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ABSTRACT
We study the problem of detecting coordinated free text
campaigns in large-scale social media. These campaigns –
ranging from coordinated spam messages to promotional and
advertising campaigns to political astro-turfing – are grow-
ing in significance and reach with the commensurate rise
of massive-scale social systems. Often linked by common
“talking points”, there has been little research in detecting
these campaigns. Hence, we propose and evaluate a content-
driven framework for effectively linking free text posts with
common “talking points” and extracting campaigns from
large-scale social media. One of the salient aspects of the
framework is an investigation of graph mining techniques
for isolating coherent campaigns from large message-based
graphs. Through an experimental study over millions of
Twitter messages we identify five major types of campaigns
– Spam, Promotion, Template, News, and Celebrity cam-
paigns – and we show how these campaigns may be extracted
with high precision and recall.

Categories and Subject Descriptors: H.3.5 [Online In-
formation Services]: Web-based services; J.4 [Computer Ap-
plications]: Social and behavioral sciences

General Terms: Algorithms, Design, Experimentation

Keywords: social media, campaign detection

1. INTRODUCTION
Social media is inherently a persuasive technology, sup-

porting the rapid insertion of new memes, near instanta-
neous global reach, and unprecedented leveraging of massive-
scale interpersonal connections. On the one hand, many
users of social media organically engage with social media
to share opinions and interact with friends; on the other,
social media is a prime target for strategic influence.

For example, there is widespread anecdotal evidence of
“astroturfing”campaigns [3], in which political operatives in-
sert memes into sites like Twitter and Facebook in an effort
to influence discourse about particular political candidates
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and topics. In addition, there are large campaigns of coordi-
nated spam messages in social media [4], templated messages
(e.g., auto-posted messages to social media sites from third-
party applications announcing a user action, like joining a
game or viewing a video), high-volume time-synchronized
messages (e.g., many users may repost news headlines to
social media sites in a flurry after the news has been ini-
tially reported), and so on. In the case of spam and promo-
tion campaigns, the relative openness of many social media
sites (typically requiring only a valid email address to reg-
ister) suggests coordinated campaigns could be a low-cost
approach for strategically influencing participants.

User-driven campaigns – often linked by common “talking
points” – appear to be growing in significance and reach
with the commensurate rise of massive-scale social systems.
However, there has been little research in detecting these
campaigns. While there has been some progress in detecting
isolated instances of long-form fake reviews (e.g., to promote
books on Amazon), of URL-based spam in social media,
and in manipulating recommender systems [4, 5, 6, 7], there
is a significant need for new methods to support web-scale
detection of campaigns in social media.

Hence, we focus in this paper on detecting one particular
kind of coordinated campaign – those that rely on“free text”
posts, like those found on blogs, comments, forum postings,
and short status updates (like on Twitter and Facebook).
For our purposes, a campaign is a collection of users and
their posts bound together by some common objective, e.g.,
promoting a product, criticizing a politician, or inserting
disinformation into an online discussion. Our goal is to link
messages with common “talking points” and then extract
multi-message campaigns from large-scale social media. De-
tecting these campaigns is especially challenging consider-
ing the size of popular social media sites like Facebook and
Twitter with 100s of millions of unique users and the inher-
ent lack of context in short posts.

We explore in this paper several content-based approaches
for identifying campaigns from the massive scale of real-
time social systems. Concretely, we propose and evaluate
a content-driven framework for effectively linking free text
posts with common “talking points” and extracting cam-
paigns from large-scale social media. We find that over
millions of Twitter messages, the proposed framework can
identify 100s of coordinated campaigns, ranging in size up
to several hundred messages per campaign.

2. OVERALL APPROACH
In this section, we describe the problem of campaign de-



tection in social media, introduce the data, and outline the
metrics for measuring effective campaign detection.

2.1 Problem Statement
We consider a collection of n participants across social

media sites U = {u1, u2, . . . , un}, where each participant ui

may post a time-ordered list of k messages Mui = {mi1, mi2,
. . ., mik}. Our hypothesis is that among these messages,
there may exist coordinated campaigns.

