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ABSTRACT
URL sharing has become one of the most popular activities on
many online social media platforms. Shared URLs are an avenue
to interesting news articles, memes, photos, as well as low-quality
content like spam, promotional ads, and phishing sites. While some
URL sharing is organic, other sharing is strategically organized
with a common purpose (e.g., aggressively promoting a website).
In this paper, we investigate the individual-based and group-based
user behavior of URL sharing in social media toward uncovering
these organic versus organized user groups. Concretely, we pro-
pose a four-phase approach to model, identify, characterize, and
classify organic and organized groups who engage in URL sharing.
The key motivating insights of this approach are (i) that patterns of
individual-based behavioral signals embedded in URL posting ac-
tivities can uncover groups whose members engage in similar be-
haviors; and (ii) that group-level behavioral signals can distinguish
between organic and organized user groups. Through extensive ex-
periments, we find that levels of organized behavior vary by URL
type and that the proposed approach achieves good performance –
an F-measure of 0.836 and Area Under the Curve of 0.921.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services
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1. INTRODUCTION
URL sharing is one of the most popular avenues to share infor-

mation on Twitter. Users can enrich their inherently limited length
postings by inserting a URL pointing to an external resource such
as a blog, video, or image. By doing so, many different viewpoints
and additional context can be expressed through URL sharing. In
the early days of Twitter in 2007, Java et al. already saw that about
13% of a collection of 1.3 million tweets included a URL [14]. Re-
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cent studies have confirmed the ongoing popularity of URL sharing
on Twitter. In 2010, Boyd et al. found 22% of a sample of 720,000
tweets included a URL [3]. And in 2011, Rodrigues et al. found
that nearly a quarter of 1.7 billion tweets contained URLs [21].

While some URL sharing is organic, other sharing is strategically
organized with a common (perhaps, nefarious) purpose. And the
differences between these two extremes – organic and organized –
is often not a simple distinction. Consider the following examples:
• Figure 1 shows three users who tweeted the same URL bit.
ly/1dtous, linking to a YouTube webpage related to the boy
band One Direction. They all express their affections for the
band in their tweets. It seems very likely they are the fans of
One Direction, which explains that they spontaneously posted
the same link. This common interest in a subject related to a link
leads to the coincidence of multiple organically posted URLs.
• Figure 2 shows four more users who posted the same One Di-

rection YouTube URL – bit.ly/1dtous. In this case, how-
ever, we can deduce that the users are participating in a voting
campaign to attract the band to their hometown. The users are
somewhat linked in this common desire.
• Continuing this theme, Figure 3 shows four additional users

who have all tweeted a “vote” for Boston to attract One Direc-
tion. In this case, the voting behavior is suspicious: the tweets
have highly similar text, and the latter three tweets were posted
on the same day and the accounts names are quite similar. Were
they organized to post the same URL? Are these accounts con-
trolled by the same person? Is the first account “innocent”?
• Finally, Figure 4 highlights three users who engage in a clear

example of a somewhat sophisticated organized URL spam-
ming. Each user posts slightly different text and different ap-
pearing URLs, though ultimately all of the URLs redirect to the
same destination URL – an advertising webpage. This coordi-
nated behavior of URL sharing is fundamentally different from
the first case of organic URL sharing.1

These observations motivate us to investigate URL sharing in so-
cial media. Our goal in this paper, in the context of URL sharing, is
to automatically (i) identify user groups in terms of similar URL-
sharing behaviors; and (ii) differentiate strategically organized and
genuinely organic user groups, through the development of a URL-
posting behavior based model. Our study aims to bridge the gap
in the research of social media between user behavior, URL shar-
ing, and general user similarity. The key insight motivating our

1These accounts have been alive for more than two years, which
suggests the official Twitter spam policy has limited impact on this
type of coordinated URL-sharing behavior.



Figure 1: One example of three users who have organically posted
the same URL: bit.ly/1dtous

Figure 2: Four users seemingly post URL for a voting campaign

Figure 3: Four users suspiciously cooperate to post the same URL

work is that the publicly available URL-posting information can
help model users with similar behaviors of URL sharing, and that
group-level behavioral signals can characterize a group of users as
organic or organized.

