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ABSTRACT

‘We address the challenge of personalized recommendation of high-
quality content producers in social media. While some candidates
are easily identifiable (say, by being “favorited” many times), there
is a long-tail of potential candidates for whom we have little ev-
idence. Through careful modeling of contextual factors like the
geo-spatial, topical, and social preferences of users, we propose a
tensor-based personalized expert recommendation framework that
integrates these factors for revealing latent connections between
homogeneous entities (e.g., users and users) and between hetero-
geneous entities (e.g., users and experts). Through extensive ex-
periments over geo-tagged Twitter data, we find that the proposed
framework can improve the quality of recommendation by over
30% in both precision and recall compared to the state-of-the-art.

1. INTRODUCTION

Recommender systems are a cornerstone of how we engage on-
line — by impacting the media we consume, the friends we connect
with, and the products we purchase. A typical assumption in many
recommender systems is to focus on specific items like movies,
songs, or books as the basis of recommendation. In a separate di-
rection, there are efforts to focus on high-quality content producers
rather than specific items [21, 22]. These content producers — like
creators of highly-rated Spotify playlists, Amazon’s top reviewers,
or media curators on platforms like Tumblr, Facebook, and Twitter
— can potentially serve as conduits to high-quality curated items.
Indeed, previous research has shown that in some cases item-based
recommenders can be improved by biasing the underlying models
toward the opinions of these “experts” [2].

While some high-quality content producers are easily identifi-
able (say, by being “favorited” or starred many times), there is a
long-tail of potential candidates for whom we have little evidence.
Hence, a natural question is whether we can identify these high-
quality content producers — whom we shall refer to as experts in
the rest of this paper — and recommend them to the right people.
Such personalized expert recommendation faces a number of key
challenges, though. First, many existing works have aimed at un-
covering expert users in online systems — e.g., [4, 7, 9, 28, 32] —
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Figure 1: Personalized expert recommendation with contextual
factors: augmenting the sparse tensor (left) with contextual fac-
tors (right) like the geo-spatial, topical, and social relationships
between homogeneous entities (e.g., users and users) and be-
tween heterogeneous entities (e.g., users and experts).

but typically without an emphasis on personalized recommenda-
tion. That is, these efforts have often attempted to explore general
topic experts with broad appeal, e.g., the best doctors in Seattle or
the top engineers in a certain field, rather than connecting users
with personal experts. Second, personalized expert recommenda-
tion faces extreme sparsity since few users provide feedback on the
quality of content producers. Third, there are typically complex re-
lationships between users, candidate experts, and topics of interest.

Hence, we aim in this paper to tackle these challenges via a per-
sonalized expert recommendation framework called TAPER - for
Tensor-based Approach for Personalized Expert Recommendation.
This proposed approach inherits the advantages of traditional rec-
ommender systems by making personalized recommendations based
on the history of actions by similar users. In this way, specific per-
sonal experts can be recommended to individuals, rather than re-
lying on globally-recognized (and less personalized) ones. While
matrix factorization approaches have shown success in mitigating
sparsity [15, 18], ultimately they are restricted to two-dimensional
data (e.g., a user-expert matrix). In contrast, user preferences for
experts may be impacted by many contextual factors including the
topic of interest, the location of the user (and possibly of the ex-
pert), as well as social connections among users and experts, among
many others. As illustrated in Figure 1, these user-expert-topic
preferences naturally suggest a tensor-based approach where these
multiple and varied relationships may augment the sparse tensor
(on the left) by considering the relationships (on the right) between
both homogeneous entities (e.g., users and users, experts and ex-
perts) and the relationships between heterogeneous entities (e.g.,
users and experts, topics and experts).

Through the TAPER framework, we explore questions like: What
kinds of contextual factors impact preferences for personalized ex-
perts? How can these contextual factors be integrated into a tensor-
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Figure 2: Overview of the proposed tensor-based personalized expert recommendation framework.

based personalized expert recommender? Do these factors result
in higher quality recommendations than state-of-the-art methods?
And are some contextual factors more important than others?

Related Work. Expert finding has been widely studied for many
years. For instance, Weng et al. [28] proposed a PageRank-based
approach to identify topic experts by applying both topical similar-
ity between users and social link structure. Ghosh et al. [9] pro-
posed the Cognos system to find topic experts by relying on Twit-
ter lists. Zhang et al. [32] identified top experts in a Java forum
by applying link analysis approaches such as PageRank and HITS.
Hu et al. [12] proposed a more personalized recommendation by
considering network semantic information, in addition to network
topological measures for expert recommendation. Of course, there
are many other efforts, including [10, 19, 25].