Given the set of users U , a campaign Mc can be defined as
a collection of messages and the users who posted the mes-
sages: Mc = {mij , ui|ui ∈ U ∩mij ∈ Mui ∩ theme(mij) ∈
tk} such that the campaign messages belong to a coherent
theme tk. Themes are human-defined logical assignments to
messages and application dependent. For example, in the
context of spam detection, a campaign may be defined as a
collection of messages with a common target product (e.g.,
Viagra). In the context of astroturf, a campaign may be
defined as a collection of messages promoting a particular
viewpoint (e.g., the veracity of climate change). Addition-
ally, depending on the context, a message may belong to one
or multiple themes. For the purposes of this paper and to
focus our scope of inquiry, we consider as a theme all mes-
sages sharing similar “talking points” as determined by a set
of human judges.

2.2 Data
To evaluate the quality of a campaign detection approach,

we would ideally have access to a large-scale “gold set” of
known campaigns in social media. While researchers have
published benchmarks for spam webpages, ad-hoc text re-
trieval, and other types of applications, we are not aware of
any standard social media campaign dataset. Hence, we take
in this paper a twofold approach: (i) a small-scale validation
over hand-labeled data; and (ii) a large-scale validation over
1.5 million Twitter messages for which ground truth is not
known.

CDSmall: First, we sample a small collection of messages
(1,912) posted to Twitter in October 2010. Over this small
campaign dataset (CDSmall), two judges labeled all pairs of
the 1,912 tweets as sharing similar “talking points” or not,
finding 298 pairs of messages sharing similar“talking points”.
Based on these initial labels, the judges considered all com-
binations of messages that may form campaigns consisting
of four messages or more, and found 11 campaigns ranging
in size from four messages to eight messages. While small
in size, this hand-labeled dataset allows us to evaluate the
precision and recall of several campaign detection methods.

CDLarge: Second, we supplement the small dataset with a
large collection of messages (∼1.5 million) posted to Twitter
between October 1 and October 7, 2010. We sampled these
messages using Twitter’s Streaming API, resulting in a rep-
resentative random sample of Twitter messages. Over this
large campaign dataset (CDLarge), we can test the preci-
sion of the campaign detection methods and investigate the
types of campaigns that are prevalent in-the-wild. Since we
do not have ground truth knowledge of all campaigns in this
dataset, our analysis will focus on the campaigns detected
for which we can hand-label as actual campaigns or not.

2.3 Metrics
To measure the effectiveness of a campaign detection method,

we use variations of average precision, average recall, and

the average F1 measure. The average precision (AP) for a
campaign detection method is defined as:

AP =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|PCi|

where n is the total number of predicted campaigns by the
campaign detection method, PC is a predicted campaign,
and TC is an actual (true) campaign. MaxCommonMessage
function returns the maximum of the number of common
messages in both the predicted campaign i (PCi) and each of
the actual (true) campaigns (TCs). For example, suppose a
campaign detection method identifies a three-message cam-
paign: {m1,m10,m30}. Suppose there are two actual cam-
paigns with at least one message in common: {m30,m38,m40}
and {m1,m10,m35,m50,m61}. Then the Precision ismax(2, 1)/3
= 2/3. In the aggregate, this individual precision will be av-
eraged with all n predicted campaigns.

Similarly, we can define the average recall (AR) as:

AR =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|TCj |

where n is the number of the predicted campaigns, and TCj

is a true campaign which has the largest common messages
with the predicted campaign i (PCi). Continuing the ex-
ample from above, the Recall would be max(2, 1)/5 = 2/5.

Finally, we can combine precision and recall as the average
F1 measure (AF):

AF1 =
2 ∗AP ∗AR
AP +AR

An effective campaign detection approach should identify
predicted campaigns that are composed primarily of a single
actual campaign (i.e., have high precision) and that contain
most of the messages that actually belong to the campaign
(i.e., have high recall). A method that has high precision but
low recall will result in only partial coverage of all campaigns
available (which could be especially disastrous in the case of
spam or promotional campaigns that should be filtered). A
method that has low precision but high recall may identify
nearly all messages that belong to campaigns but at the
risk of mislabeling non-campaign messages (resulting in false
positives, which could correspond to mis-labeled legitimate
messages as belonging to spam campaigns).

