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ABSTRACT
Modeling, understanding, and predicting the spatio-temporal dy-
namics of online memes are important tasks, with ramifications on
location-based services, social media search, targeted advertising
and content delivery networks. However, the raw data revealing
these dynamics are often incomplete and error-prone; for example,
API limitations and data sampling policies can lead to an incom-
plete (and often biased) perspective on these dynamics. Hence,
in this paper, we investigate new methods for uncovering the full
(underlying) distribution through a novel spatio-temporal dynamics
recovery framework which models the latent relationships among
locations, memes, and times. By integrating these hidden relation-
ships into a tensor-based recovery framework – called AirCP – we
find that high-quality models of meme spread can be built with ac-
cess to only a fraction of the full data. Experimental results on
both synthetic and real-world Twitter hashtag data demonstrate the
promising performance of the proposed framework: an average im-
provement of over 27% in recovering the spatio-temporal dynamics
of hashtags versus five state-of-the-art alternatives.

1. INTRODUCTION
With the rise of mobile social media services, we are witnessing

more and more GPS-enabled sharing of videos, images, blogs, and
tweets that provide valuable information regarding “who”, “where”,
“when” and “what”. For instance, many mobile image sharing ser-
vices such as Instagram allow users to attach their latitude-longitude
coordinates to shared photographs; location sharing services such
as Foursquare and Glimpse enable billions of “check-ins”; and Twit-
ter users generate millions of geo-tagged tweets per day. In turn,
these fine-grained spatio-temporal logs of user activities promise
new research opportunities to uncover models of user behavior, mo-
bility, and information sharing. Already, there have been efforts to
improve location-based recommendations, targeted advertising, so-
cial media search, and event detection [5, 6, 15, 22, 29].

However, the raw data revealing these dynamics are often re-
stricted to proprietary data warehouses (e.g., requiring privileged
access to Instagram’s backend photo serving services), and so re-
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searchers and practitioners typically must rely on sampling-based
methods to build spatio-temporal models of user behavior. Of course,
this sampling faces its own challenges – including API limitations
and data sampling policies that can lead to an incomplete (and of-
ten biased) perspective on the underlying dynamics. For instance,
Morstatter et al. [24] found significant differences in the quality
and composition of sampled Twitter data by comparing different
sampling policies over the streaming API and Twitter’s Firehose.
Moreover, changes to data access policies can lead to additional
challenges – as demonstrated by Twitter’s closing of their Firehose
API in April 2015. Additionally, even a robust data sampling ap-
proach can still face errors due to missing data and errors in the
data collection process. This missing data raises serious concerns.
For example, Kossinets [18] found that missing data in a social
network can significantly impact the estimation of structural prop-
erties of the network. Similarly, Sadikov et al. [28] pointed out that
incomplete data may lead to critically different properties of infor-
mation cascades in a social network. As a result, models based on
mobile social media traces may be of limited usefulness and gener-
alizability in the presence of incomplete data traces.

Hence, in this paper we explore new scalable methods for recov-
ering the spatio-temporal dynamics of online memes – like shared
images, hyperlinks, videos, or hashtags – in the presence of incom-
plete information. Concretely, we propose a novel tensor-based
factorization approach to recover the spatio-temporal dynamics of
memes. The core insight of the proposed method is to carefully
take into account the latent relationships among locations, memes,
and times; these relationships can then be embedded into a tensor
completion framework for uncovering the approximate complete
data based only on partial observations. We explore how to model
and integrate this auxiliary information – here, in the form of rela-
tionships among locations, memes, and times – and show how the
underlying tensor completion can be efficiently solved compared to
many existing methods.

Through this proposed spatio-temporal dynamics framework –
called AirCP that stands for Auxiliary Information Regularized
CANDECOMP/PARAFAC completion. In Table 1, we provide an
overview of the state of the art. In short, AirCP reigns, combining
capability of leveraging heterogenous information as well as time
efficiency, which is more feasible towards “big data”. We explore
research questions like: Based on an inherently limited sample, can
we recover the underlying distribution of memes at a particular lo-
cation? And at a particular time? What impact does the amount of
sampled data have on the quality of this recovery? For example, can
we build a high-quality model of meme spread with access to only
20% of actual data? Towards tackling these and related questions,
the main contributions of this paper are as follows:



Table 1: Comparison between AirCP and the state-of-the-art.
AirCP TFAI[25] TNCP[21] LRCO[32]

Model
Tensor X X X X

Coupled Tensor-Matrix X X
Obj. Function

Tensor Completion X X X
CP X X X

Tucker X
Auxiliary Info.

Heterogeneous Info. X X
Regularization

Laplacian X X
Tikhonov X

Trace Norm X
Opt. Method

ADMM X X X
Alternating Least Square X

• First, we formally define the problem of recovering the spatio-
temporal dynamics of online memes by leveraging the latent re-
lationships among memes, locations, and times, and develop ap-
proaches for modeling these latent relationships.
• Second, we propose a novel framework for recovering spatio-

temporal dynamics based on the CP tensor completion model
with regularized trace of the auxiliary information from memes,
locations, and times, as well as Tikhonov regularization.
• Third, we present an efficient algorithm based on the alternative

direction method of multipliers (ADMM) to solve the proposed
problem using less computation time than existing methods.
• Finally, we empirically evaluate the proposed framework on both

synthetic and real-world Twitter hashtag datasets. We find that
the proposed method achieves an average over 27% improve-
ment in recovering missing hashtags versus state-of-the-art al-
ternatives, while achieving significantly greater efficiency.

2. RELATED WORK
Spatio-Temporal Dynamics of Online Memes. The increasingly
mobile aspects of social media services like Instagram, Facebook,
and Twitter have led to a number of studies on geo-spatial charac-
teristics of users and information sharing. For example, researchers
have built models of geo-spatial properties to infer geographic in-
formation from tweets, such as spatial modeling to geolocate ob-
jects [6] and predicting user locations [5]. Other researchers have
analyzed the geo-spatial properties of online memes on Facebook
[1] and on YouTube based on propagation patterns [3]. On the
other hand, much effort has focused on the temporal properties of
online memes. Yang et al. [33] studied temporal patterns of online
content including Twitter hashtags and online phrases. Matsubara
et al. [23] explored temporal patterns of online information diffu-
sion. Other researchers have focused on both spatial and temporal
properties of online memes, like [15].

Estimating Missing Spatio-Temporal Data. Toward recovering
missing spatio-temporal data, there have been many proposed meth-
ods adopting techniques like multivariate interpolation [30], spec-
trum analysis [17], and matrix factorization [4, 13]. These meth-
ods have shown good success, but typically assume a simple inter-
dependence among variables of interest (e.g., memes), space, and
time, resulting in a challenge to handling correlations (and com-
plex inter-dependencies) among these different factors. In contrast,
we investigate in this paper a tensor-based approach that integrates
latent relationships among memes, locations, and times.

