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Abstract. We propose an iterative spatial-temporal mining algorithm
for identifying and extracting events from social media. One of the key as-
pects of the proposed algorithm is a signal processing-inspired approach
for viewing spatial-temporal term occurrences as signals, analyzing the
noise contained in the signals, and applying noise filters to improve the
quality of event extraction from these signals. The iterative event mining
algorithm alternately clusters terms and then generates new filters based
on the results of clustering. Through experiments on ten Twitter data
sets, we find improved event retrieval compared to two baselines.

1 Introduction

As users of services like Twitter and Facebook react to and report on their
experiences – like political debates, earthquakes, and other real-world events
– there is an opportunity for large-scale mining of these socially sensed events,
leading to services that support intelligent emergency monitoring, finding nearby
activities (e.g., rallies), and improving access to online content [5,14,20,29]. While
there has been a long history of event extraction from traditional media like
news articles, e.g., [1,25], the growth of user-contributed and often on-the-ground
reaction by regular social media users has begun to spark new approaches.

In general, existing event detection methods can be categorized into two types:
document-pivot approaches and feature-pivot approaches [7]. Document-pivot
approaches identify events by clustering documents (e.g., news articles) based
on semantic similarity, and then treating each cluster as an event. A series of
works like [9,23] have shown the effectiveness of this method over long-form
documents like news articles, which typically provide a rich source of context
for event detection. Social media content, in contrast, often provides only a
short description, title, or tags, (and thereby little textual narrative) limiting
the effectiveness of semantic similarity based event detection techniques. As a
result, many social media event detection algorithms have relied on feature-
pivot approaches, which group similar event-related terms, for example by finding
terms with a similar temporal distribution. In this way, event-related terms may
be clustered together based on these common signals (treating each term as a
frequency function over either time or space). These feature-pivot approaches,
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e.g., [3,4,29], have shown the potential of this approach for scaling to event
detection over user-contributed social media posts.

While encouraging, these approaches may be susceptible to noise in both the
temporal and spatial signals they use, which can hinder the quality of event
detection. For example, topics not directly related to a specific event may intro-
duce noise (e.g., discussion of a political candidate that is unrelated to a specific
rally), as well as related but different events (e.g., reports of tornados in one
city may pollute the signal of tornados in another city), and by data sparsity,
in-correct timestamps or locations, mislabeled geo-coordinates, and so on.

Hence, we explore in this paper a signal-processing inspired event detection
framework designed to target these sources of noise. We view spatial-temporal
term occurrences as signals, analyze their noise, and apply filters to improve
the quality of event extraction from these signals. We incorporate this noise-
filtering approach into an iterative spatial-temporal event mining algorithm for
identifying and extracting events from social media. This approach alternately
clusters terms using their filtered signals, and then generates new filters based
on the results of clustering. Over ten Twitter-based event datasets – we find that
the noise filtering method results in a 7-10% improvement versus alternatives.

2 Related Work

Event detection refers to the discovery of a specific activity that happens at a
certain time and in a certain place. Event detection is typically categorized into
two types: retrospective detection and on-line detection [25]. The former is to
detect events from collected historical documents [15,13], and the latter tries
to extract events from real-time documents [1,24,8]. Early detection approaches
usually adopted clustering methods based on document similarity, e.g., [1] used
a modified version of TF/IDF to measure the distance of documents. [25] added
a time window and a decay factor for the similarity measurement between doc-
uments. In this paper, we focus on retrospective detection where the collection
consists of user-generated content in social media.

User-generated content in social media has different characteristics from tra-
ditional document collections, so many clustering approaches have considered
event-related metadata rather than directly measuring semantic relatedness. For
instance, the work in [30] detects events from click-through web data by con-
sidering each event as a set of query-page pairs. In [14], a tweet is segmented
into pieces and Wikipedia is exploited for identifying events. Via co-occurrence,
[18] and [23] measured closeness of tags for landmark detection and tag recom-
mendation. [21] constructed a keyword graph where co-occurrence frequency was
used to assign weights on edges and then applied a shortest path based scheme
to do community detection. [2] considered graph structure to bind all associated
heterogeneous metadata, and proposed a co-clustering scheme to partition them
into different events.

