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ABSTRACT
User-generated item lists are popular on many platforms. Examples
include video-based playlists on YouTube, image-based lists (or
“boards”) on Pinterest, book-based lists on Goodreads, and answer-
based lists on question-answer forums like Zhihu. As users create
these lists, a common challenge is in identifying what items to
curate next. Some lists are organized around particular genres or
topics, while others are seemingly incoherent, reflecting individ-
ual preferences for what items belong together. Furthermore, this
heterogeneity in item consistency may vary from platform to plat-
form, and from sub-community to sub-community. Hence, this
paper proposes a generalizable approach for user-generated item
list continuation. Complementary to methods that exploit specific
content patterns (e.g., as in song-based playlists that rely on audio
features), the proposed approach models the consistency of item
lists based on human curation patterns, and so can be deployed
across a wide range of varying item types (e.g., videos, images,
books). A key contribution is in intelligently combining two pref-
erence models via a novel consistency-aware gating network – a
general user preference model that captures a user’s overall in-
terests, and a current preference priority model that captures a
user’s current (as of the most recent item) interests. In this way,
the proposed consistency-aware recommender can dynamically
adapt as user preferences evolve. Evaluation over four datasets
(of songs, books, and answers) confirms these observations and
demonstrates the effectiveness of the proposed model versus state-
of-the-art alternatives. Further, all code and data are available at
https://github.com/heyunh2015/ListContinuation_WSDM2020.
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1. Breaking Dawn (Twilight #4)
by Stephenie Meyer

Genres:
Fantasy, Young Adult,

Romance, Vampires, Fiction

2. Harry Potter and the
Deathly Hallows
by J.K. Rowling

Genres:
Fantasy, Young Adult, Fiction

Book List A

4. Harry Potter and the Half-
Blood Prince

by J.K. Rowling
Genres:

Fantasy, Young Adult, Fiction

5. Twilight (Twilight #1)
by Stephenie Meyer

Genres:
Fantasy, Young Adult, Romance,

Vampires, Fiction

3. Harry Potter and the Chamber
of Secrets

by J.K. Rowling
Genres:

Fantasy, Young Adult, Fiction,

Ground-truth for Next Item:

(a) List title: “Fantasy books"

1. The Dog Year
by Ann Wertz Garvin

Genres:
Fiction, Animals, Dogs,

Contemporary

2. House Broken
by Sonja Yoerg
Genres:

Fiction, Animals, Dogs,
Contemporary

Book List B

4. Binds That Tie
by Kate Moretti

Genres:
Thriller, Fiction, Mystery

Thriller, Suspense

5. Bones and Roses
by Eileen Goudge

Genres:
Mystery, Cozy Mystery

3. The Art of Falling
by Kathryn Craft

Genres:
Fiction, Adult,
Contemporary

Ground-truth for Next Item:

(b) List title: “My favorite books in 2019"

Figure 1: A motivating example of two lists with strong and
weak consistency between recent items and previous items.
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1 INTRODUCTION
Human curation is a widely used feature in platforms like Spotify,
Pinterest, YouTube, and Goodreads. Users can curate items like
songs, images, videos and books to form lists that provide a unique
perspective into how items can be grouped together. For exam-
ple, Figure 1 shows two book lists on the book sharing platform
Goodreads; one is organized around a genre (fantasy) while the
other collects a personal list of favorites spanning genres. Since
correlated items can be explored and consumed together, these
item lists directly power user engagement. For example, more than
50% of Spotify users listen to playlists, accounting for more than 1
billion plays per week [38]; and Pinterest users have curated more
than 3 billion pins to about 4 billion boards [10].

In these platforms, user-generated item lists are manually cre-
ated, curated, and managed by users. Typically, users must first
identify candidate items, determine if they are a good fit for a list,
add them to a list, and then potentially provide ongoing updates
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to the list (e.g., by adding or deleting items over time). To accel-
erate this process and assist users to explore more related items
for their lists, we study the important yet challenging problem of
user-generated item list continuation. That is, how can we recom-
mend items that are related to the list and fit the user’s preferences?
Compared with traditional item-based recommendation [34], list
continuation faces complexities, since the length of lists varies from
several items to even thousands of items and the user preference on
items may dynamically evolve as a list develops. Moreover, the indi-
vidual preference of how items are grouped together also varies for
each user and across different platforms. Facing these challenges,
we propose a consistency-aware recommender for user-generated
item list continuation that is motivated by three key observations.

First, we observe that some lists are strongly consistent while others
are only weakly consistent. Traditional song-based playlist continu-
ation usually aims to generate strongly consistent lists, where each
new song naturally fits with the previous ones [1, 4, 6, 12, 13, 21, 29–
31, 33, 37]. A typical example is in [33], which generates a playlist
with songs that are similar to the seed songs provided by the user.
Indeed, some user-generated item lists may be organized around a
specific theme, genre, or mood. However, some lists are organized
by more personalized patterns and are seemingly inconsistent. To
illustrate, List A in Figure 1(a) has strong consistency between
recent books and previous books. The books are from either the
Harry Potter series or the Twilight series, organized around genres
like “Fantasy". List B in Figure 1(b) is only weakly consistent with
a mystery book Binds That Tie following two books about dogs.
Indeed, we find in Figure 2 that list consistency varies greatly both
within a single platform and across different platforms. As a re-
sult, we require new methods that can dynamically adapt to this
heterogeneity of list consistency.

