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Abstract—How can we efficiently recover missing values for
very large-scale real-world datasets that are multi-dimensional
even when the auxiliary information is regularized at certain
mode? Tensor completion is a useful tool to recover a low-
rank tensor that best approximates partially observed data and
further predicts the unobserved data by this low-rank tensor,
which has been successfully used for many applications such as
location-based recommender systems, link prediction, targeted
advertising, social media search, and event detection. Due to the
curse of dimensionality, existing algorithms for tensor completion
that integrate auxiliary information do not scale for tensors with
billions of elements. In this paper, we propose DISTENC, a new
distributed large-scale tensor completion algorithm that can be
distributed on Spark. Our key insights are to (i) efficiently handle
trace-based regularization terms; (ii) update factor matrices with
caching; and (iii) optimize the update of the new tensor via
residuals. In this way, we can tackle the high computational costs
of traditional approaches and minimize intermediate data, lead-
ing to order-of-magnitude improvements in tensor completion.
Experimental results demonstrate that DISTENC is capable of
handling up to 10 ∼ 1000× larger tensors than existing methods
with much faster convergence rate, shows better linearity on
machine scalability, and achieves up to an average improvement
of 23.5% in accuracy in applications.

I. INTRODUCTION

Extremely large and sparse multi-dimensional data arise

in a number of important applications, including location-

based recommendation, targeted advertising, social media

search, and event detection [1], [2], [3]. Tensors – or multi-

dimensional arrays – are commonly used to capture this multi-

dimensionality. For instance, a movie rating from a user can

be modeled as a tensor where each element is an interaction

between a movie, a user, and the context in which this user

rates the movie (e.g., genre, date of the rating, etc.). A multi-

dimensional social network such as the DBLP network can

be represented as a tensor with 4-tuples, e.g., author-paper-
term-venue. Analytics over such large, diverse, and multi-

dimensional datasets can provide valuable insights with respect

to the underlying relationships between different entities.

However, in practice, many types of multidimensional data

may be noisy or incomplete, limiting the effectiveness of such

analytics. For example, data may be restricted due to data sam-

pling policies, partial access to legacy data warehouses, sparse

feedback from users (e.g., ratings in a recommender system),

data missing at random, and so on [4], [5]. Traditional methods

like matrix completion methods have shown good success in

recovering two-dimensional data, but may not be suitable for

handling missing data in these large multi-dimensional cases.

Analogous to matrix completion, tensor completion aims to

recover a low-rank tensor that best approximates partially

observed data and further predicts the unobserved data using

this low-rank tensor.
While recovering the missing values by tensor completion

is attractive, it is challenging to efficiently handle large-scale

tensors (e.g., ones containing billions of observations in each

mode) due to the high computational costs and space require-

ments. Tensor completion in these scenarios faces challenges

such as: (i) the intermediate data explosion problem where

in updating factor matrices, the amount of intermediate data

of an operation exceeds the capacity of a single machine or

even a cluster [6], [7], [8], [9]; (ii) the large regularization

problem where the regularization term can affect the scalability

and parallelism of tensor completion [10], [11]; and (iii) since

architectures on modern computing facilities have lower ratios

of memory bandwidth to compute capabilities, computations

on tensors that usually have unstructured access patterns are

usually degraded. While there has been research addressing

these challenges of scalability separately, most focus on tensor

factorization, which are not suitable for tensor completion

that needs to estimate all missing values in a tensor at

each iteration. There is a need to fill a gap between tensor

completion and applications with real large-scale datasets.
In this paper, we propose to fill this gap through DISTENC

(Distributed Tensor Completion), a new distributed large-scale

tensor completion algorithm running on Apache Spark. Our

intuition is to tackle the challenges of large-scale tensor

completion through three key insights: (i) by designing an

efficient algorithm for handling the trace-based regularization

term; (ii) by updating factor matrices with caching; and (iii)

by optimizing the update of the new tensor at each iteration,

while minimizing the generation and shuffling of intermediate

data. We find that DISTENC leads to high efficiency compared

with state-of-the-art methods, while delivering similar (and in

many cases improved) accuracy. The three main contributions

of this paper are as follows:

• Algorithm. We propose DISTENC, a novel distributed

tensor completion algorithm with regularized trace of the
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information based on ADMM, which is designed to scale

up to real large-scale tensors by efficiently computing

auxiliary variables, minimizing intermediate data, and

reducing the workload of updating new tensors.

• Scalability Our scalability analysis of DISTENC shows

that it achieves up to 10 ∼ 1000× better scalability, per-

forms better linearity as we scale the number of machines,

and converges faster than other methods. Additionally, we

analyze DISTENC in terms of time complexity, memory

requirement and the amount of shuffled data.

• Experiment. We empirically evaluate DISTENC and

confirm its superior scalability and performance in tensor

completion with both synthetic and real-world datasets.

We observe that the proposed DISTENC performs tensor

completion with less time and up to an average improve-

ment of 23.5% in accuracy in applications versus state-

of-the-art methods, while achieving better scalability.

II. PRELIMINARIES

In this section, we provide a brief background on tensors

including key definitions and notations, followed by the tensor

completion. Table I lists the symbols used in this paper.

A. Tensor

Definition 2.1.1 (Tensor). A tensor is a multi-way array,

whose dimension is called mode or order. An N th-order tensor

is an N-mode array, denoted as X ∈ R
I1×I2×···×IN . The

number of non-zeros of a tensor X is denoted as nnz(X).

Definition 2.1.2 (Kronecker Product). Given two matrices

A ∈ R
I×J and B ∈ R

K×L, their Kronecker product A ⊗ B
generates a matrix of size IK×JL, which can be defined as:

A⊗B =

⎡
⎢⎣
a11B a11B · · · a1JB

...
...

. . .
...

aI1B a11B · · · aIJB

⎤
⎥⎦ .

Definition 2.1.3 (Khatri-Rao Product). It is a column-wise

Kronecker product, denoted as A�B where both A ∈ R
I×R

and B ∈ R
K×R have the same number of columns. Their

Khatri-Rao product produces a matrix of size IK×R defined:

A�B = [a1 ⊗ b1, · · · ,aR ⊗ bR].

Definition 2.1.4 (Hadamard Product). Given two matrices

A and B with the same size I × J , their Hadamard product

A×B is the element-wise matrix product, defined as:

A×B =

⎡
⎢⎣
a11b11 a12b12 · · · a1Jb1J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

⎤
⎥⎦ . (1)

Definition 2.1.5 (Tensor Matricization). Tensor matricization

is to unfold a tensor into a matrix format with a predefined

sequence of mode order. The n-mode matricization of a tensor

X ∈ R
I1×...×IN is denoted as X(n) ∈ R

In×(
∏

k �=n Ik). The

order of the other modes except mode n can be arranged

randomly to construct the column of X(n).

TABLE I: Symbols and Operations.