Compared to matrix factorization methods – which focus on two-
way data, not multi-way data sets – tensors, as a generalization of

matrices, can naturally model higher-order relationships among en-
tities (i.e. more than two dimensions). In recent years, tensor fac-
torization models have been studied and applied in several fields
since tensors are well-suited for multi-way data analysis. There are
two widely used low-rank decompositions of tensors, the CANDE-
COMP/PARAFAC (CP) and the Tucker decompositions [16]. Ten-
sor completion is used to estimate missing values in tensors based
on their low-rank approximations, which has been extensively stud-
ied and employed in applications such as recommendations [11,
27], user group detection [21], and link prediction [7]. However,
most of these approaches focus on solving the tensor completion
problem by utilizing the sampled data without considering any aux-
iliary information. In these cases, the recovery accuracy tends to be
worse when only observing limited entries [25].

Though several researchers incorporate auxiliary (external) in-
formation into the matrix factorization problem [9, 12], few studies
explore the tensor completion problem with auxiliary information.
Technically, it is challenging to embed auxiliary information into a
factorization model, especially with many heterogeneous contexts.
Bahadori et al. [2] proposed a unified low rank tensor learning
framework on spatio-temporal data, under which either spatial or
temporal information can be modeled, respectively. Yet, how to
leverage both spatial and temporal information simultaneously was
not investigated in their study. Narita et al. [25] integrated side
information into tensor decomposition methods, resulting in better
performance compared with ordinary tensor decomposition meth-
ods. Nevertheless, they primarily focus on general tensor decompo-
sition with auxiliary information, but not tensor completion. Zhou
et al. [34] developed a Tucker-based tensor model called the spatio-
temporal tensor completion to infer missing Internet traffic data by
integrating spatio-temporal constraint information as within-mode
regularization. However, these models usually face some efficiency
challenges since [25] requires solving the Sylvester equation with a
high cost several times in each of iterations, and [34] strongly relies
on solving large-scale least square problems, making them infeasi-
ble for large-scale applications. In contrast, the proposed method in
this paper seeks to overcome these challenges by developing an ef-
ficient tensor-based method that integrates latent relationships from
memes, locations, and times simultaneously. Additionally, the pro-
posed approach not only inherits advantages of efficiency based on
the alternating direction method of multipliers (ADMM) [10] and
uniqueness of solutions enhancing the robustness, but also leads to
better recovery by incorporating this auxiliary information.

3. PROBLEM STATEMENT
We assume that there exists a set of geo-temporal tagged on-

line memes H . A meme in this case could correspond to a shared
image, a hyperlink, video, or hashtag, among many other possi-
bilities. Each meme h ∈ H can be expressed as a tuple (h, l, t)
where l is the location in which the meme is posted and t is the
time at which the meme was posted. Suppose we have N unique
geo-temporal tagged memes, L locations, M different timestamps
and occurrences of memes O. Let ohlt ∈ O be the number of oc-
currences of a meme h in a location l at a timestamp t. We view
the spatio-temporal dynamics of geo-temporal tagged memes as a
tensor X ∈ RN×L×M , in which X (i, j, k) represents the count of
a meme hi in a location lj at a timestamp tk.1 Due to sampling

1We adopt the notation of Kolda et al. [16]. A tensor is a multi-
dimensional array. Formally, we can represent an N -way or N th-
order tensor as X ∈ RI1×···×IN where Ii(1 ≤ i ≤ N) is the
dimensionality of ith mode. Scalars are denoted by lower-case let-
ters such as i, j, k; matrices are denoted by upper-case letters such
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Figure 1: The proposed spatio-temporal dynamics recovery framework.

errors, corrupted data, or other external factors, we further assume
that we only can observe parts of the complete dynamics X ; we
denote this partially observed tensor as T ∈ RN×L×M , in which
some elements are missing or unobservable.

Spatio-Temporal Dynamics Recovery Problem. Given a set of
geo-temporal tagged memesH with only partial knowledge of their
dynamics – denoted as the tensor T – our goal is to learn a model
to recover the missing spatio-temporal dynamics of the unobserved
memes. But what entries in the partial tensor T are actually miss-
ing? We investigate three common situations:
• Scenario 1: Random Missing Observations. This first scenario

captures the straightforward case of random corruption or ran-
dom data sampling errors in the dataset. We assume that some
fraction of memes – that is, some of the meme, location, time
counts (hi, li, ti) – are missing, and so our task is to estimate
these missing counts based on the observations we do have.
• Scenario 2: Missing Entire Memes at Some Locations. The sec-

ond scenario models the case when the data collected has some
systematic errors; specifically, we assume that rather than ran-
dom missing observations (as the scenario 1), there are some
memes that are completely missing for some locations. For ex-
ample, a data sampling strategy may target the top-k memes at a
location, so some locations will be missing memes outside of this
top-k. Can we recover the missing counts for these lost memes?
• Scenario 3: Missing Entire Locations. The final scenario cor-

responds to the case of total data loss for some locations. For
example, a data sampling strategy may target some locations ex-
clusively, but miss others entirely. Can we recover what memes
did occur in those missing locations?

Twitter Hashtags. We ground our discussion in the rest of the pa-
per in terms of Twitter hashtags. A Twitter hashtag is a popular
type of online meme that arises on Twitter, spreads from person to
person (and from place to place), resulting in a fine-grained spatio-
temporal log of information sharing dynamics. Note that the meth-
ods presented here may be applied to any other dataset with meme,
location, time characteristics.

4. AIRCP: AUXILIARY INFORMATION
REGULARIZED CP MODEL

In this section, we propose new scalable methods for recover-
ing the spatio-temporal dynamics of online memes. Concretely,
we propose to (i) model and exploit the latent relationships among
locations, memes and times; (ii) embed these latent relationships
into a tensor completion framework for uncovering the approxi-
mate complete data based only on partial observations; and (iii)
as X; entries in a tensor (e.g., a 3rd order tensor) is denoted by
the original letters with indices such as X (i, j, k). The order of a
tensor is the number of dimensions known as modes N .

show how the underlying tensor factorization can be efficiently
solved compared to many existing methods. The high-level outline
of the proposed solution is presented in Figure 1. We model the ob-
served data as a tensor (left), and seek to recover the missing spatio-
temporal dynamics (center) by integrating auxiliary information
like the relationships between locations, memes and times (right).
A key aspect of the proposed approach is an iterative method to
overcome the problem of incomplete auxiliary information. In the
following, we introduce each part of the proposed solution in detail.