Second, we observe that list consistency has a strong impact on
the quality of predicting the next item. The examples in Figure 1
show that the ground-truth for strongly consistent list A is the
fantasy book in the Twilight series while the ground-truth for the
weakly consistent list B is a mystery book that is similar with the
most recent books in the list, but not the books earlier in the list.
Our intuition is that if recent items are not similar with previous
items, the user preference has probably changed recently. Therefore,
the recent items (reflecting the current user preference) should be
given more attention when we predict the next possible item. On
the contrary, if recent items are still consistent with previous ones,
the user preference is probably unchanged and so the general user
preference should pay equal attention to items no matter if they
have been curated early or late.

Third, we observe that the definition of whatmakes a list consistent
should arise from community norms rather than be imposed top-down.
Prior work in song-based playlists has found that neither audio
signal-based similarity nor social tag-based similarity accurately
reflect the consistency of manually constructed playlists [6, 30].
Our example so far in Figure 1 has highlighted how books in a
single list may be drawn from different (seemingly inconsistent)
genres. However, the consistency of items should depend on how
users in the community perceive those items; so, if many users
curate two items together, then those items should be considered
consistent regardless of their superficial similarity. Hence, item list

continuation methods should seek to model consistency based on
the curation patterns arising from the community itself.

These observations motivate us to attack the user-generated item
list continuation problem with a Consistency-aware and Attention-
based Recommender (CAR). First, we propose both a general user
preference model that aims to capture a user’s overall interests
for the case of strongly consistent lists, and a current preference
priority model that captures a user’s current interests for cases
where consistency adapts over time. Second, to provide a generaliz-
able approach that can handle the heterogeneity in list consistency
across lists in different platforms, we design a novel consistency-
aware gating network to adaptively balance and fuse the current
and general user preferences, where the list consistency is modeled
by computing the variation of the items in a list.

We evaluate CAR over four datasets reflecting different kinds
of item lists and different curation patterns: the song-based Art
of the Mix (AOTM) and Spotify, book-based Goodreads, and the
answer-based Zhihu platform. Through experiments versus a suite
of state-of-the-art baselines, we find that CAR significantly out-
performs them and our general user preference model and current
preference priority model can really complement each other guided
by list consistency. Further, all code and data will be released to the
research community for further exploration.

2 RELATEDWORK
Automatic Playlist Generation and Continuation. Consider-
able prior research has focused on automatic song-based playlist
generation and continuation, aligned along three branches. The
first branch focuses on generative models for estimating the likeli-
hood of a new playlist by treating training playlists as a set of song
sequences. For example, McFee et al. [30, 31] apply a first-order
Markov Chain for modeling playlists, which is improved by Chen
et al. [6] via introducing metric embeddings. The second branch
mainly relies on song-based audio features (e.g., Mel-frequency cep-
stral coefficients) to generate new playlists. Examples include [12]
and [29], where Maillet et al. [29] train classifiers using audio-based
features to determine if a sequence of songs can form a playlist. The
third branch is most similar to our work, often applying informa-
tion retrieval or recommendation methods to predict (or continue)
the next N items. These approaches often are enhanced by content-
based methods [13, 21, 33, 40–42]. A typical example by Jannach et
al. [21] uses collaborative filtering and incorporates content features
like social tags from Last.fm and popularity of songs.

Differences: There are two key differences between our work
and traditional song-based playlist generation. First, we focus on
not only song-based lists but propose a general framework that
can be applied to other user-generated item lists, like book-based
(Goodreads book lists), video-based (YouTube playlists), image-
based (Pinterest boards) and answer-based (Zhihu collections) lists.
Like song-based playlists, each collection of these item lists also
provides a unique resource where correlated items can be easily
explored and consumed together, directly empowering user en-
gagement. Therefore, automatic generation and continuation for
these item lists should be equally important as song-based playlists.
Second, most traditional playlist continuation work assumes lists
are always consistent [6, 12, 13, 21, 29–31, 33]. Except for [33]



introduced in the introduction, examples include [6, 30, 31] that
apply language models to generate coherent playlists and [21] that
recommends a set of songs whose tempo distribution is as simi-
lar as possible to the current playlist. However, we observe that
the consistency varies greatly for lists both within and across dif-
ferent platforms, meaning that list continuation methods should
dynamically adapt to these scenarios.

User-Generated Item Lists. Recently, user-generated item lists
have received more and more interest. Zhong et al. [43] study the
motivations of human curation to reveal the social values of user-
generated item lists. Feinberg et al. [11] study the characteristics
of item lists and claim there are two kinds of lists: for personal
information management and for public expression. Lo et al. [27]
analyze the growth of image collections on Pinterest. Lu et al. [25]
and Eksombatchai et al. [10] distill user preference from Pinterest
image-based lists to enhance individual image recommendation.
Another interesting problem is to recommend existing item lists
to users. He et al. [17] propose a hierarchical self-attentive model
for recommending user-generated item lists (e.g., book lists and
playlists) to right users. Besides, the List Recommending Model in
[26] is proposed for recommending book lists and the Embedding
Factorization Model in [3] is for recommending song playlists.

