f∈Fu

i

w(ui, uf )||pi − pf ||2

− β2
2

M∑
j=1

∑
f∈Fe

j

w(ej , ef )||qj − qf ||2 − regularization

where L2-norm regularization is adopted, with β1 and β2 as the
corresponding regularization parameters. In summary, the parame-
ter set Θ to be learned through SGD is {pi, qj , ti, θi, s.j}. For each
iteration of SGD, we need to sample a user ui, and from ui’s list,
an expert ek. Due to the large size of absent experts for each user,
we also need to sample the setN ui . Here, we adopt the strategy of
random sampling. Then, for each sampled triplet < li, ek, eh >,
we update each parameter value by taking a step along its gradient
ascending:

Θt+1 = Θt + ε
∂Likh

∂Θ

whereLikh is the posterior log-likelihood for the triplet< li, ek, eh >,
and ε is the step size.
Update of S. For expert ek and eh, the corresponding parameters to
update are s.k and s.h. If the region of ui is ci, then the parameter
s.k and s.h can be updated with

∂Likh

∂sjk
= −I(j = ci)ê+ βscik,

∂Likh

∂sjh
= I(j = ci)ê+ βscih



where ê = e−(yik−yih)

1+e−(yik−yih) , I(j = ci) is a Kronecker delta function
that gives value 1 if and only if j = ci, for j = 1, ...,K, and β is a
regularization parameter.
Update of ti and θi. Similarly, we have the gradient for ti and θi
as follows:
∂Likh

∂ti
= −ê(t̄k − t̄h) + βti,

∂Likh

∂θi
= −ê(bik − bih) + βθi

Update of pi, qk and qh. Since p and q are socially regularized,
we have the following socially regularized gradients:

∂Likh

∂pi
= −ê(pk − ph) + βpi + β1

∑
f∈Fu

i

w(ui, uf )(pi − pf )

∂Likh

∂qk
= −êpi + βqk + β2

∑
f∈Fe

i

w(ek, ef )(qk − qf )

The gradient for qh can be obtained similarly as qk.

5. EXPERIMENTAL EVALUATION
In this section, we report on experiments to evaluate the pro-

posed Geo-Topic Enhanced Factorization with Social ties (GTEF-
S) for personalized expert recommendation. Specifically, we seek
answers to the following questions:
• How well does the proposed method perform compared to al-

ternative baselines? Does region, topic and social-based locality
give improvement individually, and if they do, do they comple-
ment each other?
• How well does it perform in cold-start situation, i.e., for users

who have very few experts on their lists?
• Does the number of regions affect performance? If so, how?

5.1 Data Preparation and Experimental Setup
For evaluation, we randomly partition experts for a user into 50%

for training and 50% for testing. To determine the number of nega-
tive experts for each user, we experimented with {50, 100, 150, 200, 250}
and selected 150 for a tradeoff between accuracy and computational
efficiency. For latent factor dimension, we empirically select 20 for
all methods. For regularization parameters β, β1 and β2, we use
cross-validation for tuning and select 0.02, 0.01 and 0.015, respec-
tively. For gradient step, we initialize it with the step size 0.025,
and decrease it to its 98% after each pass throughout all triples.
This strategy is shown to be effective in reducing the number of
iterations for the method to converge [9].

In the modeling of region locality, it is assumed that the conti-
nental US has been partitioned into K regions. Instead of using
a gridding approach, we resort to k-means clustering to obtain the
partitions by clustering the geo-locations of the entire set of users
U . We choose a clustering approach based on Euclidean distance
because the geo-spatial distribution of users exhibits a clustering
effect, as shown in Figure 1, and can be satisfactorily captured by
k-means clustering. In section 5.5, we evaluate the effect of the
number of regionsK. For other experiments, we selectK to be 80.

For evaluation metrics, we adopt Precision@k (Prec@k) and
Recall@k (Rec@k). Prec@k represents the percentage of cor-
rectly recommended experts out of the top k recommendations,
while Rec@k represents what percentage of experts can emerge
in the top k recommendations. Formally, if we define Test(u) as
the set of experts selected by user u and Reco(u) as the set of top
k recommended experts, we have

Prec@k =
1

N

N∑
i=1

|Test(ui) ∩Reco(ui)|
k

Rec@k =
1

N

N∑
i=1

|Test(ui) ∩Reco(ui)|
|Test(ui)|

In our experiments, we evaluate k at 5, 10 and 15.