Studying similar user behaviors in URL sharing has important
applications, on both bright and dark sides. On the one hand, based
on the historical URL-posting information, the service provider
(e.g., Twitter, in this paper) can effectively target groups of users
and promote them their interested links. On the other hand, to pu-
rify and improve the information quality on their platform, it be-
comes imperative that the service provider can detect those orga-
nized behaviors of URL-sharing, such as campaign-like advertis-
ing, spamming, and other adversarial propagandas.

Given a group of organized users, on the one hand, we expect
those users – no matter whether managed by a command-and-control
structure or not – post URLs toward a common goal. We do not
argue the goal has to be malicious, like the example in Figure 3.
On the other hand, we focus on group-level behavioral evidences
that can reflect their coordination. For instance, the users in Fig-
ure 2 were seemingly participating in the same “voting campaign”,
but they actually have different goals (the targeting cities) and their

tweet content are quite distant. Even the users in Figure 3 seem
suspicious, we need more evidences and should design a system-
atic framework for detection.

Concretely, we propose a four-step approach. We first formu-
late URL sharing based on its three key factors: user, URL, and
the posting activity. Based upon such a model, we design a simi-
larity measurement of user behaviors in URL sharing. Then, given
the pairwise similarity function, we build a user graph model from
which we identify user groups each of which contains users with
similar URL-sharing behaviors. Next, on the group level, we char-
acterize the organic and organized user groups based on the URL-
posting behaviors of their members. Finally, we embed those char-
acteristics into a classification framework to systematically distin-
guish organic and organized groups of users.

Figure 4: Three users coordinate to post the same advertising URL

2. RELATED WORK
Many recent studies have investigated URL sharing in social me-

dia, with different goals. One thread is about sharing intention, i.e.,
why people share links in social media. Suh et al. found that em-
bedding URLs is one of the most important factors for increasing
the retweetability of a tweet [24]. Smith et al. found that Twit-
ter users add URLs to their tweets when discussing controversial
topics, toward spreading information instead of conversing [22].

Another thread focuses on what people spread through URLs
in social media, e.g., [20, 1, 16, 18]. These efforts have mainly
focused on grouping similar messages or grouping users, such that
the URLs provide additional context that may reflect the interests
of the people posting these URLs.

Recently, several efforts have mentioned the dark side of URL
sharing in social media. Stringhini et al. examined spam campaigns
on Twitter that posted messages with URLs pointing to the same
site [23]. Grier et al. defined a spam campaign as the set of Twitter
accounts that spammed at least one blacklisted URL in common
[13], and so Gao et al. did on Facebook [11]. Ghosh et al. studied
the link farming on Twitter and found many participants are sybil
accounts. Among those top link farmers, 79% have URLs linking
to their external webpages [12]. More recently, Nikiforakis et al.
explored the ecosystem of ad-based URL shortening services, and
the vulnerabilities made possible by these services [17].

Since 2006, there have been many social network-based sybil de-
fense methods proposed such as SybilGuard [27], SybilLimit [26],
and SybilInfer [7]. Viswanath et al. pointed out most of those ap-
proaches are essentially graph partitioning algorithms [25]. They
all made certain assumptions of the social network topology, used
ground-truth information of trusted users, ranked all users, and de-
termined who are sybils based on some cutoff. Rather than exclu-
sively focus on spammers or sybils, our interest is to reveal groups
of strategically organized users who engage in URL sharing with
a purpose: some of the groups will post spam, but many others



spread propaganda, aggressively promote products or services, and
generally engage in coordinated manipulation. Unlike spamming
or subverting reputation, the users we consider can be genuine and
legitimate, as in Figure 3. Additionally, our problem is more gen-
eral in the sense that our approach can detect those “URL-posting
based” sybils attacks or spam campaigns. We explicitly model and
identify groups of users who have similar behaviors of URL shar-
ing, and differentiate the organized and organic groups via a group-
level classification framework.

3. INVESTIGATING URL SHARING
In this section, we propose our approach to explore similar user

behaviors in URL sharing. In this context, our objective is to (i)
formulate and collect user groups; and (ii) differentiate the organic
and organized user groups. To tackle this problem, we formulate
the concept of user group in the context of URL sharing, and focus
exclusively on behavioral signals. We are interested in answering
the following questions: How do we model user in URL sharing?
How do we define and find user group? And how can we distin-
guish between organic and organized user group?