Neural Networks for Recommendation. Recently, neural net-
works have been widely applied in recommendation. He et al. [16]
apply multilayer perceptron and generalized matrix factorization
for implicit top-k recommendation. Ebesu et al. [9] apply memory
networks for recommendation. Hidasi et al. [18] propose a GRU-
based model for session-based recommendation and Tang et al. [36]
propose a CNN-based model for sequential recommendation. At-
tention networks are often used for weighted-summing elements in
a model. [5] propose an attentive collaborative filtering framework,
where each item is segmented into component-level elements, and
attention scores are learned for these components for obtaining
a better representation of items. Attention networks are also ap-
plied in group recommendation [2] and sequential recommendation
[19, 22].

3 PRELIMINARIES
In this section, we formulate the problem of user-generated item
list continuation and present data-driven evidence to motivate our
approach.

3.1 User-generated Item List Continuation
Let U = {u1,u2, ...,u |U |} denote a set of users and a set of unique
items is denoted by V = {v1,v2, ...,v |V |}. Each list generated by a
user u, denoted by Su = [s1, s2, ..., sN ], consists of a sequence of N
items from set V . Moreover, Sut = [s1, s2, ..., st ], 1 ⩽ t ⩽ N denotes
a truncated item list at item-step t with regard to list Su , where si is
an item curated at time-step i . The goal of user-generated item list
continuation is to predict the next possible curated item (i.e., st+1)
based on the given Sut (for simplicity, we use S to denote Sut in the
rest of the paper). Specifically, the recommender outputs a score
for each item in the candidate set D (D ∈ V ). After that, items in
D can be ranked by their scores in descending order and top items
can be returned for the item list continuation.

3.2 Evidence of Strong and Weak Consistency
The two examples in Figure 1 highlight a strongly consistent list
and a weakly consistent list. Here, we present a brief data-driven
examination to further explore such consistency across four dif-
ferent platforms: AOTM, Spotify, Goodreads and Zhihu (details of
these datasets can be found in Section 5.1).

MeasuringConsistency.Tomeasure consistency of a user-generated
item list S , we propose to measure the average of similarities be-
tween recent items and each of the previous items. So a strongly
consistent list will have a high average similarity of new items that
are added compared to the previous items. A weakly consistent list
will have a low average similarity as new items begin to deviate
from previous items. In contrast to related approaches like Intra-List
Similarity proposed in [46] that measure the average of pairwise
similarities between all items in a list, this consistency measure is
designed to capture how a human curator may incrementally add
items to the list. For simplicity, if we use the last item to represent
recent items, then the consistency is:

consistency-scoreS =
∑

si ∈S,i,t

sim(si , st )

N
(1)

where N is the length of a list, st is the last item of list S and
sim(si , st ) is the similarity between si and st . Of course there are
many ways to measure this item-based similarity including collabo-
rative filtering [35], co-occurrence of items [32] and content-based
similarity. For this analysis we adopt a variation of word2vec [32]
where items are “words” and lists are “sentences”. This approach
captures the co-occurrence of items to generate item embeddings,
which can then be used to calculate the cosine similarity between
the embeddings: sim(si , st ) = cosine(ei , et ), where ei , et are the em-
beddings of si , st derived from word2vec. Note that our proposed
approach in Section 4 adopts a recommendation model-driven rep-
resentation for items and lists instead of this word2vec-style ap-
proach.

Observations: For each of our four datasets – AOTM, Spotify,
Goodreads and Zhihu – the histogram of consistency-scoreS is pre-
sented in Figure 2. We observe that the list consistency varies greatly
both within a single platform and across different platforms. For ex-
ample, Spotify lists cover a wide range of consistency values, with
some lists having a consistency-scoreS more than 0.8 while others
are lower than 0.4. Both AOTM and Goodreads have scores that
tend to skew high, while the answer-based lists on Zhihu tend to
be lower. Furthermore, this heterogeneity of list consistency could
negatively impact the quality of predicting the next item. For ex-
ample, a traditional playlist recommender that expects all items to
maintain high consistency will suggest items that do not match the
current user preference as suggested by the examples in Figure 1
and the data-driven evidence here. Therefore, we are motivated to
propose a consistency-aware recommendation in the next section.

4 PROPOSED APPROACH: CAR
Motivated by this heterogeneity of list consistency, we propose a
general user preference model to capture the user’s overall interests
for strongly consistent lists, and a current preference priority model
to emphasize more on the user’s current interests for lists with



(a) Song-based lists in Art of the Mix (b) Song-based lists in Spotify (c) Book-based lists in Goodreads (d) Answer-based lists in Zhihu

Figure 2: The consistency between recent items and previous items (by Eq.(1)). We observe that the list consistency varies
greatly both within a single platform and across different platforms.
weak consistency. Moreover, as list consistency varies across lists
in different platforms, we design a novel consistency-aware gating
network to adaptively combine the two models. As discussed in
Section 3.2, we propose to measure the consistency by computing
the variation of the items in a list to aware if the current preference
has deviated from the general user preference.