Symbols Definitions
X tensor (Euler script letter)

X(n) n-mode matricization of a tensor XXX
X matrix (uppercase bold letter)
x column vector (lowercase bold letter)
x scalar (lowercase letter)
N order of a tensor (number of modes)
[[·]] Kruskal operator
⊗ Kronecker product
� Khatri-Rao product
∗ Hadamard product
◦ outer product
×n n-mode tensor-matrix product

‖X‖2F Frobenius norm of X
nnz(X) number of non-zero elements in X

Definition 2.1.5 (n-mode Tensor-Matrix Product). Given

an N th-order tensor X ∈ R
I1×I2×...×IN and a matrix A ∈

R
In×J , their multiplication on its nth-mode is represented as

Y = XXX×nA and is of size I1 × . . . In−1 × J × In+1 . . .× IN .

The element-wise result is illustrated as:

YYYi1,...,in−1,j,in+1,...,iN =

In∑
k=1

Xi1,...,in−1,k,in+1,...,iNAk,j . (2)

B. Tensor Completion
Tensor completion is extensively applied in tensor mining

to fill the missing elements with partially observed tensors.

Low rank is often a necessary hypothesis to restrict the

degree of freedoms of the missing entries being intractable.

Hence, we focus on the low-rank tensor completion (LRTC)

problem in this paper. First, we introduce the standard

CANDECOMP/PARAFAC(CP)-based tensor completion.
1) CP-based Tensor Completion: CP tensor decomposition

proposed by Hitchcock [12] is one of the most used tensor

factorization models, which decomposes a tensor into a sum

of rank-one tensors. Before being actively researched in recent

years, the LRTC problem is usually considered as a byproduct

of the tensor decomposition problem with missing values.

Given an N th-order tensor X ∈ R
I1×I2×···×IN with the rank

R� min(I1, . . . , IN ) that is pre-defined as one of the inputs,

the CP decomposition solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F +

λ

2

N∑
n=1

‖A(n)‖2F

subject to Ω ∗X = T,A(n) ≥ 0, n = 1, 2, 3.,

where T denotes the partial observations, A(n) ∈ R
In×R are

the factor matrices, and Ω is a non-negative weight tensor with

the same size as X:

Ωi1...in...iN =

{
1 if Xi1...in...iN is observed,

0 if Xi1...in...iN is unobserved.

Through the CP decomposition, an N th-order tensor X is

decomposed into N factor matrices as follows:

XXX ≈ [[A(1), . . . ,A(N)]] =

R∑
i=1

a
(1)
i ◦ a(2)i ◦ . . . ◦ a(N)

i , (3)
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(b) Twitter List

Fig. 1: Example of CP-based tensor completion with auxiliary information. (a): Rank-R CP tensor completion of a 3-order

tensor with auxiliary information. The tensor X is decomposed into three factor matrices A, B and C, and recovered based

on factor matrices. (b) A 3-order Twitter List tensor with user-expert-topic triples and three similarity matrices generated from

auxiliary information of users, experts and topics, respectively.

where a
(n)
i is the i-th column of matrix An.

2) Tensor Completion with Auxiliary Information: With the

increasing ratio of missing entries, tensor completion may

perform unsatisfactory imputation with degrading accuracy

due to its assumptions on low-rank and uniformly sampling.

In real-world data-driven applications, besides the target tensor

object, considerable additional auxiliary information such as

spatial and temporal similarities among objects or auxiliary

coupled matrices/tensors may also exist and provide poten-

tial help for improving completion quality. An example of

a Twitter List tensor is illustrated in Fig. 1b. Given an

N th-order tensor X ∈ R
I1×I2×···×IN with the rank R �

min(I1, . . . , IN ) and similarity matrices B(n), n = 1, . . . , N
of size I1 × I1, . . . , IN × IN , the tensor decomposition with

auxiliary information solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F

+
λ

2

N∑
n=1

‖A(n)‖2F +
N∑

n=1

αntr(B
(n)TLnB

(n))

subject to Ω ∗X = T,A(n) = B(n) ≥ 0, n = 1, 2, . . . , N.,

(4)

where Ln ∈ R
In×In is the graph Laplacian of the similarity

matrix Sn for the mode n, B(n), n = 1, 2, . . . , N are intro-

duced as auxiliary variables, tr(· ) is the matrix trace and αn

is to control the weight of auxiliary information in the mode

n. Fig. 1a shows the rank-R CP tensor completion of a 3-order

tensor with auxiliary information. The tensor X is decomposed

into three factor matrices A, B and C by integrating auxiliary

information and recovered based on them.

3) Optimization Algorithm: Since the objective function in

Eq.(4) is convex with respect to variables A(n) and B(n)

separately, the overall problem is not convex. Motivated by

methods [13], [14], we can construct an algorithm under

the framework of ADMM (Alternating Direction Method of

Multipliers) to find optimal solutions for the objective func-

tion above. ADMM [15] has illustrated its superiority over

alternating least square (ALS) in terms of both reconstruction

efficiency and accuracy [16]. In order to apply ADMM, the

objective function in Eq. (4) can be firstly written in the partial

augmented Lagrangian functions as follow:

Lη(A
(n),B(n),Y(n)) =

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F

+
λ

2

N∑
n=1

‖A(n)‖2F +

N∑
n=1

αn

2
tr(B(n)TLnB

(n))

+
N∑

n=1

< Y(n),B(n) −A(n) > +
N∑
i=1

η

2
‖B(n) −A(n)‖2F ,

(5)

where Y(n) is the matrix of Lagrange multipliers for n =
1, 2, . . . , N , η is a penalty parameter and < ∗, ∗ > is an

inner product of matrices. The variables A(n),B(n),Y(n), n =
1, 2, . . . , N can be iteratively updated by calculating the partial

derivatives while fixing other variables, as shown in Algorithm

1 detailed in [4]. There are many ways to check for conver-

gence. The stopping criterion for Algorithm 1 is either one

of the following: (i) the maximal difference between factor

matrices of consecutive iterations is smaller than a threshold;

or (ii) the maximum number of iterations is exceeded.

III. PROPOSED METHOD: DISTENC

In this section, we present the proposed DISTENC, a

distributed algorithm for scalable tensor completion on Spark.

A. Overview

DISTENC provides an efficient distributed algorithm for

the CP-based tensor completion with auxiliary information on

Spark. The algorithm 1 contains three challenging operations:

(i) updating auxiliary variables B(n) (line 4); (ii) updating

factor matrices A(n) (lines 7 and 8); and (iii) updating tensor

X (line 9). In the following subsections, we address the above

challenges with the following main ideas that efficiently update

auxiliary variables, factor matrices and tensors in distributed

systems, while reducing floating point operations (FLOPs).