Toward answering these questions, our approach is structured
in four steps. The main intuition is that the users from an organic
group coincidently share similar interests on certain subjects so that
they have similar behaviors of URL sharing. On the contrary, orga-
nized groups consist of users who plot to post URLs with a certain
goal in common so that their behaviors conform to a notion of co-
operation or coordination.
• First, we model the user in URL sharing, and design a similarity

measurement to quantify similar behaviors between users.
• Second, we construct a user graph where nodes are users who

have posted URLs and then identify user groups from the graph.
• Then, we extract group-level features to characterize organized

user groups and organic user groups.
• Finally, we build a classifier for distinguishing organized and

organic user groups.
We tackle each of these steps in turn, as follows.

3.1 Modeling URL Sharing
URL sharing on Twitter is fundamentally different from other

popular activities such as tweeting, re-tweeting, and following. To
systematically investigate users with similar behaviors of URL shar-
ing, we model the three factors in URL sharing: the user, URL, and
the action of posting. In the meanwhile, we need to pay attention
on the following three issues. First, we should consider all URLs
every user has ever posted on Twitter so that our model is gen-
eral. Second, we should design a measurement that can quantify
user similarity in URL sharing. Third, it should take the URL post-
ing behavior into account. Such a measurement should be more
specific towards URL sharing than other traditional user similarity
based on profiles, social neighborhood, tweet content, and so forth.
Therefore, we aim to model users engaged in URL sharing with
two facets in mind: (i) Which URLs a user has ever posted; and (ii)
How (s)he posted them.

3.1.1 User, URL, and Posting
Our key idea is that, in terms of the posting behaviors, a user

can be characterized by all the URLs he has posted and how often
he has posted them. For instance, a user who likes sports tends to
share more URLs linking to sports websites than URLs of politics
websites. A Japanese user is prone to post more URLs of Japanese
websites than English websites. Two users who may have a real-

istic social relationship can have distinct tastes and preferences in
URL sharing, but their posting behaviors (especially the posting
frequency of different URLs) may reflect such a scenario. It is even
more prominent for strategically organized users.

Formally, suppose we have a set of m usersU = {u1, u2, ..., um}.
If ui, in total, posted k different URLs v1, v2, . . . , vk, we define
such an associated URL set of ui as pui = {v1, v2, . . . , vk}. By
aggregating all users, we get a URL set V = {v1, v2, ..., vn} =⋃

ui∈U pui . Therefore, each pair (ui, vj) can be seen as an action
of posting a URL.

We introduce the function f(ui, vj) that quantifies such a post-
ing of vj by ui. Here, we give a straightforward definition f(ui, vj) =
PostingCount(ui, vj) where PostingCount(ui, vj) represents
the concrete posting count of every pair (ui, vj). Given a user
ui ∈ U , we can represent ui by an n-dimension vector ui =
(f(ui, v1), f(ui, v2), . . . , f(ui, vn)).

3.1.2 User Similarity in URL Sharing
We have two considerations to design a user similarity measure

in URL sharing. On the one hand, if both users have posted over-
lapping URLs, the more intersections they have, the closer they are.
On the other hand, we want to take the posting count into account.
If two users posted the same URL many times, we reward the sim-
ilarity between them. If not, we penalize them if they have quite
distant posting counts for the same URL they have posted. Thus,
we propose a measurement of user similarity defined as:

sim(ui, uj) =

n∑
k=1

ln(min(f(ui, vk), f(uj , vk)) + 1)

|f(ui, vk)− f(uj , vk)|+ 1
(1)

We sum over all URLs to favor those pairs having posted many
URLs in common. We pick the smaller posting count among two
users (min(f(ui, vk), f(uj , vk))) as the pair-level scale of the post-
ing count, and take the logarithm considering it can be quite large.
We put the difference of posting counts as the denominator. We
ensure a URL can contribute towards the similarity only if it was
posted at least once by both users, yet it’s different from traditional
“cosine-like” measures as we explicitly emphasize the penalization.

3.2 Identifying User Groups
Given the definition of user similarity, the next question is how

to find those users having similar behaviors of URL sharing. Given
a set of users U = {u1, u2, ..., um}, the task of user group identi-
fication is to find a collection of user groups C = {c0, c1, . . . , ck}
where ∀ci, cj ∈ C, ci, cj ⊂ U and ci ∩ cj = ∅.