4.1 Attention-based User Preference Model
To predict the next possible item for each list, the key problem is to
model the user preference from the items already curated in the list.
A natural way is to first aggregate the item embeddings to represent
the list embedding, and then match the obtained list embedding
with other item embeddings to predict the next possible item.

To adaptively aggregate the item embeddings in the list, we
design two aggregation schemes with attention networks – the
general user preference model and the current preference priority
model. Attention networks have been widely applied in recommen-
dation to weighted-sum a variety of components (e.g., items [5, 15]
and user behaviors [44, 45]), achieving promising performance.
Following the terminologies in [39], attention mechanism can be
formalized as:

αi = so f tmax(kTi qi ),

Attention({vi ,ki ,qi |i = 1, ..., t}) =
t∑
i=1

αivi
(2)

where we first compute the inner product (kTi qi ) of (ki ) and query
(qi ), then the weight (αi ), which reflects the importance of values
(vi ), is obtained by normalizing over all key-query pairs with a soft-
max function (so f tmax(zi ) =

ezi∑t
j=1 e

zj ). The result is a weighted-

sum by aggregating values (vi ). More clearly:
• Values (vi ) are components await to be aggregated together.
• Keys (ki ) correspond to values that are normally linear or non-
linear transformed from values.

• Queries (qi ) play a role of benchmarking to measure the impor-
tance of values by matching against keys.

Embedding Layer: Let Y = {y1,y2, ...,y |U |} denote the embed-
ding vectors of users inU , whereyu ∈ Rd is a learnable d-dimensional
real-valued vector for useru inU . Likewise, letX = {x1,x2, ...,x |V |}

denote the embedding vectors of items in set V , where xi ∈ Rd

is the i-th item embedding in list S . Note that xt ∈ Rd represents
the embedding of the last (most recent) item curated in the list at
time-step t (i.e., st ).

Design of Values and Keys: For both preference models, we first
let vi = xi in Eq.(2), since the goal of a user preference model is to
aggregate item embeddings to represent a list embedding. After that,

we let ki =W Kxi , whereW K ∈ Rd×d is a linear projection to map
xi into the “keys" space for matching against queries. The critical
difference between the general and current preference priority
model is how to choose queries (qi ), elaborated as follows.

General User PreferenceModel (GUPM): In strongly consistent
lists, the user preference is probably unchanged. Hence, we design
GUPM to model the overall user preferences in the list by treating
items equally important, no matter at which time step the items
have been curated. A natural way is to incorporate another learn-
able vector h ∈ Rd as the query, normally referred to as global or
context vector in the literature [2, 5]. We have:

αi = so f tmax((W Kxi )
Th),

lGS =
t∑
i=1

αixi
(3)

where ∀ i ∈ {1, ..., t},qi = h denotes the query and lGS is the list
embedding generated by the GUPM.

Current Preference Priority Model (CPPM): In weakly consis-
tent lists, recent items begin to deviate from previous items and
should be given more attention for predicting the next item. CPPM
captures user’s current interests by assigning higher priority on
recent item over other items. A natural way is to let the last item
as the benchmark to measure the importance of other items: the
more similar to the last item the higher weight is assigned. Hence,
we let the last item embedding be the query:

αi = so f tmax((W Kxi )
TWQxt ),

lCS =
t∑
i=1

αixi
(4)

where xt is the embedding of the last item, ∀ i ∈ {1, ..., t},qi =
WQxt denotes the query,WQ ∈ Rd×d is a linear projection to map
xt into “queries" space for matching against keys (i.e.,W Kxi ) and
lCS is the list embedding generated by CPPM.

4.2 Consistency-aware Gating Network
As observed in Section 3.2, the list consistency varies greatly both
within a single platform and across different platforms. Hence, the
mixture of GUPM and CPPM may be better to handle this hetero-
geneity of list consistency. Since GUPM is designed for strongly
consistent lists while CPPM is designed for weakly consistent lists,
a natural way to intelligently fuse them is to consider the degree of
the list consistency. Here, we propose a novel consistency-aware
gating network for assigning different weights for the two models.
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Figure 3: Framework of CAR for user-generated item list
continuation.
The key question is how to feed the consistency into the gating
network:

Consistency-based Input:We have applied the average of simi-
larities between the last item and previous items for measuring the
consistency in Eq.(1), which can also be viewed as the similarity
between the last item and the centroid of a list in Eq.(5). The intu-
ition here is that if the last item is different from the centroid of a
list then the user preference has deviated from previous items.

t∑
i=1

sim(xi ,xt )

t
= sim(

t∑
i=1

xi
t
,xt ) (5)

where xt is the embedding of the last item and (
∑t
i=1

xi
t ) ∈ R

d is the
centroid embedding of a list. There are many ways to calculate the
distance between two vectors like Manhattan distance or Euclidean
distance. However, our goal here is not only to obtain the distance
but also keeping the dimension of the vectors, which could be fed
into the gating network for learning the weights. Hence, we use the
difference between the two vectors to represent the consistency:

zC =
t∑
i=1

xi
t

− xt (6)

where zC ∈ Rd is the consistency-based input.