One promising approach for recommenders is to cast the prob-
lem as a matrix factorization problem, in which user preferences
may be projected into a lower dimensional embedding space [15,
17, 29, 31]. In recent years, tensor factorization models — that
are highly suitable for multiway data analysis as in our domain —
have been applied in applications like tag recommendation [24],
user group detection [16], link prediction [8], and anomaly detec-
tion [26]. There are two widely used low-rank decompositions
— CANDECOMP/PARAFAC (CP) and the Tucker decomposition
[14]. Karatzoglou et al. [13] studied multi-dimensional recommen-
dations by leveraging contextual information to build a User-Item-
Context tensor model. Hidasi and Tikk [11] developed an Alternat-
ing Least Squares (ALS) based tensor factorization approach for
context-aware recommendations. Bhargava et al. [5] applied a ten-
sor factorization-based approach to provide collaborative recom-
mendations for points of interest (POI) involving multi-dimensions
such as locations, activities and time. Similarly, Lu et al. [17] intro-
duced a matrix-factorization approach for personalized expert rec-
ommendation, but restricted to two-dimensional data (e.g., a user-
expert matrix) and only considering user’s geo-spatial preferences
on experts. In contrast, this work is the first to investigate tensor
factorization for personalized expert recommendation by integrat-
ing user’s preferences on experts from geo-topical-social contexts
as well as valuable relationships between users, experts and topics,
and to explore the impact of these contexts on such an approach.

2. PROBLEM STATEMENT

Let L = {ui,u2,...,un} be a set of users where N is the
total number of users, and E = {e1,ea,...,en} be a set of ex-
perts where M is the total number of experts and E € L. An
expert e; may have expertise in multiple topics expressed as T' =
{t1,t2,...,tx} where K is the total number of topics. A user
may personally prefer some experts rather than others based upon

the user’s personal interest in their expertise. For example, Andy
may prefer Bella in the topic of “Python programming”, but have
no opinion on Chris who may be a better Python developer. We
denote the personal preferences of users towards experts in topics
as a tensor X € RY*MXK where element X (i, 7, k) is binary,
representing whether a user u; prefers an expert e; in a topic ty.

We define the personalized expert recommendation problem as:
Given a set of users L with partially observed preferences denoted
as a tensor 7 on experts E over topics T', our goal is to recommend
the top-k relevant experts to a user u;.

Basic Recommendation by Tensor Factorization. As a natural
first step, we can tackle this problem with a basic recommendation
framework using tensor factorization. Let UV € RNV*E (2 ¢
RM*E and U®) € RE*E be latent factor matrices for users, ex-
perts, and topics, respectively, where R < min(N, M, K) is the
number of latent factors as the rank of a tensor. The basic tensor-
based expert recommendation model can be defined as:

minimize
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where X denotes the complete preferences of users towards ex-
perts across topics, T~ denotes the observed user’s preferences on
experts, |U™||% is a Tikhonov regularization term used to avoid
overfitting and provide a unique solution, o is a Hadamard product
operator and W is a non-negative weight tensor with the same size
as X with W(4, j, k) = 1 indicating that we observe the selection
of user u; on expert e; in a topic tx, ¥(4, j, k) = 0 otherwise. This
basic model estimates A that approximates the original (unknown)
X via learning optimal latent factor matrices {U™,n = 1,2, 3}.
For each user and topic of interest, this model can recommend a
ranked list of personalized experts.

Research Challenges. While this basic tensor factorization frame-
work provides a first step toward personalized expert recommenda-
tion, it leaves open many critical questions:

o First, since the user-expert-topic tensor is necessarily sparse (mean-
ing that even with factorization the underlying latent factors may
be of poor quality), can we augment this basic approach with
additional contextual preferences for experts by considering the
relationships among both homogeneous entities (e.g., users and
users, experts and experts) and heterogeneous entities (e.g., users
and experts, topics and experts)?

e How can we integrate these contextual preferences into a tensor-
based personalized expert recommendation framework?



Table 1: Dataset Summary

Data Type Total Number of Records
Twitter Lists 11,322

Users (list creators) 10,559

Experts (list members) 8,417

List Relationships 117,187

Sparsity 0.13%

e How effective is the proposed tensor-based framework in com-
parison with other state-of-the-art baselines? And which contex-
tual preferences have the most significant impact on the quality
of personalized expert recommendations?

3. THE TAPER FRAMEWORK

We turn in this section toward constructing the contextual tensor
factorization framework, as illustrated in Figure 2.