3. CONTENT-DRIVEN CAMPAIGN DETEC-
TION

To detect coordinated campaigns, we explore in this paper
several content-based approaches for identifying campaigns.
Our goal is to identify methods that can balance both pre-
cision and recall for effective campaign detection. We pri-
marily consider a graph-based framework, where we model
messages in social media as a message graph. Each node in
the message graph corresponds to a message; edges corre-
spond to some reasonable notion of content-based correla-
tion between messages, corresponding to pairs of messages
with similar “talking points.” Formally, we have:

Definition 1 (Message Graph). A message graph is
a graph G = (V,E) where every message in M corresponds



Figure 1: The campaign message graph

to a vertex mix in the vertex set V . An edge (mix,mjy) ∈ E
exists for every pair of messages (mix,mjy) where corr(mix,mjy)
> τ , for a measure of correlation and some parameter τ .

A message graph which links unrelated messages will nec-
essarily result in poor campaign detection (by introducing
spurious links). Traditional information retrieval approaches
for document similarity (e.g., cosine similarity, KL-divergence)
as well as efficient near-duplicate detection methods (e.g.,
Shingling [1], I-Match [2] and SpotSigs [8]) have typically not
been optimized for the kind of short posts of highly-variable
quality common in many social media sites (including Face-
book and Twitter). Hence, we shall investigate experimen-
tally several possible approaches for determining pairwise
message correlation which guides the formation of the mes-
sage graph.

Given a message graph, we propose to explore three graph-
based approaches for extracting campaigns:(i) loose extrac-
tion; (ii) strict extraction; and (iii) cohesive extraction. Ex-
perimentally, we compare these graph-based approaches ver-
sus a traditional k-means clustering approach and reach poor
results for clustering as compared to the graph methods. For
now, we focus our attention on extracting content-driven
campaigns via graph mining.

3.1 Loose Campaign Extraction
The first approach for content-driven campaign detection

is what we refer to as loose campaign extraction. The main
idea is to identify as a logical campaign all chains of messages
that share common “talking points”. In this way, the set of
all loose campaigns is the set of all maximally connected
components in the message graph:

Definition 2 (Loose Campaign). A loose campaign is
a subgraph s = (V ′, E′), such that s is a maximally con-
nected component of G, in which s is connected, and for all
vertices mix such that mix ∈ V and mix /∈ V ′ there is no
vertex mjy ∈ V ′ for which (mix,mjy) ∈ E.

As an example, Figure 1 illustrates a collection of 10 mes-
sages, edges corresponding to messages that are highly corre-
lated, and the two maximal components (corresponding to
loose campaigns): {1, 2, 3, 6, 7, 8, 9} and {4, 5}. Such
an approach to campaign detection faces a critical chal-
lenge, however: not all maximally connected components
are necessarily campaigns themselves (due to long chains of

tangentially-related messages). For example, a chain of sim-
ilar messages A–B–C–...–Z, while displaying local similarity
properties (e.g., between A and B and between Y and Z) will
necessarily have low similarity across the chain (e.g., A and
Z will be dissimilar since there is no edge between the pair,
as in the case of messages 9 and 1 in Figure 1). In prac-
tice, such maximally connected components could contain
disparate “talking points” and not strong campaign coher-
ence.

3.2 Strict Campaign Extraction
A natural alternative is to constrain campaigns to be max-

imal cliques, what we call strict campaigns:

Definition 3 (Strict Campaign). A strict campaign
s′ = (V ′′, E′′) in a message graph G = (V,E), in which
V ′′ ⊆ V and E′′ ⊆ E, such that for every two vertices mix

and mjy in V ′′, there exists an edge (mix,mjy) ∈ E′′ and
the clique cannot be enlarged by including one more adjacent
vertex (corresponding to a message in M).