List-embedding-based Input: Items within a list also contain
rich information to guide a recommender in fusing general and
current preferences and should be fed into the gating network. The
gating network receives a vector (z ∈ Rd ) as input so that it is
inappropriate to pack item embeddings into a matrix as the input.
Therefore, another attention network is firstly used to compress
item embeddings into a list embedding:

zL =
t∑
i=1

so f tmax((W K
G xi )

ThG )xi (7)

where zL ∈ Rd is the list embedding-based input,W K
G ∈ Rd×d is

the projection to map xi into “keys" space in this gating network
and hG ∈ Rd is the learnable vector to measure the weights of
xi . The final input is formed by concatenating zC and zL together:

z = zC ⊕zL . Then, following [20, 28], the gating networks are linear
transformations of the input with a softmax layer:

д(z) = so f tmax(WGz) (8)

where д(z) = [д(z)C ,д(z)G ] ∈ R2 is the vector of gating values,
WG ∈ R2×d is the transformation matrix.

4.3 CAR: Consistency-aware Attention-based
Recommender

In Section 4.1, we propose two attention-based user preference
models: the general preference model lGS and the current preference
priority model lCS . In this section, we adaptively fuse these two
by weighted-summing together via the consistency-aware gating
network in Section 4.2:

lS = д(z)C × lCS + д(z)G × lGS (9)

where lS ∈ Rd is the final list embedding encoded with both general
and current user preferences and д(z) = [д(z)C ,д(z)G ] are gating
values.

User Embedding: So far, we only use item embeddings and list
embeddings (aggregated from the item embeddings). Here, we add
the user embedding of the list creator and list embedding together:

luS = lS + yu (10)

where yu is the embedding of the user who generates list S . The
intuition is that adding the user embedding may introduce more
personalization information and provide better recommendation
performance. Whether using this user embedding depends on the
performance at the validation set and the impact of it will be dis-
cussed in Section 6.2.

Prediction Layer and Loss Function: For CUPM, CPPM and
CAR, we apply the same prediction layer and loss function for
fair comparison. List embedding lS is firstly fed into a two-layer
feed-forward network to introduce nonlinearity into the model,
following [22, 39]. We have:

f uS = ReLU (luSW
1 + b1)W 2 + b2 (11)

whereW 1,W 2 ∈ Rd×d and b1,b2 ∈ Rd are parameters of the feed-
forward network. After that, prediction score for item i is calculated
by a matrix factorization layer: rS,i = xTi f uS . Finally, the classic
pairwise ranking loss used in BPR [34] is applied as our objective
function:

−
∑

S ∈Sall

N∑
t=1

loд(σ (rS,i − rS, j )) (12)

where Sall denotes the set of all lists, rS, j = xTj f
u
S and x j is the em-

bedding of randomly sampled negative item j and σ is the sigmoid
function.

Model TrainingAdam [23] is applied as the optimizer.We perform
mini-batch training, where each batch contains a group of lists. To
generate more training samples, for each list, starting from the
second item, each item is treated as the test item (st+1) and items
before this item are treated as the training data. To control the
length of lists in mini-batch, the most recent n items are considered.
If the list length is less than n, a ‘padding’ item is repeatedly added
until the length is n.



5 EXPERIMENTAL SETUP
In this section, we introduce the experimental setup, including
datasets, metrics, baselines, and reproducibility details.

5.1 Datasets
We first select one relatively new dataset from the literature of
automatic playlist generation and continuation:
• Art of the Mix 1 is a website where users can upload their song
playlists. AOTM2 dataset is proposed by [31] in 2011, collecting
playlists from Jan 1998 to June 2011, resulting in totally 101,343
unique playlists. The main reason for choosing this dataset is
that each list was generated by a user not a commercial radio DJ,
which is an accurate sample of real playlists that occur in our
daily life [30]. (Note that datasets used in the RecSys Challenge
2018 [4] have not been released.)
We also crawl and build three datasets, which are available at

here3. These datasets are drawn from three popular platforms with
different kinds of lists (book-based, song-based, and answer-based),
reflecting a variety of scenarios to evaluate our approach.
• Goodreads is a popular site for book reviews and recommenda-
tion where users can curate correlated books into booklists.

• Spotify is a music streaming service where users can create
playlists and curate songs into them.

• Zhihu is a question and answer community where users can
select correlated answers to form an answer list. For example, a
list named “Food" may contain answers as the response to two
questions correspondingly: “How to cook steak?" and “Who is
the barbecue king of Texas?".
Crawling all data generated in a short time window (e.g., one

or two weeks) is widely used to sample a moderate-size dataset
for research from millions or even billions of data [43]. However,
since the generation of a list could take its owner months or years
to occasionally curate hundreds of items, crawling all lists created
in a short time window would obtain relatively short “immature"
lists. We first randomly sample a batch of users and then crawl lists
either created or followed by them.

For AOTM-2011, Goodreads and Zhihu datasets, following [22],
we filter out items appearing fewer than 5 times and lists shorter
than 5 items. For Spotify, the largest dataset, we filter out items
appearing fewer than 20 times and lists shorter than 20 items. For
extreme long lists, we truncate them by keeping the first 1,000 items.
Table 1 summarizes these datasets, where any one of them has a
million-size list-item interactions.