• (Section III-B) Eigen-decomposing a graph Laplacian

matrix and carefully ordering of computation to decrease

FLOPs in updating auxiliary variables.
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Algorithm 1: CP-based Tensor Completion via ADMM

Input: T,A(n)
0 ,Ω,Ωc, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 Initialize A
(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

2 while Not Converged do
3 for n← 1 to N do
4 Update

B
(i)
t+1 ← (ηtI + αnLn)

−1(ηtA
(n)
t −Y

(n)
t )

5 Calculate U
(n)
t ←

6 (A
(N)
t � · · · �A

(n+1)
t �A

(n−1)
t � · · · �A

(1)
t )

7 Update A
(n)
t+1 ←

8 (Xt
(n)U

(n)
t + ηtB

(n)
t+1 +Y

(n)
t )(U

(n)
t

T
U(n)t +

λI + ηtI)
−1

9 Update Xt+1 = T +Ωc ∗ [[A(1)
t+1,A

(2)
t+1, . . . ,A

(N)
t+1]]

10 for n← 1 to N do
11 Update Y

(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

12 Update ηt+1 =min(ρηt, ηmax)
13 Check the convergence:

max{‖A(n)
t+1 −B

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

14 t = t+ 1

15 return X, A(n), n = 1, 2, . . . , N

• (Section III-C) Carefully partitioning of the workload and

distributing intermediate generation to remove redundant

data generation and reducing the amount of intermediate

data transfer in updating factor matrices.

• (Section III-D) Utilizing the residual tensor to avoid

the explicit computation of the dense tensor and reuse

intermediate data to decrease FLOPs in updating tensor.

B. Calculating Inverse of Graph Laplacian Matrices

Since the update rules for auxiliary variables B(n), n =
1, 2, . . . , N are similar, we focus on updating the variable B(n)

where n could be an arbitrary one from {1, 2, . . . , N}. The

operation in line 4 of Algorithm 1 requires us to compute

the pseudo-inverse of the summation of a matrix αnLn and

a diagonal matrix ηtI where I is an identity matrix with the

same size of Ln. Since such summation will change with the

penalty parameter ηt that will be updated at every iteration,

the question is how to efficiently calculate such a pseudo-

inverse instead of computing it at every iteration due to its

high computational cost with complexity O(I3n).
As a graph Laplacian matrix Ln derived from the sim-

ilarity matrix Sn is symmetric and predefined without any

change in Algorithm 1, we apply an efficient truncated eigen-

decomposition method proposed by Bientinest et al. [17] with

the time complexity O(KIn) and the space complexity O(In)
to it and get its truncated decomposition as Ln = VnΛnV

T
n

where Vn ∈ R
In×K and Λn ∈ R

K×K . Hence, line 4 of

Algorithm 1 can be re-written as follow:

B
(n)
t+1 ← Vn(ηt + αnΛn)

−1VT
n (ηtA

(n)
t −Y

(n)
t ). (6)

�

�

�

�

����

Fig. 2: Memory access on updating Ai,: in a 3-order tensor.

Since (ηt+αnΛn) is a diagonal matrix, its inverse can be ef-

ficiently computed by only computing the reciprocal of entries

on the diagonal instead of calculating the inverse of the whole

matrix (ηtI+αnLn). Furthermore, Eq.(6) performs the matrix

multiplication of the four matrices Vn, (ηt + αnΛn)
−1, VT

n

and (ηtA
(n)
t − Y

(n)
t ). Its computing order may significantly

affect the efficiency of computation. In order to reduce FLOPs,

we compute it by firstly multiplying the last two matrices that

result in a relatively small matrix with size K × R, and then

broadcasting the result with the second one to the first matrix:

B
(n)
t+1 ← Vn(ηt + αnΛn)

−1(VT
n (ηtA

(n)
t −Y

(n)
t )). (7)

By this way, we are able to perform the update of an auxiliary

variable B(n) in O(InR+ InKR+ InK
2R) time.

C. Reducing Intermediate Data

As shown in lines 7 and 8 in Algorithm 1, we focus on the

updating rule for an arbitrary A(n) as follow:

A(n) ← (X(n)U
(n)+ηB(n)+Y(n))(U(n)TU(n)+λI+ηI)−1.

(8)

where U(n) = (A(N)� · · · �A(n+1)�A(n−1)� · · · �A(1))
with size (

∏
k �=n Ik) × R, which entails three matrix-matrix

multiplications as:

H1 = X(n)U
(n),

H2 = (U(n)TU(n) + λI + ηI)−1,

H3 = (H1 + ηB(n) +Y(n))H2.

(9)

We denote H1 = X(n)U
(n) as the matricized tensor

times Khatri-Rao product (MTTKRP) that will lead to the

intermediate data explosion problem in the tensor completion

when tensor X is very large. Explicitly calculating U(n) and

performing the matrix multiplication with X(n) requires more

memory than what a common cluster can afford as computing

U(n) is prohibitively expensive with the size (
∏

k �=n Ik)×R.

Though the matricized X(n) is very sparse, U(n) is very

large and dense. Hence, inspired by the work [8], we perform

MTTKRP in place by exploiting the block structure of the

Khatri-Rao product. A block is defined as a unit of workload

distributed across machines, which determines the level of

parallelism and the amount of shuffled data. For a better
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Algorithm 2: DISTENC-Greedy Algorithm

Input: observed tensor T, number of partitions at

n-mode Pn, number of modes N
Output: wn, n = 1, · · · , N

1 for n = 1, · · · , N do
2 δ = nnz(T)/Pn ← Calculate the chunk size for

n-mode;

3 sum = 0 and εpre = δ;

4 θ(n) ← Calculate nnz for each slice at n-mode;

5 for i = 1, · · · , In do
6 sum← sum+ θ

(n)
i ;

7 ε← Calculate the difference between sum and δ;

8 if sum ≥ δ then
9 wn ← add i if ε < εpre; otherwise, add i− 1;

10 εpre = ε;

illustration, we assume that X ∈ R
I1×I2×I3 is a 3-order sparse

tensor whose entry H1(i1, r) can be represented as:

H1(i1, r) =
∑

Xi1, : , :

Xi1,i2,i3A
(3)
i3,r

A
(2)
i2,r

(10)

As shown in Eq.(10), we observe two important properties

of MTTKRP: (i) non-zeros in Xi1, : , : are only associated

with the computation of H1(i1, : ); (ii) the row indices i2
and i3 in A(2) and A(3), respectively, will be accessed based

upon which appear in non-zeros in Xi1, : , : when calculating

H1(in, r). Thus, our idea is to compartmentalize the sparse

tensor X and factor matrices A(1),A(2), · · · ,A(N) into blocks

in order to make the computation of MTTKRP fit into the

memory. Taking a 3-order tensor as an example, we divide

rows of A(1), A(2) and A(3) into P , Q, and K blocks,

respectively. Correspondingly, the tensor X ∈ R
I1×I2×I3 can

be further divided into P ×Q×K blocks. A block of a tensor

is denoted as X(p, q, k) with corresponding blocks of factor

matrices A
(1)
(p), A

(2)
(q) and A

(3)
(k). Each process only work on a

block of a factor matrix with entries in the tensor with which

this block is associated, and aggregate partial results computed

by other processors for this block.