The user similarity function can only locally measure the pair-
wise connection. Therefore, if we want to globally consider all
possible users, adopting a graph structure is a natural choice. Ex-
tensive existing algorithms can partition a graph into connected
components, which can fit our concept of user group here. In gen-
eral, a user graph G = (V,E) can be defined by V = U and
E = {(ui, uj)|∀ui, uj ∈ U , weight(ui, uj) = sim(ui, uj)}.
However, if we consider all possible user pairs, the resulting graph
can be huge: it will have only one connected component where
most connections are weak. Hence, we need a specific version of a
user graph upon which we can extract our interested user groups.

3.2.1 The kNN User Graph
If we simply set a global threshold to filter out low-weight edges,

we may lose important information. For example, the users from
an organized group unnecessarily (and usually do not) post many
URLs of popular websites — they have their own targets to spread.
As a result, those users may be excluded from the graph due to the



lack of overlapping URLs with others, and finally we may obtain
only a few big components in which people share popular websites.

Since we are interested in those organized users, our graph model
should be able to grasp those “abnormal connections”. Organized
users do not often share various URLs, whereas the nature of coor-
dination leads to their locally firm neighborhoods within the group.
To retain such “conspiracies” as much as possible, we require a
model that emphasizes the mutually steady neighborhood. Thus,
we adapt the model of k nearest neighbor (kNN) graph.

The kNN user graph connects ui and uj only if ui is among the
k-nearest neighbors of uj . Such a restriction retains only those k
strongest neighborhoods, with less emphasis on the edge weight.
A formal definition of the kNN user graph G = (V,E) is V = U
and E = {(ui, uj) | ∀ui ∈ knn(uj), ∀uj ∈ knn(ui)}. Here,
knn(ui) is a function defined as {uj |∀uj ∈ neib(ui), sim(ui, uj) ∈
maxk({sim(ui, uj)|∀uj ∈ neib(ui)})}, where neib(ui) is the
set of ui’s neighbors and maxk(S) returns the k largest elements
given S. Now, since any node can have k neighbors, a group of
users who post unusual URLs can still form a big component.

3.2.2 Extracting User Groups
It is a non-trivial task to extract a collection of user groups from

the user graph. The concept of connected component in graph the-
ory naturally matches our concept of user group, but we need two
more considerations. First, we require that every group should have
a compact size. Hence, we discard those small connected compo-
nents (e.g., fewer than five members), and decompose those large
components into smaller ones. Second, we hope the partition al-
gorithm to be general, i.e., having been proved effective and effi-
cient on many different types of graphs. Thus, we choose the well-
known Louvain method [2], which is one of the most widely-used
algorithms in community detection [8].

The Louvain method is a greedy algorithm to maximize the mod-
ularity of a graph structure. It starts by locally optimizing modular-
ity for small communities, and then iteratively repeats to aggregate
until reaching a maximum of modularity. Though the modularity
optimization problem is known as NP-hard, the Louvain algorithm
can run in O(n logn) in most practical cases so that it already has
many mature implementations. Its maximum modularity ensures it
conservatively segments big components only when it does contain
multiple modularities.

3.3 Characterization: Organized vs. Organic
Given a collection of user components (groups) that we have ex-

tracted, our ultimate goal is to systematically distinguish organized
and organic user groups. But before that, we need to characterize
these two types of groups. Suppose we have a group of users who
have similar behaviors of URL sharing, we want to feature to what
degree they have organized behaviors when posting URLs.

First, we should ensure our features build upon the group level.
Our biggest interest is the collective user behavior, which is fun-
damentally different from individual spamming or sybil behavior.
Second, our features should target the behavioral signals of post-
ing. We have seen in Figure 4 how easily the posters manipulated
their tweet content to disguise themselves. Moreover, they unnec-
essarily follow each other as long as they post the same URLs. So,
our insight here is those traditional features based on either text
content or network structure become vulnerable for the organized
user group in our context. On the contrary, what they cannot cover
are the URLs they posted (they hope more exposures after all), the
time-stamps they posted (they have to leave the records anyway),
and their own profiles (they use public profiles so that others can
see their postings). Therefore, in this section, we introduce nine

group-level features that cover three posting-related aspects: posted
URLs, posting time, and poster profile.

3.3.1 Posted URL-based Features
Our motivation is that, intuitively, the users in an organized group

usually have a clear goal of promoting certain URLs. Thus, they
have a relatively narrow selection of URLs they post, and each URL
gets high-volume postings. Instead, an organic group usually posts
a variety of URLs each of which has reasonable amounts of expo-
sures. Therefore, we come up with two group-level features that
capture the diversity of the posted URLs.