Separately, many approaches have adopted learning-based methods, includ-
ing [4,5,11] or focused on temporal and spatial features. [17] utilized temporal
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(a) Temporal Distribution for “apple” (b) Temporal Distribution for “Tornado”

Fig. 1. Examples of Noise in Term Temporal Signals

information to determine a set of bursty features in different time windows,
and then detected bursty events based on the feature distributions. [7] observed
the spatial-temporal patterns for tags, and adopted a wavelet transform-based
method to find tags with significant peaks in spatial-temporal distribution. Sim-
ilarly, [19] looked for tags with bursts in temporal and spatial patterns for event
detection. [29] compared spatial-temporal distributions between terms as the
measurement of the closeness of different terms, and clustered terms based on the
distances to extract events. At the same time, efforts such as [12,16,22,26,27,28]
integrate geo-location information, showing the potential of spatial features.

3 Noise-Aware Event Detection

Given a collection of user-contributed socialmedia documentsD = {d1, d2, ..., dT },
each document di can be viewed as 〈W, t, l〉, where W is a list of terms from vo-
cabulary V , t is a timestamp indicating when di was posted, and l = (la, lo) is
the associated geo-location, consisting of latitude and longitude coordinates. We
assume that there are K events θ = {θ1, ..., θK} hidden in D and each document
belongs to one of these events. Our goal is to detect these K hidden events from
the observed documents. For our purposes, an event refers to a specific activity
that happens in a specific time and place [7]. Therefore, given a group of terms, if
it represents an event, the group of terms should satisfy three constraints: 1) the
terms are semantically consistent, 2) the terms should happen in the same time
period, and 3) the terms should appear in similar locations. Hence, we define event
detection as: given a set of terms S, to detect subsets from S so that each subset
Sk ∈ S is a set of terms satisfying these constraints.

We propose to tackle event detection from a signal-processing perspective,
where terms may be viewed as signals. For example, we could view a single term
as a sequence of (normalized) counts for every minute of the day, resulting in a
temporal time signal. That is, term wi is represented by a temporal sequence of
counts: Ft,wi = {fi,1, fi,2, ..., fi,T }, where t denotes the temporal signal domain.
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(a) Temporal Distribution for “apple” (b) Temporal Distribution for “Tornado”

Fig. 2. Temporal Signals After Filtering Using the Proposed Method

Similarly, we could view a term as a two-dimensional spatial term signal by
bucketing terms into a grid over the latitude-longitude space (denoted as Fl,wi

for a term wi in the location signal domain). Both perspectives can additionally
be merged into a three-dimensional spatial-temporal term signal, denoted by
Ft,l,wi . Together, we view the overall event signal corresponding to event θk as
an aggregation of the signals of the terms belong to event θk. Hence, given a set
of terms Sk associated with event θk, the event signal is:

Ft,l,θk =
∑

E(wi)=θk

Ft,l,wiλwi,θk (1)

where E(wi) refers to the corresponding event of wi and λwi,θ is the weight of wi.
Unfortunately, these event signals are necessarily noisy, meaning the detection
faces significant challenges. We broadly classify three prominent types of noise:
Background-topic noise refers to the signals caused by unrelated topics to the
event of interest, but that may overlap with the event of interest. For example,
background discussion of “apple” as in Figure 1(a), which is unrelated to a major
Apple announcement (the spike of attention).
Multi-event noise refers to the burst signal caused by other unrelated events. A
term wi can belong to multiple events, so its spatial-temporal signals are actually
the combination of signals from multiple events, i.e., Ft,l,wi =

∑
k Ft,l,wi,θk . For

example, Figure 1(b) shows two tornado events.
Random noise refers to the random signals introduced by the sparsity of data,
in-correct timestamps or locations, mislabeled geo-coordinates, and so on.