Load Balancing. Since the tensor X is very sparse, randomly

dividing it into P × Q × K blocks could result in load
imbalance [18]. The questions is how to identify the block

boundaries. In order to fully utilize the computing resources,

a greedy algorithm is proposed to generate blocks for bal-

ancing the workload. For instance, we split a mode into P
partitions. Each partition will be generated by continuously

adding indices until the number of non-zeros in this partition

is equal to or larger than nnz(X)/P that is considered as the

target partition size. Once adding a slice makes a partition over

the target size, we compare the number of non-zeros in this

partition before and after adding it and pick whichever is closer

to the target size. Other modes would follow the same routine

to identify boundaries for Q partitions and K partitions. The

algorithm for balancing the load for DISTENC is demonstrated

in Algorithm 2, which will take O(Nnnz(X)).

Computing MTTKRP. After compartmentalizing the tensor

and factor matrices into blocks, each process holds the tensor

non-zeros with necessary blocks of factor matrices (non-

local factor matrix rows will be transfered to this process

from others), and performs MTTKRP as shown in Eq.(10).

Specifically, we parallelize such computation based on the

efficient fiber-based data structure [8] in local, indicating that

we directly calculate the row of H1 as follow:

H1(i1, : ) =
∑

Xi1, : , :

Xi1,i2,i3(A
(3)
i3, :

∗A(2)
i2, :

). (11)

Since such calculation can be done at the granularity of factor

matrix rows, it only requires O(R) intermediate memory per

thread in parallelism. By this way, H1 are row-wise computed

and distributed among all processes. We only need to broad-

cast relatively small factor matrices along with corresponding

indices in the non-zeros of a sparse tensor for each machine

instead of having to compute the entire Khatri-Rao product.

Calculating U(n)TU(n) Based upon the property of Khatri-

Rao product, we can re-write U(1)TU(1) as follow:

U(1)TU(1) = A(3)TA(3) ∗A(2)TA(2). (12)

By this way, we avoid explicitly computing the large interme-

diate matrix U(1) with size I2I3 ×R by calculating the self-

products A(2)TA(2) and A(3)TA(3) of factor matrices A(2)

and A(3). Applying the block matrix form, the computation

of A(1)TA(1) can be represented in a distributed fashion as:

A(1)TA(1) =
P∑

p=1

A
(1)
(p)

T
A

(1)
(p). (13)

Each process calculates a local A
(1)
(p)

T
A

(1)
(p) in the thread-level

parallelism. By aggregating all computations across processes,

the final matrix A(1)TA(1) will be generated and distributed

among all processes, which is a matrix of size R×R that can

easily fit into the memory of each process. Thus, it can be

seen that (H2 + λI + ηI)−1 can be efficiently calculated in

O(R3) time in a single machine.

D. Computing the Updated Tensor

Unlike the tensor factorization/decomposition in which the

input tensor is fixed, tensor completion requires us to update

the tensor X by filling out unobserved elements in each

iteration as shown in line 9 in Algorithm 1. Once completing

updates of A(1), · · · ,A(N) in an iteration, unobserved ele-

ments in a sparse tensor will be filled out by estimated values.

Thus, it turns out to be a dense tensor that leads to a significant

increase in the computation of updating factor matrices in lines

7 and 8 in Algorithm 1. The question is how to avoid such a

problem and keep the computation in the level of O(nnz(X))
time. First of all, we define the residual tensor as:

E = Ω ∗ (T − [[A(1), . . . ,A(N)]]), (14)
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which is sparse with the same size of the observed sparse

tensor T. Based upon the definition of tensor matricizied, its

n-mode matricized form can be expressed as:

X(n) ≈ A(n)(A(N)�· · ·A(n+1)�A(n+1)�· · ·A(1))T . (15)

For brevity, we take a 3-order tensor as an example as demon-

strated in the previous section. By leveraging the residual

tensor and the 1-mode matricized form of a tensor, we can

re-write Ht+1
1 shown in the Eq.(9) as:

Ht+1
1 = Xt

(1)U
(1)
t

= ([[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1) + Et

(1))U
(1)
t

= [[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1)U

(1)
t + Et

(1)U
(1)
t

= A
(1)
t (A

(3)
t �A

(2)
t )T (A

(3)
t �A

(2)
t ) + Et

(1)U
(1)
t

= A
(1)
t (U

(1)
t

T
U

(1)
t ) + Et

(1)U
(1)
t .

(16)

We see that Ht+1
1 consists of two parts that are able to reduce

the time complexity to O(nnz(X)). Concretely, the first part

A
(1)
t (U

(1)
t

T
U

(1)
t ) takes O((I1+I2+I3)R

2) FLOPs as shown

in the computation of H2 of the section III-C; the second part

Et
(1)U

(1)
t is performed by the method illustrated in the section

III-C with the complexity O(nnz(X)) since it is only related

to the residual tensor E instead of using a updated dense tensor.

Fortunately, each U
(1)
t

T
U

(1)
t is computed during the iteration

and the results can be cached and reused in only O(R2) space.

E. Complexity Analysis

We now analyze the proposed DISTENC algorithm with

respect to time complexity, memory requirement and data

communication. Its cost is bounded by MTTKRP and its

associated communications. For the sake of simplicity, we take

a N -order tensor X ∈ R
I×···×I as the input tensor. We denote

M as the number of machines, p as the number of partitions

for one mode, P = p × p × p as the number of blocks in

a tensor and K as the number of components in the eigen-

decomposition of a graph Laplacian matrix L.

Lemma 1: The time complexity of DISTENC is

O(nnz(X) + NI + NIR + Rnnz(X) + N(IR + IKR +
IK2R) +N(IR2 + 
nnz(X)/I�R+ 3IR+R3) +NIR).

Proof: In the beginning, the tensor X is split into P blocks

by applying Algorithm 2. For each mode, computing the

number of non-zero elements in slices takes O(nnz(X)) time

via incremental computations that employ prior summation

results. Identifying the partition boundaries for each mode

takes O(I) time. Since a non-zero element is determined and

mapped to a machine in a constant time based on identified

boundaries, decentralizing all non-zero elements in X to

blocks in machines takes O(nnz(X)). In total, partitioning the

sparse tensor takes O(nnz(X)+NI). After splitting the tensor

into blocks and mapping all non-zero elements to blocks, the

factor matrices are randomly initialized and distributed among

machines based upon block boundaries identified during the

split of the tensor. This process takes O(NIR) time. The

residual tensor E is sparse with the same number of non-zero

Algorithm 3: DisTenC Algorithm

Input: T,A(n)
0 ,Ω,Ωc, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 for n← 1 to N do
2 wn ← GreedyAlgorithm(X) in Algorithm 2

3 Partition X based upon wn, n = 1, · · · , N
4 Initialize A

(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

5 Calculate the residual tensor

E0 = Ω ∗ (T − [[A
(1)
0 , . . . ,A

(N)
0 ]])

6 for t← 0 to T do
7 for n← 1 to N do
8 Update

B
(i)
t+1 ← (ηtI + αnLn)

−1(ηtA
(n)
t −Y

(n)
t )