Table 1: Statistics of datasets
AOTM Goodreads Spotify Zhihu

#Users 14,115 12,525 14,911 9,561
#Lists 81,798 21,877 70,485 31,040
#Items 64,181 148,576 104,910 119,147
#List-item interactions 1,030,596 2,441,308 7,287,212 1,593,865
Avg. # of lists per user 5.8 1.7 4.7 3.2
Avg. # items per list 12.6 111.6 103.4 51.3
Density 0.020% 0.075% 0.099% 0.043%

1http://www.artofthemix.org/
2https://bmcfee.github.io/data/aotm2011.html
3https://github.com/heyunh2015/ListContinuation_WSDM2020

Data Partition:We split each list into three parts: (1) the last item
for testing, (2) the item right before the last one for validation, and
(3) the rest of items for training. Note that during testing, the input
sequences contain the training items and the validation item.

5.2 Evaluation Protocol
In real world like YouTube recommendation [8], it is common to
only calculate prediction scores for items from a candidate set and
rank them for the final recommendation, since it will be impractical
to rank the whole millions of items in real world. The candidate
generation model is not the emphasis of this work, hence we follow
[16, 22] to randomly sample 100 negative items and rank these
items with the ground-truth item.
Metrics: For each list, each tested algorithm selects K items ordered
by prediction scores from the candidate items and then match the
top K items against the ground-truth item. We adopt two evaluation
metrics: Normalized Discounted Cumulative Gain (NDCG) at 5
(N@5) and 10 (N@10), and Hit Rate at 5 (HR@5) and 10 (HR@10).

5.3 Baseline
In this section, we introduce a suite of baselines. Except to tra-
ditional item-based recommendation methods include ItemPop
(most popularity),MF [24] and BPR [34], we also have:
NeuMF. Neural collaborative filtering (NeuMF) [16] concatenates
latent factors learned from a generalized matrix factorization model
and a multi-layered perceptron model.
NMN. Neural Memory Network (NMN) [9] is a state-of-the-art
memory-based neural network to unify the global latent factor
model and local neighborhood structure.
TransRec. Translation-based Recommendation (TransRec) [14]
models the third order interactions between a list, the item previ-
ously curated and the next item to curate.
GRU4Rec.GRU4Rec [18] is a GRU-based [7] RNNmodel for session-
based recommendation (predict the last item for testing sessions).
We treat each list as a session.
Caser. Convolutional Sequence Embeddings (Caser) [36] is a CNN-
based model for sequential recommendation, which captures high-
order markov chains by convolutional operations applied on the
most recent items.
SASRec. Self-Attention based Sequential Recommendation model
(SASRec) apply self-attention mechanism [39] for next item recom-
mendation and achieves state-of-the-art performance, with large
improvements over GRU4Rec and Caser observed in their paper.
Other RelatedWork but with Different Settings: Note that we
are aware of the recent progress on automatic playlists continuation
in [37]. However, their goal is to recommend a song to a list where
order information is absent (i.e., a collection of songs). Since this
goal is quite different from our continuing ordered items, we do
not compare with it. Besides, many traditional playlists generation
work (e.g., [6, 30, 31]) focus on estimating the likelihood of a new
playlist, which is also different and not compared.

5.4 Reproducibility
All datasets and code of our approach can be found at here4. We
implement CAR with Tensorflow. We implement ItemPop, BPR,
4https://github.com/heyunh2015/ListContinuation_WSDM2020



Table 2: Performance of CAR and the baselines
AOTM Goodreads Spotify Zhihu

Metrics HR@5 N@5 HR@10 N@10 HR@5 N@5 HR@10 N@10 HR@5 N@5 HR@10 N@10 HR@5 N@5 HR@10 N@10
MostPop 0.2632 0.1817 0.3806 0.2194 0.2379 0.1666 0.3308 0.1964 0.2884 0.1983 0.4060 0.2362 0.4061 0.3003 0.5214 0.3375

MF 0.3821 0.2767 0.5002 0.3149 0.5900 0.4506 0.7105 0.4897 0.6432 0.4885 0.7686 0.5292 0.6135 0.5008 0.7059 0.5307
BPR 0.4711 0.3528 0.5965 0.3934 0.7229 0.5860 0.8207 0.6178 0.7367 0.5788 0.8495 0.6155 0.6209 0.5014 0.7255 0.5352