3.1 An Iterative Event Extraction Method

With these challenges in mind, we propose an iterative noise-aware event extrac-
tion method that seeks to limit the impact of noise. Concretely, we view that the
term signals Ft,l,wi for wi are comprised of three components: (i) the event signal
of interest Ft,l,wi,θe ; (ii) random noise Ft,l,wi,θr ; and (iii) event noise Ft,l,wi,θS−e ,
where S is the set of all the events: Ft,l,wi = Ft,l,wi,θe + Ft,l,wi,θS−e + Ft,l,wi,θr
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Fig. 3. Structure of Iterative Event Extraction Method

Our goal is to estimate the event signals Ft,l,wi,θe , in effect cleaning the signal
to focus primarily on the event of interest as illustrated in Figure 2. The overall
approach is shown in Figure 3, where term signals are first filtered of random
noise and then the signals are repeatedly clustered and filtered of event noise,
until a final set of events is identified.

Filtering Random Noise. We begin with the first filter, for reducing random
noise from the term signals. In speech and image processing, the mean filter is an
effective way to smooth the signal and reduce un-correlated random noise [10].
In our context, we also assume that the random noise contained in the term
signals are un-correlated, and therefore we can directly apply the mean filter to
the signals. The key point of a mean filter is using the neighbors to average the
signal values. For every point in the signals, the value is smoothed by:

F
′
t,l,wi

=
∑

t′∈N(t),l′∈N(l)

Ft,l,wiQ(t
′
, l

′
) (2)

For the mean filter, Q(t
′
, l

′
) is set with 1/M , whereM is the number of neighbors,

N(t) refers to the set of neighbor points of t. A neighbor here is the point with
adjacent time unit to t and close location to l = (la, lo). For example, if we define
N(t) = [t − 2, t+ 2] and N(l) = [l − 2, l + 2], then all the points within 2 time
units and 2 “distance” units (which could correspond to kilometers) at (t, la, lo)
are regarded as the neighbors of the unit of (t, l).

Filtering Event Noise. After filtering random noise, we alternately cluster
terms using their filtered signals, and then generate new filters based on the
results of clustering, toward identifying groups of event-related terms. For the
initial clustering, we adopt an existing co-occurrence based method [6] to group
related term signals; alternately, other clustering methods could also be applied.
These clusters could be immediately viewed as events, but for the inherent multi-
event and background noise in the signals. Hence, we adopt a band-pass filter to
limit the impact of these sources of noise. The intuition of the band-pass filter
is to pass the signals in a Region-of-Interest, but filter or reduce the signals
in other regions. After applying the band-pass filter, the cleaned term signals
are clustered again. This iterative clustering and noise filtering proceed until
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the clusters of terms do not change or the iteration count reaches a threshold.
Finally, we output the clusters as the detected events.

The key issues are how to find the Region-of-Interest for a particular event,
and how to estimate the band-pass filter Q(t, l|θk) based on the detected Region-
of-Interest. Once the filter Q(t, l|θk) is estimated, we can use Ft,l,wi and Q(t, l|θk)
to retrieve the signals belonging to θk with Equation 3:

Ft,l,wi,θk = Ft,l,wiQ(t, l|θk) (3)

where Q(t, l|θk) is the band-pass filter for θk in the spatial-temporal domain.
To detect the Region-of-Interest for a certain event θk, we propose to aggregate

all the signals of the terms belonging to event θk, and then label the region
which contains the strongest signals as the Region-of-Interest. The idea behind
this method is to use the neighbors to filter un-correlated noises and strengthen
the signals belonging to θk. In signal processing, mean filtering is used to sum
multiple polluted signals. For example, if s1, s2, ..., sK are K different samples of
the signal s polluted by noise, then the mean filter uses λ1s1+λ2s2+ ...+λKsK ,
(λ1 + λ2 + ...+ λK = 1) to find the un-polluted signal s. If the noise and signal
are un-correlated, then by increasingK, the strength of the noise will be reduced
to 1/

√
K [10]. Here, since individual terms can be polluted by some event noises

which are usually uncorrelated, by averaging the signals of term wi with the
signals of its neighbors, the noise introduced by different events will be reduced.

Unlike the neighbors for random noise filtering which are found based on
the adjacent time unit or spatial grid, the neighbors here refer to the terms
belonging to the same event as determined by the clustering component. We
first use a clustering method to find the neighbors for term wi, then the signals
belonging to the same cluster are averaged using Equation 1 to arrive at the
estimated event signals. Regarding the clustering method, k-means is adopted
in this paper if the number of actual clusters is already known, and Affinity
Propagation is used if it is unknown.