9 Calculate and cache Ft
n = U

(n)
t

T
U

(n)
t

10 Calculate Ht
n = MTTKRP (Et

(n)U
(n)
t )

11 Update and cache A
(n)
t+1 ← (A

(n)
t Ft

n +Ht
n +

ηtB
(n)
t+1 +Y

(n)
t )(Ft

n + λI + ηtI)
−1

12 Update and cache

Y
(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

13 Calculate and cache the residual tensor

Et+1 = Ω ∗ ([[A(1)
t+1, . . . ,A

(N)
t+1]]− [[A

(1)
t , . . . ,A

(N)
t ]])

14 Update ηt+1 =min(ρηt, ηmax)
15 Check the convergence:

max{‖A(n)
t+1 −A

(n)
t ‖2F } < tol

16 if converged then
17 break out of for loop

18 return X, A(n), n = 1, 2, . . . , N

elements as the input sparse tensor X. Bounded by the non-

negative weight tensor Ω, calculating the residual tensor takes

O(Rnnz(X)) time as an entry of [[A(1), . . . ,A(N)]] can be

obtained in O(R) time. Pre-computing the truncated eigen-

decomposition of a graph Laplacian matrix Ln for n-mode

takes O(KI) time. The error between a factor matrix A(n)

and a matrix of Lagrange multipliers Y(n) can be computed

in O(RI) time. Based upon the order of updating B(n)

introduced in the section III-B, computing the multiplication

of last two matrices VT
n (ηtA

(n)
t −Y

(n)
t ) takes O(IKR). Due

to the relatively small size (K×R) of the result, we broadcast

it with (ηt + αnΛn)
−1 of size K ×K to the first matrix Vn

and compute their multiplication in O(IK2R) time. In total,

updating an auxiliary variable takes O(IR+ IKR+ IK2R)
time, and O(N(IR + IKR + IK2R)) time for all modes.

The update of a factor matrix contains three steps. The self-

product A(n)TA(n) for n-mode requires to be performed

in O(IR2) time. Through all N modes in the tensor, it

takes O(NIR2) time. In each mode, computing MTTKRP

of the residual tensor and factor matrices as shown in line

7 of Algorithm 3 by the proposed row-wise method takes

O(
nnz(X)/I�R). As illustrated in line 8 of Algorithm 3,
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updating a factor matrix performs a multiplication of two

matrices. The first one can be obtained in O(IR2+3IR) time.

For the second one, it takes O(R3) to calculate the inverse

of the matrix (Ft
n + λI + ηtI). The multiplication of these

two matrices takes O(IR2). Thus, updating a factor matrix

takes O(IR2 + 
nnz(X)/I�R+3IR+R3). In total, it takes

O(N(IR2+
nnz(X)/I�R+3IR+R3)). Updating the matrix

of Lagrange Multiplier Y(n) takes O(IR) time. Checking the

convergence criterion requires O(NIR) to be performed.

Lemma 2: The amount of memory required by DISTENC

is O(nnz(X) + 3NIR+NIK +NK +MNR2).

Proof: During the computation, DISTENC needs to store

data in memory at each iteration as follows: the observed

tensor X, the residual tensor E, factor matrices A(1), A(2),

and A(3), auxiliary variables B(1), B(2), and B(3), Lagrange

multiplier matrices Y(1), Y(2), and Y(3), eigen-decomposed

graph Laplacian matrix Ln = VnΛnV
T
n , and the self-

product A(n)TA(n) for n-mode. Since the residual tensor E

is calculated only for those non-zero elements in the observed

tensor X, both of them are kept in the memory at each iteration

with a distributed fashion, which require O(nnz(X)) memory.

For each mode, its factor matrix A(n) has the same size as its

auxiliary variable B(n) and Lagrange multiplier matrix Y(n).

Thus, the total amount of memory used for storing them for

all modes is O(3NIR). The Laplacian matrix Ln for n-mode

is eigen-decomposed into an eigenvector matrix Vn and a

diagonal matrix Λn that is stored as a vector in the machine.

By considering all modes in a tensor, the memory is required to

hold O(NIK+NK) space. The self-product A(n)TA(n) for

n-mode only takes O(R2) memory. Since we will broadcast

it to all M machines, the amount of memory for storing these

self-products for all modes is O(MNR2).

Lemma 3: The amount of shuffled data caused by DIS-

TENC is O(nnz(X) + TNMIR+ TNMR2)

Proof: DISTENC initially employed the greedy algorithm

to identify the partition boundaries for each mode, and par-

titions the observed tensor X into defined groups. In this

process, the whole input tensor is shuffled and cached across

all machines. Thus, the amount of shuffled data in the partition

of the observed tensor is O(nnz(X)). In each iteration,

DISTENC requires to send rows of factor matrices, auxiliary

variables and Lagrange multiplier matrices to corresponding

partitions in which each tensor entry is updated by rows

associated with its index in all modes, which takes O(NMIR)

space in total. Moreover, the self-product A(n)TA(n) for n-

mode is calculated by aggregating all matrices of size R×R
across machines, and then broadcast back to all machines. In

this process, it takes O(NMR2) by considering all modes in

the tensor. Similarly, updating the residual tensor E needs to

copy associated rows of factor matrices into machines, which

takes O(NMIR) space in sum. Therefore, by considering all

cases above, the amount of shuffled data for DISTENC after

T iterations is O(nnz(X) + TNMIR+ TNMR2).

F. Implementation on Spark

In this section, we explore practical issues in terms of

implementations of DISTENC on Spark. Our implementation

is carefully designed to obtain best speed-up and scalability.

Since the input tensor is sparse, all entries are stored in a list

with the coordinate format (COO). The input sparse tensor

is loaded as RDDs. First of all, we apply functions map and

reduceByKey to calculate the number of non-zero elements

for all indices in a mode with the key that is the index in that

mode. These count results are then used to generate partition

boundaries for that mode and persisted in memory. After

that, we apply functions map and aggregateByKey to

partition the tensor into blocks: map transforms an entry of the

sparse tensor into an element in the RDD whose key is a block

ID; aggregateByKey groups these non-zero elements by

block IDs. Partitioned tensor RDDs are then persisted in

memory. In order to speed-up the following computation, for

each mode, we transform a tensor to a pair RDD whose key

is an index in that mode and value is all block IDs with

which entries associated with this index appear in blocks by

employing RDD’s functions flatMap and reduceByKey,

and persist them in memory. Factor matrices are initialized

with random numbers, which are stored as RDDs and dis-

tributed based upon partition boundaries identified previously.