3.1 Evidence of Geo-Topical-Social Impact

We begin our investigation by examining the impact of three fac-
tors — geo-spatial, topical, and social context — on the observed
preferences towards experts. Our goals in this section are to assess
whether and to what degree these factors do affect how users select
experts. Informed by these observations, we turn in the following
to integrate them into the tensor-based factorization framework.

Geo-Tagged Twitter Lists. We adopt geo-tagged Twitter lists as
evidence of the revealed preferences of users for other users. A
Twitter list allows a user u; to label another user u; with an anno-
tation (e.g., news, food, technology). In isolation these lists support
the curation of an individual user’s information stream, but in the
aggregate the list labels can encode what a target user is “known-
for”. Many efforts have demonstrated that these labels can provide
a crowdsourced expertise profile of the target user [6, 7, 9, 23].
Concretely, we use a geo-tagged Twitter list dataset containing over
12 million crowd-generated lists and 14 million geo-tagged list re-
lationships between list creators and members. We filter the lists
to only keep US-based users in topics: news, music, technology,
celebrities, sports, business, politics, food, fashion, art, science, ed-
ucation, marketing, movie, photography, and health. The dataset
is summarized in Table 1. Both list creators and list members are
associated with GPS coordinates.! We shall refer to list creators as
users and members in the lists as experts.

Geo-Spatial Context. We begin by investigating the impact of dis-
tance on the experts selected by users. Figure 3(a) shows the cu-
mulative distribution of the average distance between a user and
the experts they have labeled, aggregated for eight different cities.
In general, we see that users from different cities have different
levels of locality. For example, users in San Francisco are more
likely to select experts from a wider geographical scope than users
based in Chicago. Specifically, almost 40% of users in Chicago
have an average distance to their experts within 100 miles. How-
ever, only 14% of users in SF have an average distance within 100
miles. In a similar fashion, Figure 3(b) shows the cumulative dis-
tribution of the average distance between users and the experts they
have labeled for seven different topics. For a fixed distance (e.g.,
100 miles), the topic food has the largest probability. This implies
that users interested in food are closer to their chosen experts while
users interested in a broad topic like celebrity instead select experts
with a wider geographical scope. Hence, we can conclude that the

'For those without GPS coordinates, their locations can be esti-
mated with their tweets by an approach previously used for check-
ins and geo-tagged images [20]. In order to simplify our study, we
only focus on users with GPS coordinates.
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Figure 3: The impact of distance on expert preferences by lo-
cation (a) and by topic (b).

geo-spatial context of users, experts, and topics does indeed affect
the preference for experts, and that these factors are impacted to
varying degrees based on topic and on the particular locations of
both users and experts.

Topical Context. As we observed in Figure 3(b), different topics
have different levels of locality. Here, we further investigate the
impact of topical context on personalized preferences for experts.
We begin by viewing each user as a vector of the experts they have
selected, in which the element is 1 when the expert is listed by the
user, otherwise 0. We then measure the impact of the number of
shared topics between users (e.g., if two users have used three of
the same topics in their lists, then we consider the number of shared
topics between them to be three) on how similar are the users with
respect to the experts they have selected. As we can see in Figure
4(a), users are more likely to select similar experts when they share
more common topics. In other words, common topical interest im-
pacts the choice of experts. In a similar fashion, we can view each
expert as a vector of all users, in which the element is 1 when the
expert is listed by the user, otherwise 0. We then measure the im-
pact of the number of shared topics between experts (e.g., if two
experts have been labeled by four of the same topics, then we con-
sider the number of shared topics between them to be four) on how
similar are the experts with respect to the users who have selected
them. As we can see in Figure 4(b), experts who share more topics
are more likely to be preferred by similar users. We conclude that
topical context has a strong impact on user preferences for experts.
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and the similarity between users (a) and experts (b).

Social Context. Finally, the social connections among users and
experts can be a strong indicator of shared topical interests, as well
as an implicit signal that two users are more likely to be near each
other. Researchers have found that social ties increase the likeli-
hood of two users being near each other [3]. Figure 5 shows the
cumulative distributions of the similarity of users and experts, re-
spectively. Using the same approach introduced above, each user
is represented as a vector of all experts; each expert is represented
as a vector of all users. The cosine similarity is employed to calcu-
late the similarity of users and experts. We can observe that users
who follow the other generally have a larger similarity on selecting
experts. For experts, we can see a similar pattern that those who
follow the other are more likely to be selected by the same users.
Through these observations, we can draw the conclusion that social
context strongly affects a user’s preferences for experts.
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Figure 5: The impact of social connections on selecting experts
for users (a) and being selected for experts (b)