To identify these strict campaigns, we can first identify all
loose campaigns – by identifying all maximally connected
components over the message graph, we can prune from
consideration all singleton messages and are left with a set
of candidate campaigns. Over these candidates, we can
identify the strict campaigns through maximal clique min-
ing. However, discovering all maximal cliques from a graph
is an NP-hard problem (i.e., the time complexity is expo-

nential). Finding all maximal cliques takes O(3n/3) in the
worst case where n is the number of vertices [9]. Over
large graphs, even with parallelized implementation over
MapReduce-style compute clusters, the running time is still
O(3n/3/m) in the worst case, where n is the number of ver-
tices and m is the number of reducers [11].

And there is still the problem that even with a greedy ap-
proximation, strict campaign detection may overconstrain
the set of campaigns, especially in the case of loosely-connected
campaigns. Returning to the example in Figure 1, the max-
imal cliques {1, 2, 3} and {2, 3, 6} would be identified as
strict campaigns, but perhaps {1, 2, 3, 6, 7} form a coherent
campaign even though the subgraph is not fully-connected.
In this case the strict approach will identify multiple overlap-
ping campaigns and will miss the larger and (possibly) more
coherent campaign. In terms of our metrics, the expectation
is that strict campaign detection will favor precision at the
expense of recall.

3.3 Cohesive Campaign Extraction
Hence, we also consider a third approach which seeks to

balance loose and strict campaign detection by focusing on
what we refer to as cohesive campaigns, which relaxes the
conditions of maximal cliques:

Definition 4 (Cohesive Campaign). Given a message
graph G = (V,E), a subgraph G’ is called a cohesive cam-
paign if the number of edges of G’ is close to the maximal
number of edges with the same number of vertices of G’.

The intuition is that a cohesive campaign will be a dense
but not fully connected subgraph, allowing for some varia-
tion in the “talking points” that connect subcomponents of
the overall campaign. There are a number of approaches



mining dense subgraphs and the exact solution is again NP-
hard in computation complexity, so we adopt a greedy ap-
proximation approach following the intuition in [10]. The
approach to extract cohesive campaigns requires a notion of
maximum co-clique CC(mix,mjy) for all neighbors:

Definition 5 (Maximum co-clique: CC(mix,mjy)).
Given a message graph G = (V,E), the maximum co-clique
CC(mix,mjy) is the (estimated) size of the largest clique
containing both vertices mix and mjy, where mjy ∈ V and
mjy is a neighbor vertex of mix (i.e., they are connected).

Considering all of a vertex’s neighbors, we define the largest
of the maximum co-cliques as C(mix):

Definition 6 (C(mix)). Then, C(mix) is the largest
value between mix and any neighbor mjy, formally defined
as C(mix) = max{CC(mix,mjy),∀mjy ∈ Neighbor(mix)}.

With these definitions in mind, our approach to extract
cohesive campaign is as follows:

1. Estimate each vertex’s C(mix): In the first step,
our goal is to estimate the C values for every vertex in a
candidate campaign which indicates the upper bound of the
maximum clique size the vertex belongs to. Starting at a
random vertex mix in s, we compute the maximum co-clique
size CC(mix,mjy), where mjy ∈ V ′ and mjy is a neighbor
vertex of mix. Then, we compute C(mix). We insert mjy

into a priority queue and sort all mjy by CC(mix,mjy).
Next, we greedily advance to the mjy, which has the largest
CC(mix,mjy) among all mjy, and remove it from the queue.
Finally, we compute C(mjy). We repeat this procedure for
every vertex in the candidate campaign. At the conclusion
of this procedure, we have an estimated C(mix) for every
vertex.

2. Cohesive campaign extraction: Given the estimated
C(mix) for every vertex in a candidate campaign, by con-
sidering the order in which the greedy algorithm in Step 1
encounters each vertex, we can consider consecutive neigh-
bors as potential members of the same coherent campaign.
Intuitively, the C(mix) values should be high for vertices in
dense subgraphs but should drop as the algorithm encoun-
ters nodes on the border of the dense subgraph, then rise
again as the algorithm encounters vertices belonging to a
new dense subgraph. We identify the first vertex with an
increasing C(mix) over its neighbor as the initial boundary
of a cohesive campaign. We next include all vertices be-
tween this first boundary up to and including the vertex
with a C(mix) value larger than or equal to some threshold
(= the local peak value * λ). By tuning λ to 1, the extracted
cohesive campaigns will be nearly clique-like; lower values of
λ will result in more relaxed campaigns (i.e., with less den-
sity). We repeat this procedure until we extract all cohesive
subgraphs in the candidate campaign.