Following the same fashion, matrices of Lagrange multipliers

are initialized with zeros as RDDs. After applying the efficient

truncated eigen-decomposition method, a graph Laplacian

matrix is decomposed into eigenvalues and eigenvectors. As

shown in the section III-B, a diagonal matrix of eigenvalues

is stored as a Array and broadcast to all machines in the

cluster; eigenvectors are stored as RDDs where the key is

the index and the value is the associated eigenvector with the

same partition as factor matrices. The self-product of a factor

matrix is transformed from a factor matrix RDD by utilizing

functions flatMap and reduceByKey and broadcast to

all machines. We update factor matrices as well as auxiliary

variables by using RDD’s functions flatMap, join and

reductByKey. Since the operation join will shuffle the

data and exponentially increase the computational time, we

keep the same partitions when applying join to two RDDs. In

the implementation, we also replace operations groupByKey
by reduceByKey and combineByKey that combines pairs

with the same key on the same machine for efficiency. We also

limit the number of combineByKey operations so that edges

of the same element are available at the same physical location,

minimizing data shuffling. As it can be seen, we cache reused

RDD in memory in order to minimize disk accesses between

consecutive iterations, which would not be possible if using a

system like Hadoop to distribute the computation.

IV. EXPERIMENTS

To evaluate the proposed DISTENC, we perform experi-

ments to answer the following questions:

Q1: Data Scalability. How well do DISTENC and other

baseline methods scale up with the input tensor in terms of
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Fig. 3: Data Scalability of our proposed DISTENC compared with other methods. DISTENC successfully complete tensors with

high dimensionality, sparsity and rank, while the baseline methods fail running out of time or memory. Concretely, DISTENC

is capable of handling 10 ∼ 1000× larger tensors, addressing 100× denser tensors and less effects on rank.

factors such as the number of non-zeros, dimension, mode

length, and rank?

Q2: Machine Scalability. How well does DISTENC scale up

in terms of the number of machines?

Q3: Discovery. How accurately do DISTENC and other

baseline methods perform over real-world tensor data?

A. Experimental Setup

Cluster/Machines. DISTENC is implemented on a 10-node

Spark cluster in which each node has a quad-core Intel Xeon

E5410 2.33GHz CPU, 16GB RAM and 4 Terabytes disk. The

cluster runs Spark v2.0.0 and consists of one driver node and

9 worker nodes. In the experiments, we employ 9 executors,

each of which uses 8 cores. The amount of memory for the

driver and each executor process is set to 8GB and 12GB.

Datasets. Both synthetic and real-world data are used to

evaluate the proposed method. We generate two synthetic

datasets, one for testing the scalability and the other for testing

the reconstruction error. For the scalability tests, we generate

random tensors of size I × J × K by randomly setting a

data point at (i, j, k). For simplicity, we assume that their

similarity matrices are identity matrices for all modes. For the

reconstruction error tests, we first randomly generate factor

matrices A(1), A(2) and A(3) with the specific rank R = 20
by the following linear formula [14]:

A
(1)
i,r = iεr + ε′, i = 1, 2, . . . , I1, r = 1, 2, · · · , R

A
(2)
j,r = jζr + ζ ′, j = 1, 2, . . . , I2, r = 1, 2, · · · , R

A
(3)
k,r = kηr + η′, k = 1, 2, . . . , I3, r = 1, 2, · · · , R

where {εr, ε′r, ζr, ζ ′r, ηr, η′r}r=1,2,...,R are constants generated

by the standard Gaussian distribution N(0, 1). Since each

factor matrix is generated by linear functions mentioned above

column by column, the consecutive rows are similar to each

other. Therefore, we generate the similar matrix for the ith
mode as the following tri-diagonal matrix:

Si =

⎡
⎢⎢⎢⎣
0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ (17)

We then randomly select tensor data points (i, j, k) as our

observation and calculate its value via A
(1)
i, : ◦ A(2)

j, : ◦ A(3)
k, : .

This process is performed until we have the desired number

of observed data points. We vary the dimensionality of the

synthetic data as well as the rank in order to test the scalability

and the reconstruction error, respectively.

For real-world datasets, we use Netflix, Facebook, DBLP,

and Twitter summarized in Table II with the following details:

• Netflix: Movie rating data employed in the Netflix prize

[19], forming a user-movie-time tensor data by consider-

ing the time at which a user rated a movie. The rating

ranges from 1 to 5.

• Facebook: Temporal relationships between users from

the Facebook New Orleans networks [20], where We con-

sider a 3-order tensor where the third mode corresponds

to the date when one anonymized user adds the other user

to the first user’s friend list.

• DBLP: A record of DBLP (a computer science bib-

liography) publications including authors, papers, and

conferences. We convert the dataset into a a co-authorship

network with author-author-paper elements, and define

a author-author similarity based on whether they come

from the same affiliation.

• Twitter: Geo-tagged Twitter lists data [21]. A Twitter list

allows a user (creator) to label another user (expert) with

an annotation (e.g., news, food, technology). Since there

are a large number of annotations, we transfer them into

16 general topics like news, music, technology, sports,

etc. We convert relationships between list creators and

experts into a 3-dimensional tensor by adding the topics

of lists as the third mode, and produce a creator-expert
similarity matrix based on their following relationships.

Baseline Methods. We compare DISTENC with two ten-

sor completion methods and two state-of-the-art distributed

matrix-tensor factorization methods. For the tensor completion

methods, we consider; (i) ALS [22], a distributed tensor

completion method based upon the alternating least square

(ALS) with MPI and OpenMP; and (ii) TFAI [14], a single-

machine tensor completion method with the integration of

auxiliary information. We use the original implementation of

ALS. Since the other completion method CCD++ based upon
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TABLE II: Summary of the real-world and synthetic datasets

used. K: thousand, M: million, B: billion.

Datasets I J K Non-zeros
Netflix 480K 18K 2K 100M
Facebook 60K 60K 5 1.55M
DBLP 317K 317K 629K 1.04M
Twitter 640K 640K 16 1.13M
Synthetic-scalability 1K∼1B 1K∼1B 1K∼1B 10K ∼10B
Synthetic-error 10K 10K 10K 10M

the circle coordinate descent [22] has a similar performance

with ALS, we only consider ALS as one of our baseline

methods in this paper. For the two distributed matrix-tensor

factorization methods, we consider: (i) SCOUT [23]; and (ii)

FLEXIFACT [10] implemented on MAPREDUCE. We integrate

the similarity matrices of all modes as coupled matrices into

SCOUT and FLEXIFACT, respectively, as the way we adopted

here.

B. Data Scalability

We employ synthetic tensors to evaluate the scalability of

DISTENC comparing with other baseline methods in terms of

three aspects: dimensionality, the number of non-zeros and

rank. For the sake of simplification, we set the similarity

matrices of all modes to the identity matrices in the scalability

tests. All experiments are allowed to run 8 hours. If methods

cannot conduct the results within 8 hours, they will be marked

as Out-Of-Time (OOT).

Dimensionality. We increase the tensor size I = J = K from

103 to 109 while fixing the rank to 20 and the number of non-

zero elements to 107. As shown in Fig. 3a, DISTENC and

SCOUT outperform other baseline methods by successfully

performing tensor completion on tensors of size I = J =
K = 109. On the other hand, both ALS and FLEXIFACT run

with the out-of-memory (O.O.M.) error when I = J = K ≥
107; TFAI causes the O.O.M. error when I = J = K ≥
106. FLEXIFACT does not scale up for very large datasets due

to its high communication cost with an exponential increase.