Suppose we have a user group c = {u1, u2, . . . , uk}, and we
know the set of URLs posted by every member, i.e., pui . Thus,
we can extend it to the group level, as well as the posting count
f(ui, vj). Both can be formulated as the following:

pci = ∪uj∈cipuj (2)

f(ci, vj) =
∑
ui∈ci

f(ui, vj) (3)

Based upon these definitions, we provide the following two posted
URL-based features:
• Average Posting Count. We can calculate the average posting

count per URL by the ratio of |pc| and
∑

vj∈pc
f(c, vj). By

our motivation explained above, we expect organized groups
have higher values of such feature than organic ones.
• URL Posting Entropy. Entropy is an important measure of un-

certainty in information theory. Here, in our case, to describe
the diversity of posted URLs in a group, we extend it to URL
posting entropy, computed as:

H(c) = −
∑

vj∈pc

f(c, vj)∑
vj∈pc

f(c, vj)
log

f(c, vj)∑
vj∈pc

f(c, vj)
(4)

And based on the same idea, we suppose that organic groups
have larger URL posting entropy than organized .ones.

3.3.2 Posting Time-based Features
One of the most important posting behavioral signals is the post-

ing timestamp of every tweet. The poster has no access to tamper
such information, making it a potentially robust feature. For each
poster, we can collect a posting time series so we can compute all
the posting intervals, defined as the temporal differences between
consecutive posting timestamps. Our motivation here is: with the
goal of promoting or advocating, the users from an organized group
usually post tweets in a similar frequency, and the intervals tend to
be short as they are eager to rapidly increase the exposures of their
URLs. Therefore, we propose two group-level posting interval re-
lated features, measuring both the quantity and the deviation.
• Posting Interval Median. For every user, we can always quan-

tify the posting interval by some temporal unit. Then we get the
individual posting interval median by taking the median among
all intervals. We use median rather than mean mainly because it
is more robust to outliers. Moreover, since we care more about
the group level, we take a further median over all members in a
group. As mentioned, we expect organized groups have shorter
interval medians than organic ones.
• Posting Interval Deviation. As said, our inference is that the

organized accounts have similar posting manners, or even are
bots manipulated by the same person. Thus, we can compute
the group-level posting interval deviation given the individual
interval median. Since an organic group is likely to post more
randomly, we expect organic groups have larger deviations.



3.3.3 Poster Profile-based Features
Compared to an organized group, our main motivation here is

that the users in an organic group have more various demographics.
Given a group of organized accounts, if their goal is improper (e.g.,
advertising, spamming), they are mostly managed (like sybils) or
hired (like for-pay turkers) by the same agent so they have close
demographics. Even if their goal is relatively legitimate (e.g., pro-
paganda, voting), their conspiracy attributes their enthusiastic in-
terests on some common subjects, which can be reflected on their
profiles to certain degree, too.

The profile information is one of the best publicly-available re-
sources we can utilize to infer the diversity of demographics. We
reify it into three aspects: total number of posted tweets, account
registration date, and followers (friends) count. We calculate the
group-level deviation of the total number of tweets, of the followers
counts, and measure the average interval of the registration time.
• Tweets Counts Deviation. We count the total number of tweets

an account has posted ever since the beginning, and take the
deviation among all accounts in a group. The larger deviation
means the more variety, so we expect an organic group has a
larger tweets counts deviation than an organized one.
• Followers Counts Deviation. We record the count of followers

for every user in a group. The count can be dynamic over time
so we take the median. Then we take the deviation among all
members. We believe the count of followers is more reliable
than of friends simply because it is more difficult to fabricate.
Again, we expect organized groups have lower deviations.
• Registration Interval Median. It is similar to how we computed

the posting interval median. We look into the registration date
of each user so that we have a registration time series for every
group, and then we take the median. Our idea is that the regis-
tration interval is one of the most direct evidences for those fab-
ricated or hired accounts. We prefer median to mean because
the latter one is too sensitive to outliers. We expect organized
groups have smaller registration interval medians than organic
groups, similar to the reason for the posting interval median.