4.1 Modeling Recovery of Missing Data
We propose to model the recovery of missing hashtag data based

on tensor models. Since hashtags are usually adopted in a few lo-
cations within limited life-spans [15], resulting in X being sparse
and low-rank, this model is built on a CP tensor completion model
which can be represented by the following optimization problem:2

minimize
U(n),X

1

2
‖X − [[U (1), U (2), U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F

subject to Ω ∗X = T , U (n) ≥ 0, n = 1, 2, 3.,

where recall that X denotes the complete spatio-temporal dynam-
ics of hashtags, T denotes the observations we do have, U (1) ∈
RN×R, U (2) ∈ RL×R, and U (3) ∈ RM×R are latent factor matri-
ces for location, hashtag, and time dimensions, respectively, R �
min(N,L,M) is the number of latent factors as the rank of a ten-
sor, λ

2

∑N
n=1 ‖U

(n)‖2F is a Tikhonov regularization term used to
avoid overfitting and provide a unique solution, and Ω is a non-
negative weight tensor with the same size as X :

Ω(i, j, k) =

{
1 if X (i, j, k) is observed,
0 if X (i, j, k) is unobserved.

Our goal is to seek an estimated X for recovering the missing
spatio-temporal dynamics of hashtags based upon the partial data
we do observe. However, as it is the case in many linear-inverse
problems, there may not be sufficient information to recover X
only depending on the observed data. We call these deficient linear-
inverse problems. Apparently, the case of recovering the spatio-
temporal dynamics of hashtags with only observed data is a de-
ficient linear-inverse problem, e.g., it is very difficult to estimate
occurrences for the hashtag #iphone in San Francisco even if we
know the complete dynamics of hashtags in other cities such as
New York, Austin, and Los Angeles. Hence, our intuition is to
leverage the spatio-hashtag-temporal relationships inherent in the
observed data in order to successfully recover the missing informa-
tion. For instance, if knowing that people in San Francisco tend
2The subscript F here and throughout the paper indi-
cates the Frobenius Norm of a Tensor. That is, given
an N th-order X ∈ RI1×···×IN , we have: ‖X‖F =√∑I1

i1=1 · · ·
∑IN
iN=1 X

2(i1, i2, . . . , iN ).



to adopt similar hashtags to people in Austin, then perhaps we can
estimate the dynamics of the hashtag #iphone in San Francisco.
Hence, we turn in the following discussion to how we can model
these latent relationships for integration into the overall framework.
We denote spatio-hashtag-temporal relationships as Θ in the paper.

4.1.1 Modeling Spatial Relationships
We begin by considering the spatial relationships that connect

different locations. Our hope is that we may be able to use location
similarity with respect to adopting hashtags to infer propagations
to unobserved locations. Concretely, we consider two approaches
to model the spatial relationships of hashtags:

Geographical Distance. A natural first step is to treat locations
that are near each other as similar in terms of the hashtags that
will be adopted. Previous studies such as [15] have shown that the
closer two locations are, the most likely they are to adopt the same
hashtags due to factors like common language and shared culture,
customs, and interests. Hence, we can encode this intuition in a
measure of location similarity. Motivated by radial basis function
(RBF) kernel [26] widely used as a similarity measure, we propose
a unified geographic distance similarity score ΘGD that captures
the straightforward notion of geo-similarity, approaching 1 when
two locations are physically proximate. The geographical similar-
ity score ΘGD is defined as:

ΘGD(li, lj) = exp

(
−Dist(li, lj)

2

2α2

)
,

where α is a dispersion constant setting as 25 miles in this study.
The score ΘGD considers the Haversine formula to calculate the
geographic distanceDist(li, lj) between location li and location lj
(based on their GPS coordinates). Compared to a straightline dis-
tance, the Haversine formula accounts for Earth’s spherical shape.

Adoption Similarity. An alternative approach is to measure the
“idea” similarity between two locations. That is, there may be lo-
cations that are not necessarily close in terms of geographical dis-
tance, but that are close in terms of the hashtags they do adopt.
In this way, we can measure the adoption similarity between any
two locations by considering two factors (i) shared hashtags and
(ii) deviation of their occurrences under certain probabilities. We
first apply the Jaccard coefficient to measure the degree of shared
hashtags ΘSH between two locations li and lj :

ΘSH(li, lj) =
|Hli

⋂
Hlj |

|Hli
⋃
Hlj |

,

where recall that Hl is the set of unique hashtags adopted in a lo-
cation l, and |Hl| is the number of unique hashtags adopted in a
location l. Two locations sharing all hashtags in common have a
score of 1.0; those sharing no hashtags in common have a score of
0.0. Then, inspired by the work [14], we define the probability of
observing a hashtag h as Ph = (

∑
li∈L o

h
li

)/(
∑
h′∈H

∑
li∈L o

h′
li

)

where ohl is the number of occurrences for a hashtag h in a lo-
cation l. Ph measures how likely a hashtag h occurs. Locations
that adopt a hashtag with similar probabilities are considered more
similar than locations that observe a hashtag with a very different
adoption probabilities [15]. We continuously define the deviation
of hashtag occurrences between two locations as:

ΘDL(li, lj) = exp

(
−
∑
h∈H′

(
ohli − o

h
lj

ohlmax

)2Ph

)
,

where H ′ = (Hli
⋂
Hlj ) is denoted as the common hashtags for

locations li and lj , ohlmax
represents the maximum number of oc-

currence for hashtag h across all locations, which is used for nor-
malization, and Ph yields the weighted average on the normalized

squared difference of hashtag occurrences between two locations.
ΘDL, as a modified version of RBF kernel, indicates that two loca-
tions should be considered as similar while they have close distri-
butions of occurrences as well as their real counts. Taking into ac-
count both of these two factors, we finally define the adoption sim-
ilarity ΘAS between two locations by multiplying them together:

ΘAS(li, lj) = ΘSH(li, lj)ΘDL(li, lj),

where we assume that these two factors are independent and the
values of ΘAS are in the range [0, 1].

Fusion of Two Properties. Naturally, we can integrate both geo-
graphical distance similarity and adoption similarity between two
locations into a unified model. The intuition is that we can take ad-
vantage of both geographical and “idea” similarities between loca-
tions. We adopt a simple linear model to fuse these two properties:

ΘFS(li, lj) = τΘGD(li, lj) + (1− τ)ΘAS(li, lj),

where τ is a parameter used to control the contribution from the
unified geographical similarity score ΘGD and the adoption simi-
larity ΘAS . In this study, τ is set to 0.3 via cross-validation.