The output of the cohesive campaign extraction approach
is a list of cohesive campaigns, each of which contains a list
of vertices forming a cohesive subgraph.

4. EXPERIMENTAL STUDY
In this section, we explore campaign discovery over social

media through an application of the framework to messages

sampled from Twitter. We begin by examining how to accu-
rately and efficiently construct the campaign message graph,
which is the critical first step necessary for campaign detec-
tion. We find that a short-text modified Shingling-based ap-
proach results in the most accurate message graph construc-
tion. Based on this finding, we next explore campaign detec-
tion methods over the small hand-labeled Twitter dataset,
before turning our sights to analysis of campaigns discovered
over the large (1.5 million messages) Twitter dataset.

4.1 Message Graph Construction
Recall that each node in the message graph corresponds

to a message; edges correspond to some reasonable notion
of “relatedness” between messages corresponding to human-
labeled similar “talking points”. Our first goal is to answer
the question: can we effectively determine if two messages
are correlated (i.e., algorithmically determine if they share
similar “talking points”) across hundreds of millions of short
messages for constructing the message graph in the first
place? This step is critical for accurate message graph for-
mation for discovering campaigns.

Using the small campaign dataset (CDSmall), we consider
the 298 pairs of messages sharing similar “talking points”
(as determined by human judges) as the ground truth for
whether an edge should appear in the message graph be-
tween the two messages. We can measure the effectiveness
of a message correlation method by precision, recall, and F1.

We investigate the identification of correlated messages
through a comparative study of five distinct techniques: unigram-
based overlap between messages, edit distance, and three
representative near-duplicate detection algorithms (Shingling
[1], I-Match [2], SpotSigs [8]). Near-duplicate detection ap-
proaches have shown great promise and effectiveness by web
search engines to efficiently identify duplicate web content,
but their application to inherently short messages lacking
context is unclear.

In our experiment, we see that the Shingling approach
performs the best, with an F1 = 0.81. To improve the per-
formance of the Shingling approach with Jaccard coefficient,
we propose as a measure of correlation the overlap coefficient

(corroverlap(A,B) = |A∩B|
min(|A|,|B|) ). With the overlap coeffi-

cient, we get F1 = 0.88. In the further experiments, we use
the Shingling approach with overlap coefficient.

4.2 Campaign Detection over Small Data
In the previous experiment, we evaluated several approaches

to measuring message correlation. Now we turn our atten-
tion to evaluating campaign detection methods. We begin
in this section with the small data set (which recall allows us
to measure precision and recall against ground truth) before
considering the large data set.

Over the hand-labeled campaigns in CDSmall, we apply
the three graph-based campaign extraction methods: (i)
loose; (ii) strict; and (iii) cohesive, over the message graph
generated via the best performing message correlation method
identified in the previous section. We also compare cam-
paign extraction using a fourth approach based on text clus-
tering. For this non-graph-based approach, we consider k-
means clustering, where each message is treated as vector
with 10K bag-of-words features, weighted using TF-IDF,
with Euclidian distance as a distance function. We vary
the choice of k value, and report the best result.