NeuMF 0.4519 0.3338 0.5733 0.3730 0.6779 0.5235 0.7906 0.5602 0.5950 0.4375 0.7362 0.4833 0.6363 0.5078 0.7434 0.5425
CMN 0.3885 0.2852 0.5036 0.3223 0.7262 0.5738 0.8277 0.6069 0.7230 0.5629 0.8385 0.6005 0.6633 0.5323 0.7653 0.5655

transRec 0.3704 0.2664 0.4944 0.3064 0.3287 0.2374 0.4398 0.2731 0.4012 0.2922 0.5224 0.3314 0.5033 0.3856 0.6200 0.4234
GRU4Rec 0.3013 0.2162 0.4091 0.2509 0.5131 0.4187 0.6140 0.4513 0.7584 0.6458 0.8403 0.6724 0.5603 0.4498 0.6647 0.4836
Caser 0.3678 0.2615 0.4980 0.3035 0.6118 0.4659 0.7442 0.5090 0.7094 0.5598 0.8193 0.5955 0.6461 0.5042 0.7709 0.5447
SASRec 0.4977 0.3650 0.6298 0.4077 0.7808 0.6449 0.8599 0.6707 0.8019 0.6577 0.8904 0.6865 0.7355 0.5899 0.8331 0.6217
CAR 0.5505∗ 0.4140∗ 0.6807∗ 0.4562∗ 0.7991∗ 0.6778∗ 0.8639 0.6990∗ 0.8113∗ 0.6758∗ 0.8945◦ 0.7029∗ 0.7468◦ 0.6096∗ 0.8410 0.6402∗

∧ p < 0.05, ◦ p < 0.01, ∗ p < 0.001

and MF. The code of NeuMF5, NMN6, Caser7 and SASRec8 are from
the authors. For TransRec9 and GRU4Rec10, we also use code from
public resources. All neural network models were trained using
Nvidia GeForce GTX Titan X GPU with 12 GB memory.

Parameter Settings. For CAR and baseline methods, all hyper-
parameters are tuned on the validation dataset, where early stop-
ping strategy is applied such that we terminate training if validation
performance does not improve over 10 iterations. For CAR: the
batch size is tested from {16, 32, 64, 128, 256} and 128 is selected for
all datasets according to the results on the validation dataset. The
learning rate is 0.001 for all datasets. Following [22], the candidates
for the latent dimensionality d is from {10, 20, 30, 40, 50} and we
select 50 for all datasets. The maximum sequence length n for all
datasets is set to 500. For NeuMF, the number of MLP layers is set
to 3. For CMN, the number of hops is set to 3. The Markov order
of GRU4Rec and Caser is selected from {1,..., 9}. For SASRec, the
maximum length of handled sequence is set to 500 and the number
of blocks is set to 2.

6 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present our experimental results and discussion
toward answering the following research questions (RQs):
• RQ1:Howwell does CAR perform for continuing user-generated
item lists compared to baseline methods?

• RQ2: What is the impact of the design choices of CAR on the
quality of list continuation? For example, is the consistency-
aware gating network effective for fusing the two models?

• RQ3: What is the impact of list consistency? Specifically, for
lists with the weak consistency, is the current preference priority
model superior to the general preference model (and vice versa)?

• RQ4:What is the impact of the hyper-parameters of CAR on the
quality of list continuation.

6.1 RQ1: List Continuation Performance
Experimental results of CAR and baseline methods are presented
in Table 2. The results show that CAR outperforms all baseline.
For example, CAR achieves an NDCG@5 of 0.4140 compared to

5https://github.com/hexiangnan/neural_collaborative_filtering
6https://github.com/tebesu/CollaborativeMemoryNetwork
7https://github.com/graytowne/caser_pytorch
8https://github.com/kang205/SASRec
9https://github.com/YifanZhou95/Translation-based-Recommendation
10https://github.com/Songweiping/GRU4Rec_TensorFlow

the second best performance 0.3650 from SASRec. The results of a
two-sided significant test between CAR and the strongest baseline
SASRec is also presented, where ∧ means the p-value is smaller
than 0.05, ◦ means the p-value is smaller than 0.01 and ∗ means
the p-value is smaller than 0.001. We see that the CAR approach
significantly outperforms the strongest baselines in nearly all met-
rics. We observe that SASRec is the most competitive method with
CAR, which is not surprising because SASRec is also an attention-
based model that, to a certain extent, overcomes the long-term
dependency problem suffered by CNN and RNN based models [39].
However, SASRec is proposed for sequential user action (e.g., pur-
chase) prediction where current user preference (last purchased
item) is often more important than general preference. Hence, for
lists with strong consistency among the items (e.g., playlist “The
lion king music"), SASRec may not fully utilize the user preference
information from previous items. To sum up, the main improve-
ment of CAR compared with SASRec is that we intelligently fuse
current and general user preference together and further enhanced
by the consistency between recent items and previous items.

6.2 RQ2: Ablation Study
Table 3: Ablation Study

AOTM Goodreads Spotify Zhihu
CAR 0.4140 0.6778 0.6758 0.6096

No Gating Network 0.3960 0.6734 0.6688 0.6035
CPPM 0.3935 0.6578 0.6448 0.5896
GUPM 0.3921 0.6524 0.6446 0.5812

Table 3 presents the results in terms of NDCG@5 of the ablation
study at CAR.Mixture of the Models:We firstly compare GUPM
(general preference model) and CPPM (current preference priority
model) against “No Gating Network" model, which simply adds
CPPM and GUPM together without using the consistency-aware
gating network (i.e., lS = lCS + lGS ). We observe that the simple
mixture of the two models outperforms any one of them. This
shows that CPPM and GUPM do complement each other to provide
a better overall performance.