4.1.2 Modeling Hashtag Relationships
Complementary to location relationships, we can also directly

model the relationships among different hashtags. Some hashtags
are mainly local phenomena while others have a global footprint.
Hence, we can measure the spatial footprint of different hashtags
and compare them toward finding “similar” footprints by consider-
ing two factors (i) spatial spread of hashtags and (ii) deviation of
their occurrences across all locations. Inspired by Tobler’s hypoth-
esis [31], we first define the similarity of spatial spreading for a pair
of hashtags as:

ΘSP (hi, hj) = exp

(
−|

dhi − dhj

dmax − dmin
|
)
,

where dh is the average distance between all locations in which
this hashtag h has been adopted, |dhi −dhj | is used to measure the
absolute difference of spatial spreading of two hashtags, dmax =
max({dh, h ∈ H}), dmin = min({dh, h ∈ H}), and the term
dmax − dmin is a weight factor used for normalization. We then
define the probability that a hashtag occurs in a location l as Pl =
(
∑
h∈H o

h
l )/(

∑
li∈L

∑
h∈H o

h
li

), representing how likely a hash-
tag is to be adopted in location l. Following a similar fashion on
modeling ΘDL, we define the deviation of occurrences for a pair
of hashtags across all locations adopting them as:

ΘDH(hi, hj) = exp

(
−
∑
l∈L

(
ohi
l − o

hj

l

ohmax
l

)2Pl

)
,

where ohmax
l denotes the maximum number of occurrence for all

hashtags in location l, which is used for normalization, and Pl
yields the weighted average on the normalized squared difference
of real counts between two hashtags across locations where they
have been adopted. Assuming that these two factors are indepen-
dent, we finally model the hashtag similarity ΘHS by multiplying
them together as:

ΘHS(hi, hj) = ΘSP (hi, hj)ΘDH(hi, hj),

The values of ΘHS are in the range [0, 1], implying that two hash-
tags adopted in the same locations with the same occurrences have
a similarity score of 1; otherwise, they have a similarity score ap-
proaching 0.

4.1.3 Modeling Temporal Relationships
Finally, we consider enhancing the tensor completion by con-

sidering temporal relationships across memes. For the temporal



properties of hashtags, we posit that adoptions of hashtags in con-
secutive timestamps may be similar. Hence, we can define the tem-
poral similarity matrix ΘT , capturing the smoothness of the spatio-
temporal dynamics of hashtags by using the tri-diagonal matrix:

ΘT =


0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
...

...
...

. . .


where ΘT intuitively express the fact that X in consecutive times-
tamps are often similar, which has been a common assumption in
related efforts to recover missing data [19, 25, 34].

4.1.4 Integrating Auxiliary Information
So far, we have proposed several models to capture the relation-

ships between locations, hashtags, and times. In this section, we
investigate how to take advantage of this auxiliary information into
the basic CP tensor completion model. The basic idea is if two
objects are similar, e.g., two cities have similar behaviors on adopt-
ing hashtags, the latent representations of these two cities should
be similar. Therefore, we want to make the latent representations
of two similar objects (i.e. locations, hashtags, or timestamps) as
close as possible. We denote Θ as a similarity matrix encoding re-
lationships between entities like locations, hashtags, or times. The
intuition above can be formulated as minimizing the following:

F =
1

2

∑
i,j

Θ(i, j)‖U (n)
i − U (n)

j ‖
2

=
∑
i,j

U
(n)
i Θ(i, j)U

(n)
i

T
−
∑
i,j

U
(n)
i Θ(i, j)U

(n)
j

T

= tr(U (n)T (D −Θ)U (n))

= tr(U (n)TLU (n)),

where U (n)
i is the ith row of the factor matrix U (n) for the nth-

mode of a tensor X , n ∈ {1, 2, 3}, tr(· ) is denoted as the matrix
trace, D is a diagonal matrix with D(i, i) =

∑
j Θ(i, j), and L =

D−Θ is the graph Laplacian of the similarity matrix Θ which could
be any of ΘGD , ΘAS , ΘFS , ΘHS and ΘT introduced previously.

A straightforward way to integrate relationships between loca-
tions, hashtags, and times into the basic tensor completion model
is as regularization terms such that we are able to regulate latent
representations of two similar objects to make them as close as
possible. Hence, by integrating these auxiliary information among
locations, hashtags and times, we can formulate the recovery of
spatio-temporal dynamics as the following objective function:

minimize
U(n),X

1

2
‖X − [[U (1), U (2), U (3)]]‖2F +

λ

2

3∑
n=1

‖U (n)‖2F

+
3∑

n=1

αntr(Z(n)TLnZ(n))

subject to Ω ∗X = T , U (n) = Z(n) ≥ 0, n = 1, 2, 3,
(1)

where α is to control the weight of auxiliary information between
locations, hashtags, and time.

4.2 Optimization Algorithm
Since the objective function in Eq.(1) is not convex with respect

to variables Z(n) and U (n) together, there is no closed-form solu-
tion for this optimization problem. Motivated by methods [21, 25],
we now develop an efficient algorithm to find optimal solutions for

the objective function above under the framework of ADMM (Al-
ternating Direction Method of Multipliers) that can be considered
as an approximation of the method of multipliers. The objective
function can be firstly written in the partial augmented Lagrangian
function as follows:

Lη(U (n), Z(n), Y (n))n=1,2,3 =
1

2
‖X − [[U (1), U (2), U (3)]]‖2F

+
λ

2

3∑
n=1

‖U (n)‖2F +

3∑
n=1

αn
2

tr(Z(n)TLnZ(n))

+

3∑
n=1

< Y (n), Z(n) − U (n) > +

3∑
i=1

η

2
‖Z(n) − U (n)‖2F , (2)

where Y (n) is the matrix of Lagrange multipliers for n = 1, 2, 3, η
is a penalty parameter and< ∗, ∗ > is an inner product of matrices.

Updating Z(1), Z(2), Z(3). To update Z(1), Z(2), Z(3), we can re-
write objective function in Eq.(2) as follows:

minimize
Z(n)

αn
2

tr(Z(n)TLnZ(n)) +
ηt
2
‖Z(n) − U (n)

t +
Y

(n)
t

ηt
‖2F .