Table 1 presents the experimental results of the four cam-



Table 1: Effectiveness Comparison of Campaign De-
tection Approaches

Approach NumC F1 Precision Recall
Loose 12 0.962 0.986 0.940
Strict 12 0.906 0.907 0.904
Cohesive 11 0.963 0.977 0.950
k-means 5 0.89 1 0.805

Figure 2: Size of Candidate Campaigns

paign detection approaches. The cohesive campaign detec-
tion approach found 11 campaigns (NumC) like the ground
truth, but missed a message in two campaigns. The strict
approach found 12 campaigns, missed one message in a true
campaign, and divided a true campaign to two predicted
campaigns because the approach due to the strict campaign
rule (all nodes in a campaign should be completely con-
nected). The loose approach found 12 campaigns, one of
which is not an actual campaign (false positive) and some
predicted campaigns contain dissimilar messages due to long
chains. The k-means clustering algorithm found only 5 cam-
paigns. Overall, the cohesive and strict approaches outper-
formed the loose and cluster-based approaches. In practice,
the ideal approach should return the same number of cam-
paigns of the ground truth in order to reduce post-labeling
time and to further analysis. In this perspective, the cohe-
sive approach may be preferred over the strict approach.

4.3 Campaign Detection over Large Data
We next examine campaign extraction from the large Twit-

ter data set, CDLarge. Can we detect coordinated cam-
paigns in a large message graph with 1.5 million messages?
What kind of campaigns can we find? Which graph tech-
nique is the most effective to find campaigns?

Message Graph Setup: Based on the best message graph
construction approach identified in the previous section, we
generated a message graph consisting of 1.5 million vertices
(one vertex per message). Of these, 1.3 million vertices
are singletons, representing messages without any correlated
messages in the sample (and hence, not part of any cam-
paign). Based on this sample, we find 199,057 vertices have
at least one edge; in total, there are 1,027,015 edges in the
message graph.

Identifying Loose Campaigns: Based on the message
graph, we identify as loose campaigns all of the maximally
connected components, which takes about 1 minute on a
single machine (relying on a breadth-first search with time
complexity O(|E|+ |V |). Figure 2 shows the distribution of
the size of the candidate campaigns on a log-log scale. We

Figure 3: Candidate with 61,691 Vertices

see that the candidate campaign sizes approximately follows
a power law, with most candidates consisting of 10 or fewer
messages. A few candidates have more than 100 messages,
and the largest candidate consists of 61,691 messages. On
closer inspection, the largest candidate (as illustrated in Fig-
ure 3) is clearly composed of many locally dense subgraphs
and long chains. Examining the messages in this large can-
didate, we find many disparate topics (e.g., spam messages,
Justin Bieber retweets, quotes, Facebook photo template)
and no strong candidate-wide theme, as we would expect in
a coherent campaign.

Identifying Strict Campaigns: To refine these candi-
dates, one approach suggested in Section 3 is strict cam-
paign detection, in which we consider only maximal cliques
as campaigns (in which all message nodes in a subgraph are
connected to each other). While maximal clique detection
may require exponential time and not be generalizable to all
social message datasets, in this case we illustrate the maxi-
mal cliques found even though it required ∼7 days of com-
putation time (which may be unacceptable for campaign de-
tection in deployed systems). Considering the top-10 strict
campaigns discovered in order of size: [559, 400, 400, 228,
228, 227, 227, 217, 217, 214], we find high overlap in the
campaigns discovered. For example, the 2nd and 3rd strict
campaigns (each of size 400) have 399 nodes in common.
Similarly, the 4th, 5th, 6th, 7th, and 10th strict campaigns
have over 200 nodes in common, suggesting that these five
different strict campaigns in essence belong to a single coher-
ent campaign (see Figure 4). This identification of multiple
overlapping strict campaigns – due to noise, slight changes
in message “talking points”, or other artifacts of short mes-
sages – as well as the high cost of maximal clique detection
suggests the cohesive campaign detection approach may be
preferable.

Identifying Cohesive Campaigns: We next applied the
cohesive campaign extraction approach to the set of candi-
date campaigns corresponding to maximal connected com-
ponents. We assign λ to 0.95 and use the CSV tool [10] for
an efficient implementation of computing each vertex mix’s
C(mix) by mapping edges and vertices to a multidimen-
sional space. Although computing C(mix) of all vertices
takes O(|V |2 log |V |2d) where d is a mapping dimension,
the performance for real datasets is typically sub-quadratic.
Like the candidate campaign sizes, the distribution of the
size of the cohesive campaigns follow a power law. Since
the cohesive campaign extraction approach can isolate dense
subgraphs, we see that the large 61,691 message candidate
has been broken into 609 sub-components. Compared to