Consistency-awareGatingNetwork:Then, we observe that CAR
is superior to the version without the gating network. For example,
CAR obtains 0.4140 in terms of NDCG@5 which is better than
0.3960 obtained by “No Gating Network". This comparison shows
that our proposed consistency-aware gating network is effective to
intelligently fuse the current and general user preferences.
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Figure 5: Performance in terms of NDCG@5 at cases that
GUPM wins (General>Current), even and CPPM wins (Cur-
rent>General). Each model has a large advantage over the
other one on a bunch of lists. Same observation is obtained
at Spotify and Zhihu.

User Embedding:We study the impact of user embedding intro-
duced in Eq.(10). Users have different preferences for generating
item lists. Hence, introducing user embeddings into the model of
user preferences at each list is supposed to improve the person-
alization and provide better performance. However, in Figure 4,
we observe that the user embedding harms the performance for
Goodreads and Zhihu, achieves the same performance for Spotify
and only improves the performance for AOTM. Table 1 shows that
each user create 5.8 lists at AOTM, 4.7 lists at Spotify, 3.2 lists at
Zhihu, and 1.7 lists at Goodreads. Hence, we observe that the more
lists created by each user, the better performance can be obtained
by adding the user embeddings. This is reasonable because the
more lists a user creates the more personalization information of
the user can be learned.

6.3 RQ3: Impact of List Consistency
In this section, we design an experiment to evaluate our intuition
about the impact of list consistency on the quality of predicting
the next item, presented in the introduction, that for lists with
weak consistency between recent items and previous items, the
user preference has changed and thus the recent items should be
paid more attention. For these weakly consistent lists, we propose a
current preference priority model (CPPM). And for lists with strong
consistency, all of the curated items could be treated equally no
matter curated early or late. Correspondingly, we propose general
preference model (GUPM) for these strongly consistent lists. Hence,
a natural way to evaluate the intuition is to compare the consistency
between the lists where GUPMwins and the lists where CPPMwins.

Case by Case Comparison: We firstly compare the performance
(taking NDCG@5 as an example) of GUPM and CPPM at each list
to find out the lists where GUPM wins and the lists where CPPM
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Figure 6: Comparison of average consistency between the
cases that CPPM wins (Current>General) and the cases that
GUPM wins (General>Current).

wins. In Figure 5, we observe that the two models both have a large
advantage over the other one on a section of lists. Taking AOTM
dataset as an example, GUPM is superior to CPPM with a large
margin of 0.68 against 0.32 on a different set of 12,480 lists, while
CPPM achieves 0.68, largely outperforming 0.32 obtained by GUPM
on 12,759 lists. Such a huge divergence of the performance suggests
that the two sets of lists are different from each other.

Consistency Comparison: Hence, we calculate the consistency
between the last item and previous items according to Eq.(1) and
compare the average consistency of the two bunches of lists in Fig-
ure 6. Note that we use the item embeddings from trained word2vec
model in Section 3.2, rather than embeddings from our approach,
in order to provide a more objective perspective for measuring the
consistency. Interestingly, in AOTM and Goodreads with commonly
strong consistency, we observe that the lists where GUPM wins
have a similar consistency with the lists where CPPM wins. This
is understandable that user general and current preference should
generate similar results if a list is always consistent. However, in
Spotify and Zhihu with commonly weak consistency, we observe
that the lists where GUPM wins have a stronger consistency than
the lists where CPPM wins. Taking Spotify as an example, the lists
where GUPM wins have an average consistency of 0.71 while the
lists where CPPM wins have a weaker consistency of 0.68. Hence,
the comparison between the average consistency of GUPM and
CPPM in these two datasets supports our intuition of the impact of
list consistency on the quality of predicting the next item.

6.4 RQ4: Impact of Hyper-parameters
In this section, we analyze the impact of hyper-parameters. Due
to the limited space, two important hyper-parameters are selected
to discuss. In Figure 7(a), we observe that our approach benefits
from larger numbers of the latent dimensionality d . The best results
are obtained with d = 50 in Goodreads and Zhihu. In Figure 7(b),
we observe that the longer the item sequence that is fed into our
model, the better performance can be obtained for predicting the
next item. The best results are achieved with n = 500 in Goodreads
and Zhihu and the performance decreases largely when n < 100.
This demonstrates that user’s general preference always maintains
influence on curating items in a list and items that are curated even
a long time ago should also be paid attention for list continuation.

7 CONCLUSION AND FUTUREWORK
In this paper, we focus on automatically continuing user-generated
item lists, i.e., predicting the next possible item for each list. We
observe that the consistency between recent and previous items
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Figure 7: Impact of hyper-parameters in terms of NDCG@5
taking Goodreads and Zhihu as examples.

reflects the dynamic change of user preferences. Specifically, if re-
cent items are not similar with previous items, the user preference
has probably changed and hence we should pay more attention on
the recent items for predicting the next item. Therefore, we are
motivated to propose a consistency-aware attention-based recom-
mender (CAR), where a novel consistency-aware gating network
is designed for capture the discontinuity between the current user
preference and the general user preference. The evaluation on four
datasets demonstrate the effectiveness of CAR versus state-of-the-
art alternatives. In the future, we will utilize some side information
to enhance CAR, like friend relationships among users and text-
based titles of user-generated item lists.
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