(3)
Thus, Z(n) can be efficiently updated by solving the optimization
problem in Eq. (3) via:

Z
(n)
t+1 = (ηtI + αnLn)−1(ηtU

(n)
t − Y (n)

t ),

where I is the identity matrix with the same size of Ln. By apply-
ing the eigen-decomposition to Ln = VnΛnV

T
n , we can re-write

the equation above as:
Z

(n)
t+1 = Vn(ηt + αnΛn)−1V Tn (ηtU

(n)
t − Y (n)

t ), (4)
where ηt+αnΛn is a diagonal matrix. SinceLn is eigen-decomposed
at the beginning of the optimization, (ηtI + αnLn)−1 can be ef-
ficiently computed by only reversing entries on the diagonal of
ηt + αnΛn instead of calculating the inverse of the whole matrix.

Updating U (1), U (2), U (3). To update U (1), U (2), U (3), the objec-
tive function in Eq.(2) can be re-written as follows:

minimize
U(n)

1

2
‖Xt

(n) − U (n)B(n)‖2F +
λ

2
‖U (n)‖2F

+
ηt
2
‖Z(i)

t − U
(i)
t +

Y
(i)
t

ηt
‖2F ,

(5)

where B(n) = (U (N) � · · ·U (n+1) � U (n−1) � · · ·U (1))T |N=3,
� is Khatri-Rao product, and X(n) is the mode-n unfolding of the
tensor X .3 Then this subproblem in terms of U (n) is solved as
follows:

U
(n)
t+1 = (Xt

(n)B
(n)T+ηtZ

(n)
t+1+Y

(n)
t )(B(n)B(n)T+λI+ηtI)−1.

(6)
Updating X . To update X , we can have that:

X t+1 = T + Ωc ∗ [[U
(1)
t+1, U

(2)
t+1, U

(3)
t+1]],

where Ωc is the complement of Ω that is equal to 1−Ω.

Updating Y (n). To update Y (n), we can have that:

Y
(n)
t+1 = Y

(n)
t + ηt(Z

(n)
t+1 − U

(n)
t+1).

Updating η. We can accelerate the optimization algorithm by adap-
tively updating η. To update η, we can have that:

ηt+1 = min(ρηt, ηmax),

where ρ is a constant that we empirically set to 1.1 via cross-validation.
3The mode-n matrix unfolding of an order N tensor X ∈
RI1×···×IN is a matrix rearranged from this tensor by fixing the di-
mension of the index n and multiplying other dimensions, denoted
as X(n) ∈ RIn×(

∏
i6=n Ii).



(a) #iphone (b) #fato (c) #healthcare

Figure 2: Distributions of three hashtags.

4.3 Recovery with Auxiliary Information
So far we have successfully solved the equation (1) by the pro-

posed optimization algorithm based upon ADMM with leveraging
auxiliary information. However, we are not able to obtain com-
plete auxiliary information which encode similarities between lo-
cations, hashtags, and timestamps based on the sampled data. It
is not reasonable to estimate missing spatio-temporal dynamics of
hashtags by using auxiliary information derived from the complete
data, which becomes a “Chicken-and-Egg” problem. In order to
address this problem, we employ an iterative method. The ini-
tial similarity matrices derived from auxiliary information are com-
puted based on the sampled data. And then similarity matrices will
be re-calculated based on recovered spatio-temporal dynamics of
hashtags. This procedure will iteratively proceed until there is no
significant difference between the current and previous similarity
matrices. This proposed auxiliary information regularized CP de-
composition method (AirCP) is summarized in Algorithm 1.

5. EXPERIMENTS
In this section, we conduct experiments to evaluate the effective-

ness of the proposed AirCP framework for recovering the spatio-
temporal dynamics of hashtags. Concretely, we aim to answer the
following questions:
• How effective is the proposed method compared with alterna-

tive state-of-the-art methods on recovering the missing spatio-
temporal dynamics of hashtags?
• What are the effects of auxiliary information – here, in the form

of relationships among locations, memes, and times – on recov-
ering the spatio-temporal dynamics of hashtags? Are some rela-
tionships more informative than others?
• How dependent on the regularization parameters is the proposed

method? That is, do we need to give special care for tuning the
approach, or is there a wide choice of parameters that leads to
robust recovery?

We begin by introducing the Twitter dataset and the evaluation and
experimental setup. Then, we compare the performance of different
tensor completion methods on both synthetic and real-word hashtag
data sets. At last, the effects of the different auxiliary information
sources and their corresponding regularization parameters for the
proposed method are investigated.

5.1 Data
Our work here focuses on an initial sample of over 55 million

geo-tagged tweets via the Twitter Streaming API between Febru-
ary 1st and October 1st in 2013. Each tweet is tagged with a
latitude and longitude indicating a location where the user posted
this tweet. In this study, we first convert the GPS locations asso-
ciated with tweets to corresponding cities via reverse geo-coding,
and then transfer the original timestamps accurate to the second to
corresponding dates. Each geo-tagged tweet can be represented by
a tuple < hashtag, city, date >. To avoid very sparsely repre-

Algorithm 1: Solving AirCP via ADMM

Input: T ,Ω,Θ(n)
0 , γ, λ, αn, ρ, η, ηmax, N

Output: X , U(n)

1 Algorithm AirCP()
2 Initialize U(n)

iter , γ, λ, αn, ρ, η0, ηmax, ε, N , iter = 0
3 while Not Converged and iter ≤ Imax do
4 Construct Laplacian matrices Ln for matrices Θ

(n)
iter

5 Optimization(T ,Ω, U(n)
iter,Ln, γ, λ, αn, ρ, η, ηmax, N)

6 Re-calculate similarity matrices Θ
(n)
iter+1 based on X iter

7 Check the convergence:

max{‖Θ(n)
iter+1 −Θ

(n)
iter‖F , n = 1, 2, . . . , N} < ε

8 iter = iter + 1

9 return X iter , U(n)
iter, n = 1, 2, . . . , N

10 Procedure Optimization(T ,Ω, U(n)
0 ,Ln, γ, λ, αn, ρ, ηt, ηmax, N )

11 Initialize Z(n)
0 = Y

(n)
0 = 0, t = 0, tol

12 while Not Converged do
13 for n← 1 to N do
14 Update Z(n)

t+1 ← Equation(4)

15 Update U(n)
t+1 ← Equation(6)

16 Update X t+1 = T + Ωc ∗ [[U
(1)
t+1, U

(2)
t+1, . . . , U

(N)
t+1 ]]

17 for n← 1 to N do
18 Update Y (n)

t+1 = Y
(n)
t + ηt(Z

(n)
t+1 − U

(n)
t+1)

19 Update ηt+1 =min(ρηt, ηmax)
20 Check the convergence:

max{‖U(n)
t+1 − Z

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

21 t = t+ 1

22 return X , U(n), n = 1, 2, . . . , N

sented hashtags, we only consider hashtags having at least 1,000
occurrences across all cities where at least 20 unique hashtags have
been adopted during the period of our data collection. Since some
hashtags have appeared before the first day of the sample, we only
keep those hashtags that first appear after February 1st, 2013, re-
sulting in 4,723 unique hashtags occurring in 2,415 cities. After
randomly selecting 2,000 of 4,723 hashtags, the data set consists of
2,000 hashtags occurring in 1,278 cities in the world over a span of
242 days, which we model as a tensor X ∈ R2000×1278×242. For
the experiments, we view this sample as if it were the true (com-
plete) spatio-temporal dynamics of the 2,000 hashtags across these
242 days. To illustrate, Figure 2 shows the global footprint of three
different hashtags (#iphone, #fato, and #healthcare) in the dataset.