We consider several different band-pass filters to explore their appropriateness
for event detection from social media: a Gaussian band-pass filter, an Ideal band-
pass filter, and an average band-pass filter.

Gaussian Band-Pass Filter: In the Gaussian filter, we assume that Q(t, l|θk)
for θk can be represented as a single Gaussian. Then we use the event signals
Ft,l,θk to train the parameters of Q(t, l|θk) where x is the vector of 〈t, l〉:

Q(t, l|θk) = 1

σ
√
2π

exp{− (x− μ)2

2σ2
} (4)

Ideal Band-Pass Filter: In the Ideal filter, we assume each point in the region
(where the center is the point with strongest signal) has a weight much larger
than points outside the region.

Q(t, l|θk) =
{

λ
r x ∈ [xu, xd]

η ∗ 1−λ
R−r else

(5)
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where λ is the cumulative frequency probability of the region [xu, xd], xu and
xd are the left-up and right-down coordinators respectively. r is the area of the
region, R is the whole area of the boundary, and η = 0.1 is a penalty factor.

Average Band-Pass Filter: In the Average filter, Q(t, l|θk) the λwi,θk in Equa-
tion 1 is set with 1/N , where N is the number of terms belonging to θk.

4 Experiments

In this section, we evaluate the effectiveness of the proposed filter-based method
for event extraction. We first investigate the impact of noise filtering and then
compare the quality of the proposed approach versus two alternatives.

4.1 Data Collection

Our experiments are over ten different tweet datasets containing multiple events
each (as shown in Table 1). We manually selected 20 events from Wikipedia
between February 2011 to February 2013 and grouped them into six categories:
seasonal, burst, long-term, short-term, global area and local area. An event may
belong to more than one category, e.g., Christmas Eve can be in seasonal, short-
term, and global. For each category, we manually select 10 hashtags that reflect
the events in the category; collect all of the co-occurring hashtags; and finally
rank by co-occurrence frequency. The top 10 hashtags are assumed as relevant for
representing these events. We augment this group of six event categories with
four additional datasets with a narrower geographic scope by (i) determining
keywords that best describe an event; and (ii) using selected keywords to retrieve
tweets for the event. We start with identifying one or two obvious keywords for
an event, e.g., Irene for Hurricane Irene. Then we go through our tweets and
find those terms that frequently appear together with our selected keyword(s).
We select the top 15 terms to expand our keywords for each event, and retrieve
the tweets containing the selected words.

4.2 Parameter Setup

For each selected term in the dataset, we first compute the temporal and spatial
signals for them and measure the distance between each pair of terms based on
the extracted signals as follows:

Temporal Distance: Given a complete time span, all the timestamps for each
term wi can be bucketed into bins: 〈Ft1,wi , Ft2,wi , ..., Ftn,wi〉. Then these tempo-
ral frequencies are normalized and used as the temporal signals. The width of
each bin is set as 1 hour. The temporal distances based on Ft,wi between wi and
wj is defined as:

Dt(wi, wj) =
∑

t

|Ft,wi − Ft,wj | (6)
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Table 1. Event Dataset

Dataset Events Period Bounding1

SEASON
NBA, NFL, MLB, UEFA,

Thanksgiving, Christmas, Halloween

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

BURST

Japan Tohoku earthquake 2011, Irene Hurricane 2011,

Royal Wedding 2011, Sandy Hurricane 2012,

London Olympics 2012, Arab Spring (2011–2012),

US presidential election 2012

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

LONG
NBA, NFL, MLB, UEFA,Arab Spring (2011–2012),

London Olympics 2012, US presidential election 2012

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

SHORT

Irene Hurricane 2011, Japan Tohoku Earthquake 2011

Royal Wedding 2011, Sandy Hurricane 2011,

the Oscars 2013, the Cannes 2013, Steve Jobs’ dearth 2011

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

GLOBAL
Arab Spring (2011-2012), London Olympics 2012,

the Oscars 2013, the Cannes 2013, UEFA

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

LOCAL
Oktoberfest Beer Festival 2012, the Super bowl 2012,

Memphis In May International Festival 2012

02/01/2011

-02/01/2013

(0, 0)

(90, 180)