3.2 Integrating Contextual Preferences

Given this evidence of the significance of geo-topical-social con-
text with respect to preferences on experts, a natural approach is to
integrate them into the basic tensor-based expert recommendation
framework as regularization terms. Intuitively, if two entities are
similar, e.g., two users have similar preferences in recognizing ex-
perts across topics, the latent representations of these two entities
should be similar. Hence, we can regulate latent representations of
two similar entities to make them as close as possible. We denote .S
as a symmetric similarity matrix encoding contextual information
between homogeneous entities (e.g., users and users, experts and
experts), and then formally minimize the following loss function:
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where Ui(m is the ith row of the factor matrix U™ for the nth-

mode of a tensor X, n € {1,2,3}, tr(-) is denoted as the matrix
trace, D is a diagonal matrix with the element D(,¢) =
and £ = D — S is the graph Laplacian of the similarity matrix
S. For the contextual information between heterogeneous entities
(e.g., users and experts, topics and experts), we denote A, B,C
as matrices encoding the contextual information between users and
experts, users and topics and experts and topics, respectively. We
then regulate them by directly adding regularization terms ||A —
vOU@TZ, B -UDU®" |2, and ||C — UPUD" |2 into
the basic framework. In order to simplify the parameter tuning, A,
B and C are normalized to the same scale.

After integrating all regularization terms into Eq. (1), TAPER
aims to solve the following optimization problern 2
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where ~y controls the weight of the contextual information between
homogeneous entities (e.g., users and users, experts and experts),
and S controls the weight of the contextual information between

% An open question is how can we efficiently estimate the solution to
this optimization problem since there is no closed form solution? In
the supplementary material [1], we show how to solve this problem
based on ADMM (Alternating Direction Method of Multipliers).

5, S(i.9).

heterogeneous entities (e.g., users and experts, topics and experts).
But how specifically should we model these contextual preferences
for integration into the tensor-based framework? In the following,
we consider geo-spatial, topical, and social preferences in turn.

3.2.1 Modeling Geo-Spatial Preferences

We first aim to model geo-spatial context for integration into the
tensor-based factorization approach.

Relationships between Homogeneous Entities: Supported by
the data-driven observations of the previous section and follow-
ing Tobler’s First Law of Geography [27] — which asserts that near
things are more related than distant things — we propose to model
user preferences as a function of distance. Concretely, we consider
three graphs over homogeneous entities G&*, G& and G& for users,
experts, and topics, respectively. For each graph, we treat “nearby”
nodes as more alike if they are geographically closer. In this way,
preferences on experts may be propagated to these nearby nodes in
the tensor-based factorization approach.

To begin, consider the user-user graph G¢&", where nodes are
users and edges capture the affinity between users. We can define
the adjacency matrix Hg € RV*¥ as:

Dist(ui, u;)? )
202 ’

where « is a decay constant (which we experimentally set to 20

miles) and Dzist is to measure the geographic distance between

two users by using the Haversine formula. The affinity Hg (us, u;)

approaches one as two users are nearer each other.

Similarly, the expert-expert graph G& can be constructed, where
nodes are experts and here edges represent the spatial similarity
of pairs of experts. Rather than purely measuring the geographic
nearness of two experts (which does not take into account the rec-
ognizability of experts in various locations), we consider how the
users who have labeled those experts are distributed. The intuition
is that experts who are preferred have higher popularity in the lo-
cation of a user. Let {(u;) € L be a location of user u; and ¢le(l.“")
as the spatial popularity be the number of users selecting expert
e; in the location of user u; across topics. The adjacency matrix
Ve € RM*M can be defined as:

(- Dist(l(e;),1(e;))?

202
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where the first part in the exponential is to calculate the deviation

of geo-spatial preferences between experts (so that experts who are

nearby are considered “closer”), the second part is to consider the

difference of their spatial popularities over all locations of users (to

capture the nearness in terms of who is interested in them).?

The third graph — the topic-topic graph G& — has topics as nodes
and edges that represent the geo-spatial correlation between topics.
Intuitively, selecting experts could be impacted by the choice of
topic. The spatial preference in the topic food is much more local
than the topic technology. We aim to capture the similarity of spa-
tial preference between topics. Let dt be the average distance be-
tween user u; and a set of experts B he/she recognizes in a topic
t;. The empirical distribution of spat1al preference for a topic ¢; can
be obtained from calculations {d};,,u; € U}, which is denoted as
T:,. We then apply the Kullback-Leibler divergence Dxr.(||-) to
measure the closeness of empirical distributions between topics.
Hence, we can define the adjacency matrix Wg € RE XK ag:

Wa(ti,t;) =1 — Drr(Ye, || Te;),

3In this case, we discretize the continental U.S. surface with a 1°
by 1° geodesic grid, so we can map the location of a user (GPS
coordinate) to a discrete region.