5.2 Experimental Setup and Metrics
We evaluate the effectiveness of the proposed framework com-

pared with alternative methods by evaluating them over the three
scenarios introduced in Section 3: Scenario 1, in which we have
random missing observations; Scenario 2, in which some locations



are missing entire hashtags; and Scenario 3, in which we are miss-
ing entire locations. We set the parameters in Eq.(2) through cross-
validation with a separate validation dataset. We empirically set
λ = 0.1 and α1 = α2 = α3 = 0.1 for all following experiments.

To investigate the quality of the proposed framework, we adopt
Relative Error, and Accuracy@k as evaluation metrics. Relative
Error is defined asRelativeError = ‖X−Y ‖F /‖Y ‖F whereX
is the recovered tensor and Y is the ground-truth tensor. Accuracy@k
represents the percentage of correctly predicted popular hashtags
out of the top-k popular hashtags. Formally, if we denote Sl as
the real top-k popular hashtags at a location l and Ŝl as the set of
popular hashtags selected by a recovery method at a city l, we have
Accuracy@k = (Ŝtl ∩ S

t
l )/k which is in the range [0,1]. In the

following experiments, we evaluate k at 1, 5, and 10.

5.3 Baseline Methods
Previous research has shown that tensor-based completion meth-

ods outperform matrix-based ones [20, 32, 34]. Hence, we focus
our evaluation here on tensor-based state-of-the-art methods:
• Tensor Factorization with Auxiliary Information (TFAI): The first

baseline is a tensor analysis method introduced in [25] that inte-
grates auxiliary information. We adopt the within-mode aux-
iliary information method that performs better than the cross-
mode method according to the results.
• Trace Norm-based CP Decomposition (TNCP): The second base-

line method regularizes the trace norm in the CP tensor decom-
position method based upon alternating direction method of mul-
tipliers (ADMM) [21]. We choose parameters λ = 10, and
α = 0.33 that result in the best performance for this method.
• Low-Rank Tensor via Convex Optimization (LRCO):The third

baseline is a low-rank tensor factorization method with a trace
norm regularization [32]. We adopt the “mixture” version, which
models the tensor as a mixture of K sub-tensors. We set the ini-
tial step-size η0 = 0.1 and λ = 0.
• Weighted Tucker Decomposition (WTucker): The fourth baseline

is a weighted Tucker decomposition [8] that is similar in spirit to
PARAFAC [16] method with missing data.
• Fast Low-Rank Tensor Completion (FaLRTC): Finally, we con-

sider the fast low-rank tensor completion method [20], which
estimates missing data based on the smoothed trace norm.

5.4 Evaluating AirCP over Synthetic Data
As a first step toward evaluating the effectiveness and efficiency

of the AirCP method, we first test over a synthetic dataset be-
fore moving on to the real hashtag data. We generate a low-rank
(10,10,10) tensor M ∈ R100×100×100 with correlated objects as
the ground truth data. The factor matricesU (1) ∈ 100× 10,U (2) ∈
100× 10, and U (3) ∈ 100× 10 are generated by the following
linear formulae [25]:

U (1)(i, r) = iεr + ε′, i = 1, 2, . . . , 100, r = 1, 2, . . . , 10

U (2)(j, r) = jζr + ζ′, j = 1, 2, . . . , 100, r = 1, 2, . . . , 10

U (3)(k, r) = kηr + η′, k = 1, 2, . . . , 100, r = 1, 2, . . . , 10

where {εr, ε′r, ζr, ζ′r, ηr, η′r}r=1,2,...,10 are constants generated by
the standard Gaussian distributionN(0, 1). Then the synthetic ten-
sor M is calculated as M = J ×1 U

(1) ×2 U
(2) ×3 U

(3) where
J ∈ R10×10×10 is a unit tensor with all of its super-diagonal el-
ements being 1 and the other elements being 0 and ×i means the
tensor-matrix operation for the dimension-i of tensor. Since each
factor matrix is generated by linear functions mentioned above col-
umn by column, the consecutive rows are similar to each other.
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Figure 3: Comparison of recovery results over synthetic data.

Therefore, we generate the similar matrix for the ith mode as the
following tri-diagonal matrix:

Θi =


0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
...

...
...

. . .

 (7)

Table 2: Computation time (in seconds) over synthetic data as
the fraction of missing data (FM) varies.

FM AirCP TFAI TNCP LRCO WTucker FaLRTC
20% 3.97 46.36 4.51 58.64 195.22 5.47
40% 4.27 49.87 3.94 49.61 186.13 5.62
60% 3.89 35.98 4.08 51.30 202.58 4.78
80% 4.76 43.75 4.16 60.04 183.98 4.46

We randomly sample entries fromM and recover the complete ten-
sor by varying the fraction of unobserved entries from 5% to 95%.
We set the tolerance of error as 10−5 and the maximal number of
iteration as 1,000 for all methods we tested here.

We show in Figure 3 the relative error for all methods, averaged
over 10 independent runs. At a moderate fraction of missing data,
most of the methods perform comparably, with only WTucker and
FaLRTC performing clearly worse. But in cases when there is a
large fraction of missing data (i.e. greater than 75%), we see that
AirCP and TFAI achieve the lowest relative error in all cases and
that this error is objectively low. This result is encouraging since
it indicates that the proposed framework for spatio-temporal dy-
namics recovery can achieve robust recovery in realistic scenarios
where only a small fraction of data is available.

While AirCP and TFAI achieve relatively lower error rates, what
about their comparative efficiency? We present the average compu-
tation time (in seconds) of all tested approaches in Table 2. We can
observe that AirCP is an order of magnitude faster than TFAI and
that it is on par with both TNCP and FaLRTC, which both demon-
strate higher relative errors (as shown in Figure 3). Hence, these
experiments over synthetic data show the potential of the proposed
AirCP method to achieve low error rates while also being more ap-
propriate for large-scale data.