Then, we come up with two more features related to the regis-
tration date. We define the user lifespan by counting the temporal
span, in terms of days, from the day an account registered to his lat-
est posting date in our dataset. The motivation here is that the user
lifespan is one of the most important user profile information and
it should be quite random for users from an organic group. Instead,
the organized users are created for certain URL-promotion mission,
so they all tend to have short lifespans. Another idea is that Twitter
may already have detected the suspicious behaviors from organized
users and suspended them, leading to short lifespans too. Hence,
we provide two features to characterize the group-level user lifes-
pan via the quantity and the deviation.
• Poster Lifespan Median. We take the median of all accounts’

lifespans in a group. As said, we suppose an organized group
generally has a shorter poster lifespan median.
• Poster Lifespan Deviation. Every member from a group has

a lifespan so we can calculate the group-level deviation. We
expect organic ones have larger lifespan deviations.

3.4 Classification: Organized vs. Organic
Recall that our ultimate goal is to automatically discern orga-

nized and organic user groups, in the context of URL sharing. Given
the features in the previous section, it becomes quite natural that we
embed them into a classification framework. To choose appropri-
ate classification algorithms, we should guarantee: (i) the algorithm

has been widely used and maturely implemented; and (ii) we need
to test on multiple algorithms.

We choose 4 well-known classification algorithms in our frame-
work: Random Forest [4], Naive-Bayes Decision Tree [15], Se-
quential Minimal Optimization [19], and Additive Logistic Regres-
sion [10]. We notate them RandomForest, NBTree, SMO, and Log-
itBoost, respectively. NBTree is a decision tree learning algorithm
in which the tree leaves are naive Bayes classifiers. SMO algorithm
is used for training the support vector classifier and has been im-
plemented in many existing SVM libraries like LIBSVM [6]. Log-
itBoost can be seen as a variant of AdaBoost [9] that adapts logistic
regression techniques. All of them have mature implemented pack-
ages. With different theoretical foundations, these four candidates
can well-serve the testing algorithms in our experiment.

4. EXPERIMENTS
We present our experimental studies in this section. We first in-

troduce our data. Then, we describe how we identified all the user
groups we formulated. Third, we provide details how we collected
the ground truth. Finally, we show our analysis results towards dis-
tinguishing organized versus organic user groups.

4.1 Data
We deployed a tweet crawler via the official Twitter Streaming

API from October 2011 to October 2013. Since our main interest
is URL sharing, we only collect tweets that contain URLs. The
API provides a 1% sample of all published tweets, but our 24-
month uninterrupted crawling gives us 1.6 billion “raw URLs”
posted by 136 million accounts. Raw URLs are those URLs in
their original format when posted, without any further processing
(e.g., resolution) after being crawled. Due to either irregular typing
or the URL shortening service, many raw URLs become inacces-
sible or actually link to the same webpage. For instance, we have
both WWw.TwiTtEr.com and tWITTER.com/ in our dataset,
as well as bit.ly/1a8jUOr and bitly.com both of which
direct to the same destination.

To address such an issue of URL variants, we need to resolve for
all URLs. Since resolving billions of URLs can be expensive, we
focus on URLs that appeared at least 50 times. We resolve through
standard HTTP requests and record the landing long URLs. The
summary of our dataset is shown in Table 1: 47 million accounts
have shared 1.6 million raw URLs within 445 million tweets. 82%
raw URLs get resolved to nearly 1.2 million distinct long URLs.
869 thousand accounts have generated at least 50 postings.

Given a resolved long URL, we ignore all its post parameters as
a reasonable approximation to the URL. We call the remaining part
URL domain name and we obtain 166,000 unique ones. Compared
to a complete URL, we believe the domain name has better inter-
pretability because it can conceptually represent a “website”. For
users, we exclude those who just occasionally share URLs, i.e., less
than 50 postings. To model the user, we decide to also use URL do-
main name as the dimension. One reason is that using original long
URL may result in extremely sparse user vector given enormous di-
mensions. Another reason is a user group can be better interpreted
if each member corresponds to some “website” instead of a long
HTML page link.