5.2 Baselines
We consider the following baselines:
• Expert Popularity (EP). In this baseline, we recommend experts

for each user by ranking experts according to the number times
each expert is listed by users.
• User-based Collaborative Filtering (UCF). Collaborative filter-

ing method can be used to discover user’s implicit preference
by aggregating similar users. Formally, let aij take a boolean
value, where aij = 1 represents expert ej is selected by ui,
while aij = 0 means the opposite. Thus, according to UCF,
the prediction score c̄ij of ui selecting ej can be obtained by
c̄ij =

∑
k wik·ckj∑

k wik
, where wik is computed with cosine simi-

larity. We then rank the candidate experts according to c̄ij and
select the top k experts for recommendation. We select the num-
ber of neighbors for each user to be 100.
• MF. This is the basic pair-wise latent factor model shown in

Equation 1 trained by BPR.
• GEF. This model only considers region-based locality manifested

through users’ geographical footprints, shown in Equation 2.
• TEF. This model only considers topic-based locality manifested

through experts’ labels, shown in Equation 3.
• GTEF. This model is the fusion of GEF and TEF, considering

both region and topic-based locality as shown in Equation 4.
• Social MF. This model considers three different kinds of social

ties. If the model only considers user user relationship, it is de-
noted as MF-S1; if the model only considers expert expert rela-
tionship, it is denoted as MF-S2; and if the model only considers
user expert relationship, it is denoted as MF-S3. We denote the
model as MF-S if it considers all three kinds of social ties.

5.3 Comparison with Baselines
How well does the proposed method compare to alternative ap-

proaches? To answer this question, we first show the performance
comparison in Figure 4, where we report Prec@k and Rec@k for
all topics. As we can see, overall, the proposed GTEF-S generally
gives the best performance for different k. Specifically, it gives an
average improvement of 24.6% over the best of EP, UCF and MF
for precision, and 21.3% for recall. GTEF-S generally performs
better than either GTEF or MF-S, indicating the superiority of en-
hanced pair-wise matrix factorization by considering region, topic
and social-based locality, and that these three factors are able to
complement each other.
Comparison for MF, GEF, TEF and GTEF. By comparing these
methods, we can examine if the explicit modeling of region and
topic-based locality can provide any improvement. In Figure 4, we
can see that GEF, TEF and GTEF perform consistently better than
MF. Specifically, GEF gives an average improvement of 3.73% for
precision and 3.43% for recall over MF for all datasets. This indi-
cates that the introduction of the regional popularity matrix S for
modeling expert’s regional popularity can help distinguish region-
ally popular experts if we know the geo-location of the user.

Furthermore, we can see that TEF also performs consistently bet-
ter than MF, specifically, giving an average improvement of 3.91%
for precision and 3.16% for recall. This indicates that modeling
user topic factor through the labels of experts can help find experts
with similar topic aspect.



Figure 4: Evaluating personalized expert recommendation: Precision and Recall at 5, 10, and 15 for six different topics across 11 approaches.

Finally, we can see that GTEF gives the best performance among
all (an average improvement of 7.35% for precision and 6.28% for
recall over MF). These improvements are very close to the additive
improvements of both GEF and TEF, thus indicating geographical
influence is complementary to topic influence in modeling expert’s
regional popularity, and that they should be considered together for
recommendation. Note that for topic celebs, the improvement of
GEF (1.44% for precision) is not as good as those for other topics.
This is probably because celebrities are heavily concentrated in the
region of Los Angeles, and since its expert entropy is very high, it
would not be very useful to model expert regional popularity. Also,
TEF performs slightly worse than MF. Upon further examining the
labels for experts and user’s topic preference factors, we found that
the labeling information for experts is scarce and most experts are
only labeled with “celebs”, without finer topic aspects.
Comparison for MF-S1, MF-S2, MF-S3 and MF-S. By compar-
ing these methods, we can examine if the modeling of social-based
locality can help recommend experts. Specifically, we have ex-
plored three kinds of relations: user following user (S1), expert fol-
lowing expert (S2) and user following expert (S3). From Figure 4,
we can see that MF-S1 gives only slightly better performance than
MF (0.43% for precision and 0.35% for recall), indicating that so-
cial ties between users barely provide additional information for
recommending experts. For MF-S2, we see that it provides de-
scent improvement over MF (5.02% for precision and 4.92% for
recall), confirming that if an expert is similar to another expert, i.e.,
if they often co-occur on other lists, it is likely that the other ex-
pert can be recommended to this user. For MF-S3, it is shown to
be rather effective. On average, it gives an improvement of 16.6%
for precision and 14.4% for recall over MF, which confirms that
if a user is already following this expert, it is very likely that this
user will include this expert on the list. MF-S, modeling the previ-