5.5 Evaluating AirCP over Hashtag Data
Given these encouraging results, we now turn to an examination

of AirCP over the real hashtag data. We consider the three miss-
ing data scenarios introduced previously. For all cases, we set the
rank of the tensor to 10. For Scenario 1 (Random Missing Obser-
vations), we randomly select a fraction of all hashtag-location-time
counts and assume that these are unobservable (that is, missing).
We report results by varying the fraction from 25% to 55% to 85%.
For Scenario 2 (Missing Entire Memes at Some Locations), we ran-



Table 3: Relative errors for recovering missing hashtags as the fraction of missing data varies from 25% to 55% to 85%. We observe
that AirCP is an order of magnitude faster than TFAI.

Method Scenario 1 Scenario 2 Scenario 3 Avg. Improvement
25% 55% 85% 25% 55% 85% 25% 55% 85% (comparing with AirCP)

AirCP(FS+HS+T) 0.1059 0.3330 0.5079 0.2032 0.4615 0.6017 0.2830 0.5772 0.7680 N/A
TFAI 0.0999 0.3565 0.5314 0.2282 0.4870 0.6336 0.2828 0.5863 0.7861 3.34%
TNCP 0.1829 0.4198 0.5762 0.2846 0.5937 0.7378 0.3674 0.5919 0.8272 19.62%
LRCO 0.2307 0.4753 0.6851 0.3245 0.6261 0.798 0.4097 0.6288 0.9026 28.02%
WTucker 0.4859 0.778 1.1602 0.7427 1.0155 1.3256 1.1852 1.3914 1.7383 62.65%
FaLRTC 0.2417 0.4543 0.6548 0.3156 0.5621 0.8069 0.3592 0.6243 0.8802 25.09%

Table 4: Relative errors for recovering appearances of hashtags as the fraction of missing data varies from 25% to 55% to 85%. We
witness that AirCP is an order of magnitude faster than TFAI.

Method Scenario 1 Scenario 2 Scenario 3 Avg. Improvement
25% 55% 85% 25% 55% 85% 25% 55% 85% (comparing with AirCP)

AirCP(FS+HS+T) 0.2032 0.4675 0.7017 0.2405 0.3653 0.4719 0.3083 0.5965 0.7451 N/A
TFAI 0.2082 0.4470 0.7236 0.2668 0.3976 0.4970 0.3246 0.6281 0.7900 4.40%
TNCP 0.2846 0.5937 0.7878 0.3148 0.4644 0.5799 0.4071 0.6599 0.8541 18.98%
LRCO 0.3245 0.6261 0.7980 0.6303 0.6142 0.6428 0.4380 0.6605 0.9315 29.23%
WTucker 0.7427 1.0155 1.3256 0.8484 0.8651 0.7403 1.2191 1.4297 1.7844 61.66%
FaLRTC 0.3156 0.5621 0.8069 0.4767 0.599 0.6313 0.4154 0.6660 0.9089 26.03%

domly select for each location some fraction of hashtags that are
unobservable. Again, we report results for 25%, 55%, and 85%.
Finally, for Scenario 3 (Missing Entire Locations), we randomly
select a fraction of the 1,278 locations and assume that these loca-
tions are completely unobservable (missing) across the whole col-
lection period. We evaluate all methods using a fraction of missing
locations of 25%, 55%, and 85%.

We present in Table 3 the relative error for all three scenarios
across all approaches for three levels of missing data (25%, 55%,
and 85%). Reinforcing our observations from the synthetic data
experiment, we witness that AirCP achieves better performance
than TFAI with an average improvement of 3.34% over real hashtag
data. In practice, again, TFAI still takes around an order of mag-
nitude longer to calculate than the proposed AirCP method. We
see that AirCP gives an average improvement of 27.8% in terms
of relative error over other alternative methods. And as the sparser
the observed tensor is (that is, the smaller the number of actual
observed hashtags), we see that AirCP gives an even greater im-
provement versus the alternatives. To illustrate, Figure 4 shows an
example recovery for the hashtag #mtvema for Scenario 1 when
85% of the data is missing. We can see that the proposed method
can successfully recover the sampled data based upon limited sam-
ple data (15% of the complete data).

Returning to Table 3, for both Scenarios 2 and 3 in which either
a portion of all hashtags for a location are missing or the entire lo-
cation is unobserved (which places great burden on the recovery
framework, since there are not even partial observations for those
hashtags in those locations as in Scenario 1), we see that integrating
the latent relationships among locations, hashtags, and time (e.g.,
distances between two cities, similarities between hashtags, same
hashtags adopted by two cities) can lead to a significant improve-
ment through the tensor factorization. These relationships can alle-
viate the problem of sparsity to some extent and provide valuable
information for the tensor factorization to obtain more interpretable
low-rank representations.

Moreover, after varying the rank of tensor from 5 to 20, we found
that the proposed method has a better consistency than other al-
ternative state-of-the-art methods as the rank of tensors increases,
implying that the proposed method is more robust on predicting
missing diffusion dynamics of hashtags. The details are omitted
here due to the limited space.
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(c) Recovered
Figure 4: An example recovery for the hashtag #mtvema when
85% of the data is missing (Scenario 1).

5.6 Recovery Under Constraints
While the previous experiment examined whether we could re-

cover the count of the number of hashtags in a location at a particu-
lar time, we now turn to two more constrained situations that could
arise in practice.

Appearance of Hashtags. In the first situation, we consider the task
of determining whether or not a hashtag has appeared at a location
at a particular timestamp. By considering only this binary informa-
tion (rather than count information), we can explore the quality of
the proposed approach at identifying rare hashtags, rather than em-
phasizing on hashtag counts as in the previous experiments. In this
way, we can determine how well the approaches recover the appear-
ance information of hashtags. For this experiment, for a hashtag h,
the corresponding cell X (h, l, t) will be set as 1 if that hashtag ap-
pears in a city l at a date t. Otherwise, it will be assigned to 0.
For the recovered tensor X , the cell X (h, l, t) will be set as 1 if
the value of that cell is larger or equal to a threshold; otherwise, it
will be set to 0. The threshold is empirically set to 0.3 via cross-
validation. In this experiment, we vary the fraction of missing data
in [25%, 55%, 85%] for all three scenarios, meaning that the ob-
servations we randomly selected based on fractions of missing data
can be considered as training data, and the remainder as the test
data. We empirically set the rank of tensor to 10. The experimental
results in terms of relative errors are illustrated in Table 4.