IRENE
Irene Hurricane 2011, Steve Jobs’ resignation 2011,

US Virginia earthquake 2011

08/20/2011

-08/30/2011

(29.6, -125.5)

(49.1, -69.3)

JPEQ
Fire, Transportation, Asylum, Nuclear,

General information of Tohoku Earthquake

03/11/2011

-03/20/2011

(30.4, 129.5)

(45.4, 147.0)

MARCH

Japan Tohoku Earthquake 2011, Arab Spring (2011),

New Zealand Christchurch earthquake 2011,

Federal shutdown March 2011, background topic

03/01/2011

-03/30/2011

(29.6, -125.5)

(49.1, -69.3)

AUGUST

Irene Hurricane 2011, Steve Jobs’ resignation 2011,

US Virginia earthquake 2011, Arab Spring (2011),

background topic

08/01/2011

-08/30/2011

(29.6, -125.5)

(49.1, -69.3)

1 The geo-coordinates (latitude, longitude) of the left-up and right-down points of the rectangle bounding
area.

Spatial Distance: The geographical bounding-boxes for terms are separated
into N ∗M mesh grids, and all the geo-coordinates for each term wi are retrieved
and bucketed into these grids: 〈Fl1,wi , Fl2,wi , ..., Fln,wi〉. The N and M are set
with 90 and 180 (1 degree for the width of grid). Based on the normalized spatial
signals, the spatial distance between any wi and wj is defined as:

Dl(wi, wj) =
∑

l

|Fl,wi − Fl,wj | (7)

We then construct the noise filters as follows:

Average band-pass Filter: The weight λ in Equation 1 is set to 1/N , where N is
the size of the cluster.

Gaussian band-pass Filter: The μ in Equation 4 is estimated with the t with the
highest term frequency (for temporal signals). σ is estimated with the d where
P ((t− d) : (t+ d)|θ) = 0.68. For spatial distributions, the μ in is estimated with
the index of the grid l owning the highest term frequency, and the σ is estimated
with the width of the square area, centered with μ, covering 68% percentage
term frequencies.

Ideal band-pass Filter: The area [xu, xd] in Equation 5 is computed via: 1) identify
the center c by finding the bin with highest term frequency in temporal or spatial
domain; 2) find the areas (1 dimension area in temporal domain, and 2 dimension
square area in spatial domain) centered at c and covering 68% term frequencies.
γ is set as 0.68 and λ is 0.1.
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4.3 Results

To evaluate the effects of filters using our method, the first set of experiments is
to separately test different filters considering both temporal features and spatial
features. Concretely, we consider three filters: Average band-pass, Ideal, and
Gaussian filters. K-means is used as the clustering method, and the average
results of 5 times experiments are used for evaluation

Filtering Temporal Signals: To observe the effects of filters in temporal do-
main, the Average, Ideal and Gaussian band-pass filters are used on the temporal
signals for terms, and temporal distance in Equation 6 is used to measure the
similarity between terms. The clustering results using filtered signals and un-
filtered signals are compared in Table 2. Table 2 indicates that generally the
Event noise filters reduces the noises contained in temporal signal, resulting in
better estimation of the distances, and thus achieves better clustering results.
Compared with the method with un-filtered signals, the average purities on the
10 data sets using Average filter, Ideal filter and Gaussian band-pass filter are
increased by 8.08%, 3.16%, and 1.95% on purity respectively. The probability-
based filter – Average filter achieves the better results than the window-based
filters (Gaussian and Ideal band-pass filter), most likely since the Gaussian and
Ideal band-pass filters put large weights on the detected ROI region, which dra-
matically changes the power of the signals. If the ROI region is not detected
correctly, it will incorrectly filter out the actual event signals.