Vs (ei,e;) = exp




where W will approach to 1 if two topics have similar empirical
distributions of spatial preferences.

Relationships between Heterogeneous Entities: In addition to
the geo-spatial correlations between users, experts, and topics them-
selves, we can additionally consider the relationships across het-
erogeneous entities. Specifically, we consider the relationships be-
tween users and experts, as well as between users and topics.

First, we propose to leverage the geo-spatial preferences between
users and experts so that users are more likely to select experts who
have a high popularity in the location of this user. The intuition is
that the local popularity of an expert can be considered as a prior
on what a user would prefer. For example, given a new user in
Seattle with no expert preferences, we can default to a locally pop-
ular expert like Jeff Bezos. Concretely, we propose to improve the
learning of latent matrices of users and experts as:

T
Fag = HAG - U<1)U(2> H%W

where A is the adjacency matrix in which an element indicates
the spatial popularity of an expert in the location of a user. By min-
imizing F a,, the recommender will prefer locally popular experts.

Similarly, the geo-spatial preferences between users and topics
can also be leveraged so that a user is more likely to select experts
on topics that have high popularity in the location of this user. For-
mally, we have the latent matrices of users and topics as:

T
Fre = |Be —UMU |3,

where Bg is the adjacency matrix in which an element indicates
the spatial popularity of a topic in the location of a user. Again, by
minimizing FB, the recommender will prefer experts on topics
that are more popular locally.

3.2.2 Modeling Topical Preferences

Beyond geo-spatial preferences, we next turn to models of top-
ical preference. As we have observed in Section 3.1, the topical
context can influence a user’s preference for experts. Intuitively,
users who have similar interests on topics tend to have similar pref-
erences on experts.

Relationships between Homogeneous Entities: We begin by con-
sidering two graphs — one for the user-user graph G1“ and the other
for the expert-expert graph G in terms of topical preference.

In this case, the user-user graph G7* has nodes that represent
users but now edges represent the similarity between users in terms
of topical preferences (rather than in terms of distance as in the
geo-spatial case in the previous section). Inspired by the work [5],
we define the adjacency matrix Hr as:

|Tu; N T | ¢
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where T3, is the set of topics a user u; is interested in by label-

ing the lists with keywords related to these topics, of” denotes the

number of experts a user u; labeled in a topic ¢, and P; denotes the

probability of being interested in a topic ¢, which can be formally

defined as P, = (32, .y 00)/ (X ser Yower 04)- The first part in

H is used to measure how common two users share topics; the

second part is applied to quantitively evaluate the similarity of their

interests across all topics.

For the second graph — the expert-expert graph G7° — we have

nodes as experts and edges representing the similarity of experts
towards their expertise. The adjacency matrix V7 is defined as:
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where T, is the set of topics in which an expert e; have expertise
labeled by users, and (5; is denoted as the number of times an ex-
pert e; labeled by users in a topic t. The first part in Vr is used
to measure how common two experts have the same expertise; the
second part is applied to quantitively evaluate the similarity of their
expertise across all topics.

Relationships between Heterogeneous Entities: In addition to
the topical correlations between users and experts, themselves, we
additionally consider the relationships across users and topics, as
well as across experts and topics. Since each Twitter list is labeled
with certain labels, the topic preferences of a user can be revealed
by aggregating all of the labels he/she applies in the lists. As a re-
sult, we propose to leverage a user’s topical preferences to improve
the learning of latent matrices of users and topics as follows:
For = |Br —UVU |3,

where Br is the affinity matrix where an element indicates whether
a user is interested in certain topic by applying keywords related to
this topic in her lists. Our goal is to minimize F g, so that a user
is more likely to select experts who have expertise on topics of
interest to this user.

Meanwhile, an expert’s expertise can be also found by aggregat-
ing all of the labels in all the lists this expert appears. Therefore,
we leverage the expert’s topic preferences to improve the learning
of latent matrices of experts and topics as illustrated below:

T
For =||Cr —~UPUIE,
where C'r is the affinity matrix in which the element indicates the
number of times that an expert has been recognized by users with
respect to certain topics. Through minimizing Fc,, an expert who

has higher recognition in a topic is more likely to be selected by
users who are interested in this topic.