We can see that in general, the proposed AirCP consistently out-
performs other alternative methods including TFAI, TNCP, LRCO,
WTucker, and FaLRTC in all three scenarios. Specifically, it gives
an average improvement of 28.01% on the relative error over other
alternative methods. This indicates that auxiliary information among
locations, hashtags, and times can help predict whether a hashtag
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(a) Top-1 popular hashtag
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(b) Top-5 popular hashtags
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(c) Top-10 popular hashtags

25% 55% 85%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of Missing Data Rate

Ac
cu

ra
cy

@
15

 

 
AirCP
TFAI
TNCP
LRCO
Wtucker
FaLRTC

(d) Top-15 popular hashtags

Figure 5: Recovering hashtag popularity: Accuracy@1, 5, 10, and 15 as the fraction of missing data varies from 25%, 55% to 85%.
Though AirCP only achieves slightly better performance than TFAI, it has much better time efficiency for the computation with
around an order of magnitude faster speed.

has appeared in a location at a time or not. Similar to the previous
experiment, TFAI has comparable performance with the proposed
method, which performs worse in scenarios 1 and 2 and slightly
better in scenario 3. However, as TFAI requires longer computa-
tion time, the proposed AirCP method is more efficient at this task.

Popularity of Hashtags. In the second situation, we consider the
task of determining the top-k hashtags at a location at a particular
timestamp. In this way, we can explore the quality of the proposed
approach at identifying the popularity of hashtags. We evaluate the
performance of the AirCP method in the recovery of top-k popular
hashtags in 1,278 cities by varying the value of k as the fraction
of missing values varies. For a hashtag h, the corresponding cell
X (h, l, t) will be set as 1 if the total number of occurrences of that
hashtag is one of the top-k largest among all hashtags occurred in
that city l after the date t; otherwise, it will be assigned to 0. For this
problem, only Scenario 3 is reasonable since for Scenarios 1 and 2,
we are not likely to accurately mark the top-k popular hashtags in
a city only depending on observed sampled data. It indicates that
we cannot know the top-k popular hashtags in a location l after a
date t while only observing partial data. For instance, we mark
hashtags #cjbbq and #subway as two of top-3 popular hashtags in
Houston after the date t only based on observed sample data in the
period of the data collection. Nevertheless, once we can retrieve
the whole diffusion data of hashtags in Houston, the top-3 popular
hashtags are #northgate, #rockets and #texian as we do not observe
or partially observe their diffusion data. Therefore, Scenarios 1 and
2 would never happen on this problem. In the implementation of
the proposed method, we empirically set the rank of tensor to 10.

The performance comparison is presented in Figure 5. As we
can see, overall, the proposed AirCP generally gives the best perfor-
mance in terms of accuracy for different k with a maximal accuracy
of 77.7%. Since the distribution of hashtags at a location usually
follows a Zipfian distribution, it could be harder for the problem of
predicting top-k hashtags at a location at a date as the value of k
decreases. This hypothesis is confirmed in the performance of our
method. We observe that all these compared methods as well as the
AirCP method perform better with higher values of k. In addition,
we can see that the AirCP method performs consistently when the
fraction of missing data is less then 85%. All these results illustrate
that the proposed method can successfully predict top-k popular
hashtags for a city after a date with limited observations.

5.7 Effects of Auxiliary Information
We next turn to the relative impact of the different sources of

auxiliary information. Recall that we consider different relation-
ships among locations, hashtags, and time. Here, we are interested
to explore whether some of these relationships are more informa-
tive than others. To that end, we narrow our focus on the problem of
recovering hashtag counts under Scenario 1 (where a random frac-
tion of hashtags are missing), and empirically fix the rank of tensor
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Figure 6: Relative errors for different combinations of auxil-
iary information.

to 10. We evaluate the proposed AirCP method with different com-
binations of auxiliary information. In Figure 7, we show how aux-
iliary information affects the performance of the proposed method
in terms of the relative error by varying the fractions of missing
data. We can see that, in general, the proposed AirCP method inte-
grating all three types of auxiliary information (modeled in Section
4) achieves the best performance than those only integrating part of
the auxiliary information, indicating that the proposed method suc-
cessfully makes use of all useful information sources to perform
effective recovery for the spatio-temporal diffusion dynamics of
hashtags. For the spatial information, we find that AirCP with the
fusion of geographical distance similarity (GD) and adoption simi-
larity (AS) performs better than ones with either GD or AS solely.
This result implies that the integration of these two types of infor-
mation yields complementary evidence of hashtag adoption. We
also observe that AirCP with only the hashtag similarity (HS) has
comparable performance with one integrating GD and AS (denoted
as FS). In summary, the use of all three types of auxiliary informa-
tion can help enhance the performance of the proposed AirCP.

5.8 Effects of Regularization Parameters
Finally, we explore the impact of the regularization parameters

on the quality of hashtag recovery. Recall that these parameters
control the contributions of the relationships between locations,
hashtags and time on the recovery framework. In order to better
understand the effect of different choices of these parameters, we
vary their values in the range [0.001 0.01, 0.1, 1, 10], and then eval-
uate the AirCP method for the scenario in which some hashtags are
missing (Scenario 1) with a fraction of missing data of 55%. The
rank of the tensor is set to 10 and other settings are the same as
we set in Section 5.5. We observe in Figure 7 that the proposed
AirCP method achieves relatively stable performance when the pa-
rameters are in the range [0.01, 0.1, 1]. This result indicates that
the proposed framework is fairly robust to reasonable choices of
these parameters. Specifically, comparing all results for parame-
ters, we find that setting α1(city) = 0.1, α2(hashtag) = 0.1



and α3(date) = 0.1 achieves the best performance with a relative
error of 0.3330, and that parameter settings of α1(city) > 0.1,
α2(hashtag) > 0.1 and α3(date) > 0.1 lead to fairly stable rel-
ative errors. These results indicate the stability of the proposed
AirCP to these regularization parameters. Similar results can be
found when we set the fraction of missing data to 25% and 85%.
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Figure 7: Relative errors for different parameter settings:
α3(date) = 0.1 with 55% of the fraction of missing data.

6. CONCLUSION
In this paper, we have tackled the critical problem of recov-

ering spatio-temporal dynamics of memes. Concretely, we have
proposed a tensor-based spatio-temporal dynamics recovery frame-
work that leverages auxiliary information among locations, hash-
tags, and times with better time efficiency. Through experimental
evaluation on both synthetic and real-world Twitter hashtag data,
we see that the proposed framework outperforms alternative state-
of-the-art methods with an average improvement of over 27%, and
find that the integration of auxiliary information among locations,
hashtags, and times are crucial factors in the performance of the
proposed framework. In our future work, we are interested in ex-
ploring opportunities to add more external information such as tex-
tual, and social contexts into the proposed framework with a better
performance in recovering spatio-temporal dynamics of memes.
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