ous three social relationships together, gives the best improvement
of all (21.4% for precision and 18.8% for recall), indicating three
kinds of social ties complement each other.

5.4 Recommendation for Cold-Start Lists
Previously, we found that the introduction of geographical, topi-

cal and social influence in pair-wise MF can improve expert recom-
mendation. In this section, we examine how the proposed methods
perform in the cold-start situation. When there is only limited num-
ber of experts on a list, there is little positive feedback for training,
making it hard to obtain accurate latent factors of users’ prefer-
ences. In consideration of this, we perform experiments to inves-
tigate the recommendation performance of the proposed methods
for lists with few experts. Specifically, we select only lists which
have fewer than 3 experts on the list to examine the performance.
In Figure 5, we report the prec@5 and rec@5 for the method MF,
GTEF, MF-S and GTEF-S. As we can see, GTEF, MF-S and GTEF-
S consistently give better performance than MF for all topics, with
GTEF-S showing the best improvement on average (23.7% for pre-
cision and 22.3% for recall). This indicates that the knowledge of
user’s region, topic preference and social relations can help relieve
the cold-start problem. Also, MF-S gives better performance than
GTEF, indicating that social relation is a stronger signal than user’s
geo-topic preference. Additionally, note that GTEF-S brings the
best improvement over MF-S for news and food. This implies that
modeling region and topic-based locality works best when users
demonstrate strong regional preference (see Table 3).

5.5 Effect of Number of Regions
In this section, we study the effect of the number of regions K

chosen to cluster the geographical coordinates of users. To that end,
we select the number of regions from the set {10, 20, 40, 60, 80, 100},



Figure 5: Comparing recommenders for cold start lists.

Figure 6: Effect of number of regions.

and run GTEF with each number for ten random initializations for
topic food and tech (we ignore plots for other topics since they
show similar trends). In Figure 6, we show how prec@5 changes
with K. We can see that as the number of regions increases, the
precision also generally increases, although the value of K varies
for two topics when the performance reaches saturation. Specifi-
cally, for tech, the precision reaches almost the best at a smallerK,
while for food, the precision gradually increases and reaches the
best at a larger K. This can be explained by the observation from
the previous analysis about topic locality. Specifically, topics such
as food and news are relatively more local, i.e., experts of these
topics are listed by local people more often. Also, experts of these
topics are usually concentrated in many regions across the country,
as shown in Figure 1a. As a result, a finer clustering of regions
would separate two close regions. For example, it would separate
the region of NY and Washington D.C. in Figure 1a, so that a user
interested in food in NY can be recommended with popular food
experts from NY instead of popular food experts from Washington
D.C. On the other hand, topics such as tech and celebs are less lo-
cal, and considering most of these experts are concentrated in fewer
regions, it is not necessary to use a finer clustering.

6. CONCLUSION
In this paper, we tackled the problem of personalized expert rec-

ommendation in GPS-enabled social media. Specifically, we in-
vestigated the geo-spatial preferences of users and the variation of
these preferences across different regions, topics and social com-
munities. We proposed a matrix factorization-based personalized
expert recommender that leverages region, topic and social-based
locality. Through experimental evaluation over a Twitter list dataset,
we found that the proposed approach achieves more than 20% in
precision and recall and can ameliorate the cold start problem com-
pared to several baselines. This confirmed users’ geo-spatial pref-
erence of expertise and their underlying social communities have
great potential for personalized expert recommendation.
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