ALS requires each communication of entire factor matrices

per epoch in the worst case as a coarse-grained decomposition.

TFAI is bounded by the memory of a single machine.

Number of Non-Zeros. We increase the number of non-

zero elements (density) from 106 to 109 while fixing the

dimensionality of the input tensor to I = J = K = 105 and

the rank to 10. As demonstrated in Fig. 3b, only TFAI runs out

of memory due to the bound of a single machine while other

methods including the proposed DISTENC, ALS, SCOUT and

FLEXIFACT are able to scale up to 109 non-zero elements.

DISTENC takes more running time than ALS with shrinked

differences as the number of non-zero elements increases. But

DISTENC outperforms both SCOUT and FLEXIFACT due to

the advantages of Spark that is more fit for running the iterative

algorithms with less disk accesses.

Rank. We increase the rank of a tensor from 10 to 500 while

fixing the dimensionality to I = J = K = 106 and the

1 2 4 6 8

Number of Machines

1

2

3

4

5

S
pe

ed
 U

p:
 T

1
/T

M

ALS
SCouT
DisTenC

Fig. 4: Machine scalability of DISTENC compared with ALS

and SCOUT. The proposed DISTENC has the best perfor-

mance in terms of machine scalability with 4.9× speed-up,

which also achieves a better linearity on the scalability with

respect to the number of machines.

number of non-zero elements to 107. As shown in Fig. 3c,

all methods except of TFAI are capable of scaling up to rank

200. The running time of ALS rapidly increases when the rank

becomes large due to its cubically increasing computational

cost. DISTENC has a relatively flat curve as the increase of

rank due to its optimization on calculating the inverse of a

symmetric matrix.

C. Machine Scalability

We measure the machine scalability of the proposed DIS-

TENC by increasing the number of machines from 1 to 8.

The synthetic dataset of size I = J = K = 105 with 107

non-zero elements is applied and its rank is set to 10. In Fig.

4, we report the ratio T1/TM where TM is the running time

using M machines. Since TFAI is a single-machine tensor

completion method and FLEXIFACT has a worse scalability on

machines than SCOUT [23], we only compare ALS, SCOUT

and the proposed DISTENC. It can be seen that DISTENC

obtains 4.9x speed-up as increasing the number of machines

from 1 to 8 and achieves a better linearity in terms of machine

scalability, which SCOUT slows down due to the intensive

hard disk accesses and high communication cost.

D. Reconstruction Error

In order to evaluate the accuracy of the proposed DISTENC

with respect to the reconstruction error, we use the synthetic

dataset of size I = J = K = 104 with 107 non-zero

elements and set its rank to 10, and adopt adopt Relative
Error as our evaluation metric. Relative Error is defined as

RelativeError = ‖X − Y ‖F /‖Y ‖F , where X is the recov-

ered tensor and Y is the ground-truth tensor. We randomly

sample the non-zero elements based upon the missing rate as

the testing data to calculate the relative error; the rest is used

as the training data. We report results in Fig. 5 by varying

the missing rate from 30%, 50% and 70%. All results are

averaged by running 5 times in order to reduce the dependency

of randomness. Overall, we witness that DISTENC achieves

comparable performance with TFAI, but better than ALS, and

SCOUT though the relative errors for all methods are relatively

high due to the extreme sparsity of the data. We see that the
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Fig. 5: Reconstruction error on the synthetic data.

integrated auxiliary information (similarity matrix) leads to

significant improvement through the tensor completion. These

relationships can alleviate the problem of sparsity to some

extent and provide valuable information for the tensor com-

pletion to obtain more interpretable low-rank representations.

E. Recommender System

In this section, we apply DISTENC to perform recom-

mendation on large scale real-world datasets and present our

findings. We are mostly interested in illustrating the power

of our approach rather than systemically comparing with all

other state-of-the-art methods. Since SCOUT has a better

scalability than FLEXIFACT and TFAI cannot handle such

large-scale datasets, we only compare out proposed DISTENC

with other two baseline methods ALS and SCOUT. The

root-mean-square error (RMSE) is adopted as our evaluation

metric, which represents the sample standard deviation of the

differences between observed tensor T and predicted tensor

X as RMSE =
√‖Ω ∗ (T −X)‖2F /nnz(T). It has been

commonly used in the evaluation of recommender systems.

We randomly use 50% of the observation for training, and the

rest for testing. All results are reported by running 5 times

and computing the average performance.

Netflix. We conduct the recommendation on Netflix dataset

which contains a user-movie-time tensor and a movie-movie
similarity matrix generated based on the movie title. As shown

in Fig. 6a, we observe that the proposed DISTENC obtains

the best performance in the precision of recommendation an

average improvement of 14.9% over other baseline methods.

In addition, by introducing the auxiliary information, both

DISTENC and SCOUT outperform ALS. On the other hand,

Fig. 6b shows that the proposed DISTENC converges the

fastest to the best solution by taking advantage of ADMM

[15], [16]. SCOUT takes much longer time on the convergence

by employing the MAPREDUCE framework.

Twitter. Using DISTENC, we also perform the expert recom-

mendation on Twitter List dataset which consists of a creator-
expert-topic tensor as well as creator-creator and expert-
expert similarity matrices calculated based on whether they

are located in the same location (cities). As demonstrated in

Fig. 6a, DISTENC performs the best among all alternative

baseline methods with an average improvement of 21.4% in

Netflix Twitter List
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Fig. 6: Results on recommender system: (a) RMSE on Netflix

and Twitter List datasets; (b) Convergence rate for all methods

on the Netflix data.
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Fig. 7: Results on link prediction: (a) RMSE on the Facebook

dataset; (b) Convergence rate for all methods.

the precision. Concretely, DISTENC outperforms ALS with

an improvement of 32.6% in precision, indicating the the

superiority of a tensor completion model integrating auxiliary

information. With respect to the convergence, DISTENC has

similar performance as one on the Netflix dataset shown in

Fig. 6b. Due to the limited space, we omit its details.

F. Link Prediction

As one of the most applications for tensor completion, link

prediction aims to recover unobserved links between nodes

in a low-rank tensor (the matrix is a special case). Using

DISTENC, we perform link prediction on Facebook dataset

that includes a user-user-time tensor and a similarity matrix

user-user generated based on the similarities between their

wall posts. As a similar fashion in the previous section, we

randomly select 50% of observations for training, and the rest

for testing. We also adopt RMSE as the evaluation metric in

this experiment. To reduce statistical variability, experimental

results are averaged by running 5 times. Fig. 7 illustrates the

testing accuracy and the training convergence. As we can see,

both DISTENC and SCOUT have comparable performance

and are better than ALS in precision. Specifically, DISTENC

outperforms ALS with an average improvement of 27.4%;

SCOUT has a better performance than ALS with an average

improvement of 19.5%. In terms of convergence, DISTENC

converges faster to the best solution.