3.2.3 Modeling Social Preferences

Finally, we consider how to model the social preferences of users
with respect to personalized expert preferences. Concretely, we
consider the social connections among users and experts:

Relationships between Homogeneous Entities: Similar to our
previous efforts, we construct a graph G§* in which nodes represent
users and edges represent the pairwise similarity of users in terms
of their social preferences, and a graph G<° in which nodes repre-
sent experts and edges represent the pairwise similarity of experts
with respect to their social connections. By applying the Jaccard
coefficient, the adjacency matrix Hs for users is defined as:

|FuNFy|
[Fu, U, |
where F,, represents the set of users u; follows. As a similar fash-
ion, we define the adjacency matrix Vs for experts as:
_IF.NE,|
|Fe; UFe;|”
where F.; represents the set of users e; follows. The intuition be-
hind Hs and V5 is that users/experts who share more friends are

more likely have similar behaviors on selecting experts/being se-
lected by users.

Hs(uivuj)

Vs(e’ia 6j)

Relationships between Heterogeneous Entities: In order to take
advantage of the social connections between different entities (e.g.,
user-expert) into the expert recommendation, we leverage the fol-
lowing social relationships from a user to an expert to improve the
learning of latent matrices of users and experts, as shown below:

T
Fag = ||As —UDUP |3, 3)
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Figure 6: Precision@k: Comparing TAPER versus Alter-
native Methods.

where Ag is a matrix where the element indicates if a user follows
an expert. In this way, the recommender can prefer experts who are
followed by this user through minimizing /4. Note that this is a
very strong signal, and unlikely to be present for most users.

4. EXPERIMENTS

In this section, we investigate (i) the effectiveness of TAPER ver-
sus alternatives; (ii) the impact of specific contextual factors (e.g.,
geo-spatial, topical, and social); (iii) how incorporating evidence of
experts for whom a user is not interested affects recommendation
quality; and (iv) the impact of the amount of training data.

4.1 Experimental Setup

To evaluate the performance of the proposed framework, we ran-
domly split experts for a user into 50% for training and 50% for
testing. For latent factor dimension, we empirically choose 20 for
all methods after testing various settings {5, 10, 20, 30, 40, 50,
100} for a tradeoff between accuracy and the computational cost.
For the number of experts that a user does not pick up in the Twitter
lists, we empirically select 350 through all experiments we con-
ducted. The effects of this number will be further discussed in
Section 4.3. Three positive parameters are involved in the experi-
ments: A, v and 3 in Eq. (2). A is the regularization parameter used
to avoid overfitting. «y is to control the contribution of contextual
information between homogeneous entities. 3 is to control the con-
tribution of contextual information between heterogeneous entities.
As acommon way, we employ the cross-validation to tune these pa-
rameters. Concretely, we empirically set A = 0.1, ¥ = 0.1 and
B = 0.01 for general experiments, respectively. Their effects on
the performance of the proposed framework is evaluated in [1].

We adopt Precision@k and Recall @k as our evaluation metrics.
Precision@k represents the percentage of correctly recommended
experts out of the top-k recommendations; Recall@k represents
the percentage of experts emerging in the top-k recommendations.
Both of them have been widely used to evaluate the quality of rec-
ommendation. In our experiments, we test for k at 5, 10, and 15.

4.2 Baselines
We consider seven baselines in addition to the proposed TAPER
approach. The first three baseline are classical recommender sys-
tem approaches:
e Most Popular (MP): This baseline recommends the most listed
experts in a topic to all users.
e User-based Collaborative Filtering (UCF): We adopt a user-
based recommendation framework [33] to recommend personal

*We find that parameter settings of v < 1 and 8 < 0.1 lead to
fairly stable precision and recall, indicating the stability of TAPER
to these regularization parameters.
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Figure 7: Recall@k: Comparing TAPER versus Alternative
Methods.

experts, which discovers user’s implicit preferences towards ex-
perts by aggregating similar users.

e Matrix Factorization (MF ): This baseline computes a user’s pref-
erences on experts for each topic by a pair-wise latent matrix
factorization model trained by stochastic gradient descent [17].