Figure 4: An Example Dense Subgraph Campaign:
Strict Campaign Detection Identifies 5 Different
Maximal Cliques; Cohesive Campaign Detection
Identifies a Single Coherent Campaign

Table 2: Top-10 Largest Campaigns
Msgs Users Talking Points
560 34 Iron Man 2 spam
401 390 Facebook photo template
231 231 Support Breast Cancer Research (short link)
218 218 Formspring template
203 197 Chat template (w/ link)
166 166 Support Breast Cancer Research (full link)
165 154 Quote “send to anyone u don’t regret meeting”
153 153 Justin Bieber Retweets
145 31 Twilight Movie spam
111 111 Quote “This October has 5 Fridays ...”

strict campaign detection, the cohesive campaign extraction
approach required only 1/7 the computing time on single
workstation.

Examining the top-10 campaigns (shown in Table 2) we
see that the cohesive campaign detection approach over-
comes the limitations of strict campaign detection by com-
bining multiple related cliques into a single campaign (recall
Figure 4). The biggest campaign contains 560 vertices and
is a spam campaign. The “talking point” of this campaign
is an Iron Man 2 promotion of the form: “#Monthly Iron
Man 2 (Three-Disc Blu-ray/DVD Combo + Digital Copy)
... http://bit.ly/9L0aZU”, though individual messages vary
the exact wording and inserted link.

Based on a manual inspection of the identified campaigns,
we categorize the campaigns into five categories:

• Spam campaigns: These campaigns typically post dupli-
cate spam messages (changing @username with the same
payload), or embed trending keywords; often with a URL
linking to a malware website, phishing site or a product
website. Example: “Want FREE VIP, 100 new followers
instantly and 1,000 new followers next week? GO TO
http://alturl.com/bpby”.

• Promotion Campaigns: Users in these campaigns pro-
mote a website or product. Their intention is to expose
it to other people. Example: “FREE SignUp!!! earn $450
Per Month Do NOTHING But Getting FREE Offers In
The Mail!! http://budurl.com/PPLSTNG”.

• Template Campaigns: These are automatically-generated
messages typically posted by a third-party service. Ex-
ample: “I’m having fun with @formspring. Create an ac-
count and follow me at http://formspring.me/xnadjeaaa”.

• News Campaigns: Participants post recent headlines along
with a URL. Example: “BBC News UK: Rwanda admit-

ted to Commonwealth: Rwanda becomes the 54th mem-
ber of the Commonwealth g.. http://ad.vu/nujv”.

• Celebrity Campaigns: Users in these campaigns send
messages to a celebrity or retweet a celebrity’s tweet. Ex-
ample: “@justinbieber please follow me i love youuu<3”.

Some of these campaigns are organic and the natural out-
growth of social behavior, e.g., a group of Justin Bieber fans
retweeting a message, or a group posting news articles of in-
terest. On closer inspection, we observe that many of the less
organic campaigns (e.g., spam and promotion campaigns)
are driven by a higher ratio of messages to participants. For
example in Table 2, the Iron Man 2 spam campaign consists
of 560 messages posted by only 34 different participants. In
contrast, the Justin Bieber retweet campaign consists of 153
messages posted by 153 different participants.

5. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the problem of cam-

paign detection in social media. We have proposed and eval-
uated an efficient content-driven graph-based framework for
identifying and extracting campaigns from the massive scale
of real-time social systems. Based on the success of the sys-
tem we are extending this work to incorporate adaptive sta-
tistical machine learning approaches for isolating artificial
campaigns from organic campaigns. Do we find that strate-
gically organized campaigns engage in particular behaviors
that make them clearly identifiable? Our results suggest
that campaigns are not necessarily “invisible” to automated
detection methods. We are also interested in exploring if
campaigns are centralized around common types of users or
are they embedded in diverse groups. How early in a cam-
paign’s lifecycle can a strategic campaign be detected with
high confidence? Do we find a change in campaign mem-
bership and detection effectiveness after it reaches a critical
mass? These challenges motivate our continuing research.
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