Table 2. Purity Results for Filtering Temporal Signals

Filter

Dataset No-filter Average Ideal Gaussian

SEASON 0.662 0.728 0.693 0.680
BURST 0.749 0.774 0.753 0.779
LONG 0.722 0.782 0.733 0.760
SHORT 0.673 0.674 0.671 0.678
GLOBAL 0.683 0.648 0.693 0.707
LOCAL 0.604 0.675 0.582 0.496
IRENE 0.750 0.813 0.822 0.795
JPEQ 0.683 0.654 0.706 0.702

MARCH 0.400 0.539 0.426 0.427
AUGUST 0.429 0.582 0.477 0.455
Average 0.636 0.687 0.656 0.648

In addition, the improvements on March and August data sets by the noise-
filters are more substantial than those on other data sets. These two datasets
contain more noise corresponding to general topics due to the inclusion of com-
mon words like ’we’ and ’like’. In an encouraging direction, we see that the
proposed filters perform well in these cases of high noise.

Filtering Spatial Signals: In this experiment, the spatial distance in Equation 7
is used, and the Average, Ideal and Gaussian band-pass filters are compared in
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spatial domain. Table 3 shows the clustering results on the 10 data sets using the
spatial signals of terms. Compared with the methods with un-filtered spatial sig-
nals, the Average filter improves the clustering result by 3.73%, while the window-
basedmethods degrade the clustering performance. One possible reason is that we
assume the Gaussian window and rectangle window in the Gaussian and Ideal fil-
ters have only one center. However in the spatial domain, there are usuallymultiple
centers for some events. For example, for the Irene event, there might exist multi-
ple topic centers due to the transition of the center of hurricane. Therefore a single
Gaussian or rectanglewill incorrectly filter the real event signals, and thus degrade
the clustering purities.

Also we can see that the filters have better performance in the temporal
domain than the spatial domain. One possible reason could be that the spatial
signals are more likely to be largely affected by the population density of different
regions. If the ROI regions is incorrectly detected due to the population-affected
tweet density, the filter will mistakenly filter out the actual event signals.

Table 3. Purity Results for Filtering Spatial Signals

Filter

Dataset No-filter Average Ideal Gaussian

SEASON 0.688 0.614 0.731 0.728
BURST 0.724 0.782 0.811 0.725
LONG 0.746 0.736 0.782 0.754
SHORT 0.667 0.659 0.635 0.677
GLOBAL 0.683 0.737 0.844 0.730
LOCAL 0.605 0.551 0.703 0.735
IRENE 0.681 0.818 0.590 0.727
JPEQ 0.662 0.727 0.246 0.246

MARCH 0.375 0.338 0.352 0.357
AUGUST 0.378 0.479 0.391 0.288
Average 0.621 0.644 0.609 0.597

Comparison with Baselines: Based on the results in the last section, we
adopt the Average band-pass filter to filter noise in temporal and spatial sig-
nals. We combine the spatial and temporal distances into a unified distance as
Dt,l,o(wi, wj) = (Do(wi, wj)+1)(Dt(wi, wj)+Dl(wi, wj)), where Do(wi, wj) is a
co-occurrence distance defined in [6]. As baselines we consider two alternatives:
a co-occurrence based method [6] and a wavelet-based spatial-temporal method
[7]. From Table 4, we observe that among three methods, the co-occurrence
based and wavelet-based methods achieve comparable performances. Our pro-
posed noise filtering method performs the best overall. On average, the proposed
method has an improvement of 10.60% and 7.06% over the co-occurrence based
and wavelet-based methods. The results indicate the proposed method is effec-
tive in filtering event-based noise, leading to higher quality event identification.
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Table 4. Average Purity Comparison

Methods

Dataset Co-occur Wavelet Proposed Method

SEASON 0.781 0.953 0.984
BURST 0.869 0.920 0.902
LONG 0.835 0.791 0.851
SHORT 0.828 0.714 1.000
GLOBAL 0.755 0.783 0.857
LOCAL 0.667 0.836 0.744
IRENE 0.718 0.773 0.782
JPEQ 0.734 0.716 0.747

MARCH 0.444 0.438 0.450
AUGUST 0.454 0.395 0.519
Average 0.709 0.732 0.784

5 Conclusion

The key insight of this paper is to view spatial-temporal term occurrences as
signals, and then to apply noise filters to improve the quality of event extrac-
tion from these signals. The iterative event mining algorithm alternately clusters
terms using their filtered signals, and then generates new filters based on the
results of clustering. Over ten Twitter-based event datasets – we find that the
noise filtering method results in a 7-10% improvement versus alternatives, sug-
gesting the viability of noise-aware event detection.
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