The next four baselines are simplified variants of the proposed
TAPER approach, all building on tensor factorization:

o Tensor Factorization (TF): In analogy to matrix factorization,
tensor factorization computes each user’s preferences for experts
by considering users, experts, and topics simultaneously. This
basic tensor factorization model corresponds to Eq. (1).

e Geo-based TAPER (G-TAPER): This model is a variant of the
basic tensor factorization model, but only integrates geo-spatial
preferences: that is, Hg, Vo, W, A and Bg in Eq. (2).

o Topical-based TAPER (T-TAPER): This model only integrates
topical preferences: that is, Hr, Vr, Br and Cr in Eq. (2).

e Social-based TAPER (S-TAPER): This variant only considers
social preferences: that is, Hg, Vs and Ags in Eq. (2).

Finally, we consider the proposed TAPER approach:

o Contextual Personalized Expert Recommendation (TAPER): This
is the proposed framework, incorporating all three types of con-
textual information among users, experts, and topics in Eq. (2).
Specifically, welet H = Hg « Hr « Hg, V = Vg x V% Vg,
W =Wg, A=Ag+ As, B=Bg+ Brand C =Cr.

4.3 Results

We begin by investigating the quality of TAPER versus each of
the baselines. We adopt 10-fold cross validation and report the av-
erage precision and recall over 10 test runs in Figure 6 and Figure 7.
Overall, the proposed personal expert recommendation framework
TAPER performs the best among all alternative baseline methods
in both precision and recall. From Figures 6 and 7, we can ob-
serve that TAPER consistently outperforms the baseline methods
MP, UCF, MF, and TF with an average improvement of 42.2% over
the best of these four methods in precision and 33.5% in recall.
Concretely, TAPER performs better than TF with an average im-
provement of 14.1% in precision and 17.8% in recall, indicating
the superiority of a tensor factorization model integrating rich con-
textual preferences. Moreover, TAPER has a better performance
than MF with an average improvement of 26.6% in precision and
25.8% in recall, which is significantly higher than a related matrix
factorization approach in [17].

We observe that MP and UCF perform the worst among all ap-
proaches. We attribute the poor performance of the UCF approach
to sparseness — the low density of data can lead to poor recom-
mendations, whereas both MF and TF can leverage the low-rank
approximation of user preferences towards experts. Overall, we



Table 2: What Impact Does Contextual Preference Have on Each Approach? Here we compare contextual preferences of heteroge-

neous entities versus homogeneous entities.

Metric Scenario | G-TAPER-Het G-TAPER-Hom | T-TAPER-Het T-TAPER-Hom | S-TAPER-Het S-TAPER-Hom | TAPER-Het TAPER-Hom
Top-5 0.271 0.282 0.262 0.274 0.289 0.278 0.296 0.306
Precision | Top-10 0.234 0.242 0.227 0.232 0.248 0.241 0.254 0.260
Top-15 0.204 0.208 0.192 0.199 0.214 0.201 0.219 0.229
Top-5 0.183 0.182 0.177 0.178 0.187 0.180 0.199 0.201
Recall Top-10 0.286 0.297 0.289 0.304 0.310 0.304 0.313 0.329
Top-15 0.391 0.388 0.386 0.381 0.402 0.398 0.416 0411
0.6 — ———
observe that the best method achieves a precision of around 0.3 and —6— Recall@15
a recall of around 0.4 As Ye et al. [30] have observed, the effec- 0.5 | —#— Precision@15 A
tiveness of recommenders with sparse datasets is usually low.
We also observe that adding additional contextual factors im- 0.4 A)
proves the basic tensor factorization (TF) approach. Concretely,
G-TAPER gives an average improvement of 8.1% in precision and 03 ]
7.3% in recall over TF. This indicates that the geo-spatial prefer-
ences among users, experts, and topics can help identify similar 02
users and distinguish popular experts according to their spatial pop-
ularity. T-TAPER performs slightly better than TF with an average 04 [ S N S T SR N S
50 250 450 650 850 2000

improvement of 5.2% in precision and 4.9% in recall, implying that
the topical preferences among users and experts can help improve
the performance of personalized expert recommendation via tensor
factorization. Furthermore, S-TAPER gives an average improve-
ment of 13.2% in precision and 10.6% in recall. This indicates that
the social ties of users and experts can help find users with simi-
lar behaviors on selecting experts, which provide more significant
contributions to the personal expert recommendation than the geo-
spatial and topical. Recall that social ties implicitly capture latent
geo-spatial and topical preferences.