G. Discovery

Since tensor completion performs both imputation and fac-

torization meanwhile, we apply DISTENC on DBLP dataset

that contains a author-paper-venue tensor with a similarity ma-

trix author-author. We randomly select 50% of observations

for training the model. After that, we pick top-k highest valued
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elements from each factor after filtering too general elements.

We show 3 notable concepts we found in Table III. It can be

seen that all conferences within a concept are correlated and

all famous researchers in each concept are discovered.

TABLE III: Example of concept discovery results on DBLP.

Concept Authors Conferences

Database
Surajit Chaudhuri, Michael J. Carey, SIGMOD

David J. DeWitt, Rajeev Rastogi, VLDB
Dan Suciu, Ming-Syan Chen ICDE

Data Mining
Jiawei Han, Philip S. Yu, KDD

George Karypis, Christos Faloutsos, ICDM
Shusaku Tsumoto, Rakesh Agrawal PKDD

Info. Retrieval
W. Bruce Croft, Mark Sanderson, SIGIR

Iadh Ounis, ChengXiang Zhai, ECIR
Gerard Salton, Clement T. Yu WWW

V. RELATED WORK

In this section, we review related works on tensor com-

pletion, scalable tensor algorithms, and distributed computing

frameworks.

A. Tensor Completion

Tensor factorization models have been studied and applied

in many fields due to their strong power on multi-dimensional

data analysis. There are two widely used low-rank decom-

positions of tensors, the CANDECOMP/PARAFAC (CP) and

the Tucker decompositions [24]. The most common methods

used to factorize tensors include alternating least square (ALS)

[25], [26], [27], stochastic gradient descent (SGD) [10], [11]

and coordinate descent (CDD) [28], [9]. Tensor completion is

used to estimate missing values in tensors based on their low-

rank approximations, which has been extensively studied and

employed in applications such as recommendations [21], [1],

user group detection [13], and link prediction [29]. Most these

methods only focus on the sampled data when performing

tensor completion without considering auxiliary information

with which tensors usually come. These auxiliary information

help us have a better performance in tensor completion [30].

Though several researchers incorporate auxiliary information

into the matrix factorization problem [31], few studies explore

the tensor completion problem with auxiliary information.

Technically, it is challenging to embed auxiliary information

into a completion model, especially with many heterogeneous

contexts. Narita et al. [30] integrated auxiliary information into

tensor decomposition methods, resulting in better performance

compared with ordinary tensor decomposition methods. Never-

theless, they primarily focus on general tensor decomposition

rather than tensor completion. However, these models usually

face some efficiency challenges since [30] requires solving the

Sylvester equation with a high cost several times in each of

iterations, making them infeasible for large-scale applications.

B. Scalable Tensor Factorization

We witness considerable efforts on developing scalable

algorithms for tensor factorization, most of which focus on

solving the intermediate data explosion problem. Concretely,

pioneers Bader and Kolda [26] develop efficient algorithms for

sparse tensor decomposition by avoiding the materialization

of very large, unnecessary intermediate Khatri-Rao products.

Kolda and Sun [6] continuously work on the specific tensor

decomposition method Tucker for sparse data and solve the

intermediate explosion problem by calculating the tensor-

matrix multiplication one slice or fiber at a time. An alternative

approach, DBN, is introduced in [32] where the authors use

Relational Algebra to break down the tensor into smaller

tensors, using relational decomposition, and thus achieving

scalability. Kang et al. [7] first propose a scalable distributed

algorithm GigaTensor under the MAPREDUCE framework for

the specific tensor decomposition method PARAFAC by de-

coupling the Khatri-Rao product and calculate it distributively

column by column. Jeon et al. [33] improves on GigaTensor

and propose HaTen2 that is a general, unified framework for

both Tucker and CP tensor decomposition. There has been

other alternatives on solving the intermediate data explosion

problem of the pure tensor composition [34], [35], [36].

On the other hand, some researchers put their focus on

developing scalable, distributed algorithms for the tensor de-

composition with additional side information that is usually

represented in a matrix, e.g., a similarity matrix between

experts. Papalexakis et al. [11] propose an efficient scalable

framework to solve the coupled matrix-tensor factorization

problem by leveraging the biased sampling to split the orig-

inal large data into samples, running the common solver to

samples and merging the results based on the common parts

in each sample. Beutel et al. [10] propose FLEXIFACT, a

MAPREDUCE algorithm to decompose matrix, tensor, and

coupled matrix-tensor based on stochastic gradient descent.

Jeon et al. [23] propose SCouT for scalable coupled matrix-

tensor factorization. Shin et al. [9] propose two scalable tensor

factorization algorithms SALS and CDTF based on subset

alternating least square and coordinate descent, respectively.

Livas et al. [16] develop a constrained tensor factorization

framework based on ADMM. Smith et al. [22] optimize

and evaluate three distributed tensor factorization algorithms

based on ALS, SGD and CDD, respectively, by extending

SPLATT [8] that optimizes the memory usage. Despite the

extensive research efforts that have been devoted to tensor

factorization, as reviewed above, distributed tensor completion

using auxiliary information has yet received much attention,

especially on modern distributed computing frameworks such

as Spark. Therefore we believe our work fills an important gap

in tensor-based mining algorithms.

C. Distributed Computing Frameworks

MAPREDUCE [37] is a distributed computing model for

processing large-scale datasets that cannot be handled in

a single machine, running in a massively parallel manner.

MAPREDUCE has been the most popular distributed comput-

ing framework due to its advantages including automatic data

distribution, fault tolerance, replication, massive scalability,

and functional programming by which users only define two

functions map and reduce. HADOOP [38] is an open-source
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of MAPREDUCE. Due to its excellent scalability and ease of

use, it has been successfully applied in many data mining

applications [7], [39], [40]. However, HADOOP is inefficient to

execute iterative algorithms due to its intensive disk accesses

[41]. Apache Spark [42] is an in-memory MAPREDUCE,

providing a high-level interface for users to build applications

with respect to large-scale data computation. Spark allows

to store intermediate data in memory and performs efficient

memory-based operations without requiring data to be spilled

to disk (effectively reducing the number of disk Input/Output

operations). Therefore, Spark is capable of performing iterative

algorithms very efficiently. Due to these advantages, Spark has

been used in applications [35].

VI. CONCLUSION

In this paper, we propose DISTENC, a distributed algo-

rithm for tensor completion with the integration of auxiliary

information based on ADMM, which is capable of scaling

up to billion size tensors and achieving good performance

across many applications. By efficiently handling trace-based

regularization term, updating factor matrices with caching, and

optimizing the update of new tensor, DISTENC successfully

addresses the high computational cost, and minimizes the

generation and shuffling of the intermediate data. Through

extensive experiments, DISTENC shows up to 100x larger

scalability than existing methods, and converges much faster

than state-of-the-art methods. In addition, DISTENC obtains

an average improvement of 18.2% on a recommender system

scenario and 23.5% on link prediction.
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