The Impact of Contextual Preferences. We have seen that geo-
spatial, topical, and social preferences can be integrated into ten-
sor factorization for improved personalized expert recommenda-
tion. In this section, we aim to dig deeper into the impact of geo-
spatial, topical, and social signals on the quality of personalized
recommendation. What impact do heterogeneous and homoge-
neous contextual preferences have? Are these impacts equal across
approaches? For this experiment, we add the suffixes Het and Hom
to indicate which variant of the proposed framework is at study. For
instance, G-TAPER-Hom represents the model G-TAPER by only
leveraging the geo-spatial preferences between homogeneous enti-
ties including H¢, Vi, and We. Similarly, we consider variations
of T-TAPER, S-TAPER, as well as the full TAPER.

As it can be seen in Table 2, TAPER-Hom outperforms TAPER-
Het with an average improvement of 3.4% in precision and 1.6%
in recall, indicating that in general, the contextual preferences be-
tween homogeneous entities plays a more important role than be-
tween heterogeneous entities since such information can help iden-
tify similar users and further improve the quality of the recommen-
dation. G-TAPER-Hom has a better performance than G-TAPER-
Het with an average improvement of 3.0% in precision and 1.6%
in recall. T-TAPER-Hom gives an average improvement of 3.5%
in precision and 1.9% in recall. These results indicate that the geo-
spatial and topical preferences between homogeneous entities con-
tribute more to the proposed framework. However, it is surprising
that S-TAPER-Het performs better than S-TAPER-Hom with an av-
erage improvement of 4.3% over S-TAPER-Hom in precision and
2.4% in recall. This implies that the following relationships be-
tween users and experts are a strong signal, and confirms that if a
user is already following this expert, it is very likely that this user
will include this expert on the list [17]. In addition, we also observe
that the social preferences are more significant in contributing to the
proposed framework than other factors.

Number of Negative Experts

Figure 8: Effect of Number of Negative Experts.

The Impact of Negative Experts. We next turn to the impact of
“negative experts”, that is, to incorporate evidence of experts for
whom a user is not interested. We seek to understand if these neg-
ative experts can be used as evidence in addition to the positive
relationships investigated so far (e.g., by exploiting the geo-spatial
preferences of users for experts). For example, knowing that a user
is interested in a California Politics expert, but not interested in
an expert on US National Politics may convey strong information
about the preferences for that user on topics of regional (but not
necessarily national) issues. To test the impact of these negative
experts, we run the following experiment: first, we take the task
of recommending the top-15 experts to users, and then we vary the
number of negative experts. We vary the number of negative ex-
perts from 50 to 3,000 for each user by randomly selecting experts
whom this user do not put in the Twitter list. Figure 8 demonstrates
the impact of an increasing number of negative experts on the pre-
cision and recall of personalized expert recommendation. First, we
observe that both precision and recall increase as the number of
negative experts increases. This indicates that this signal of not
being interested can provide some additional information beyond
the positive relationships exploited so far. Second, we observe that
the precision and recall curves flatten once the number of negative
experts is larger than 350. Since there are nearly 9,000 experts in
the dataset, the probability of false negative samples is small when
only selecting a tiny part of them. However, this probability will
increase as the number of negative experts grows, further affecting
the quality of recommendations.
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Figure 9: Varying the Amount of Training Data



Varying the Amount of Training Data. For the experiments so
far, we have relied on cross-validation over a random split of ex-
perts into a training half and a testing half. Here, we explore the
impact of varying the amount of training data on the task of person-
alized expert recommendation. Does the proposed approach still
perform better than alternatives even with low amounts of training
data? Do precision and recall plateau at some point? We vary the
fraction of training data from 10% to 90% and evaluate TAPER ver-
sus a baseline tensor factorization method (TF) and a non-negative
matrix factorization (MF) method on the task of personalized rec-
ommendation of the top-10 experts to each user. As we can see
in Figure 9, the proposed framework TAPER consistently outper-
forms both MF and TF in precision and recall, across all fractions
of training data. We also observe that the precision curves for all
methods plateaus around 30%, indicating that good results may be
achieved with even less training data. Naturally, the recall of all
methods consistently increases as the training data increases, since
recall is more sensitive to the number of testing samples.

5. CONCLUSION

We have studied the problem of personalized expert recommen-
dation through a tensor-based exploration of geo-spatial, topical,
and social context across users, experts and topics. Through a Twit-
ter dataset, we have seen that the proposed framework can improve
the quality of the recommendation by over 30% in both precision
and recall compared to state-of-the-art baselines. In our continuing
work we are interested to integrate additional contextual signals
(e.g., are temporal factors important?) and to explore alternative
settings (e.g., LinkedIn and Amazon). One promising direction
is to evaluate the quality of downstream applications that can be
built over these personalized expert models; for example, what im-
pact does integrating these expertise signals into item-based recom-
menders and under what scenarios do they work well?
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