4.2 Collecting User Groups
To construct the kNN user graph, a non-trivial issue is how to

choose an appropriate k. We adopt the idea in [5] to pick k roughly
equal to ln(|U|). Thus, 869,571 users give us k of 14. In the end,
we obtain a user graph containing 216,523 nodes and 3,862,116
edges. This graph contains 12,251 connected components most of



Table 1: Dataset Summary

# Raw URLs (Resolved) # Tweets # Unique long URLs # Unique domain names # Posters (Having at least 50 postings)
1,617,234 (1,327,729) 445 million 1,199,930 166,107 47,658,839 (869,571)

which are small: only 2,150 components have no less than 5 nodes
and just 36 components are bigger than 100. We filter out those
tiny components smaller than 5, and exhaustively decompose (if
possible) large ones bigger than 100 to ensure maximal modularity.
Eventually, we identify 2,775 groups, together including 192,719
users. Among those 2,775 groups, we find around 40% groups are
smaller than 10, and nearly 90% groups are bounded by 100 users.
The largest one has 14,080 users.

How can we find a way to see whether our identified user groups
are “meaningful”? And how to interpret and measure it here? Nat-
urally, the most direct evidence is our groups maintain closer man-
ners of URL sharing behaviors than “a random user group”, yet
we need a way to measure it. The entropy of posted URLs in a
group is one of the most typical properties that capture the similar
URL sharing behavior, as explained in Section 3.3. Thus, first, we
simulate a collection of user groups with the exact same sizes via
randomly picking users from our dataset. Then, we compare the
distributions of the URL posting entropy for our collected groups
and the simulated ones. The result is in Figure 5, and we clearly
see the difference. Around 20% of our groups have a zero entropy,
i.e., all the members posted the same one URL all the time, and
the median is about 1.5. On the contrary, none of the simulated
groups have a 0 entropy, and the median is around 4 while 80% of
our groups are below it.

Figure 5: The URL posting entropy CDF of our collected user
groups, compared with a collection of simulated random groups

Besides the natural evidence from those URL-posting related
features, we hope to see more different evidences showing our col-
lected groups are meaningful. Here, we adopt the group-level lan-
guage usage entropy to measure certain “homophily” among all
members in a group. The intuition is that if a set of users have
similar selections of URLs (embedding in their tweets), then their
language choice in their tweets should be similar. Conversely, two
users who have distinct language backgrounds would hardly over-
lap many URLs. Therefore, for each group, we aggregate all the
published tweets (with or without URLs, having valid language
usage information), count the usage frequency, and calculate the
entropy. To compare, again we simulate the user groups with the
exactly same sizes. We compare their distributions in Figure 6, and
find the contrast is apparent.

Figure 6: The language usage entropy CDF of our collected user
groups, compared with a collection of simulated random groups

About 30% groups in our collection whose language entropy is
0, i.e., all members always use the same language writing tweets.
90% of our groups have entropies less than 2.0. In contrast, in the
simulated collection, almost none have 0 entropy, and the median
is between 1.5 to 2.0 where 80% of our groups are below it. This
comparison shows the users in our identified groups have much
similar language usages. Recall that our method of computing user
groups has not used any user information on language usage, which
demonstrates the potential of extending our approach into general
problems related to user similarity.

4.3 Ground Truth
To test our proposed features in Section 3.3 on characterizing

organized and organic groups, we need a set of groups with known
labels of either organized or organic. Since there is no such existing
ground truth, we randomly pick 1,000 of our identified groups, and
manually check each of them as follows.

4.3.1 Manual Labeling Setup
Our labeling for each group is a two-tier task: (i) categorizing the

content of the URLs the members posted and inferring the purpose
that they posted URLs; (2) and rating to what degree we think their
behaviors were organized or organic.

The rating task directly connects to our interest here, but the cat-
egorization task can help us interpreting the similar user behaviors.
Our focus is to collectively seek for group-level evidence that re-
flects the coordinated behaviors of posting URLs, not just individ-
ually inspecting each account. In particular, we examine the ac-
counts in each group through looking into their: (1) tweets (e.g.,
all the posted URLs, landing webpages, and tweets that contain
URLs); (2) account profile (e.g., self-introduction, name, avatar,
language, geo location); and (3) posting pattern (e.g., the URL
shortening pattern, textual pattern in tweets, posting timeline pat-
tern). If a group is too large, we randomly pick at least 5 users with
accessible information to judge. Judges make decisions without
knowledge of the proposed features in Section 3.3.

To measure to what extent a group is coordinating can be subtle.
Our ratings will be the scores between 1 to 5, the larger the more



Figure 7: Example users whose group we categorize into “spam” and think is organized

Table 2: The distribution (percentage) of twelve categories that we have labeled for our user groups

advertising spamming app-auto-generated entertainment social-media adult news blog follow-back public-information propaganda voting
318 (41%) 195 (25%) 171 (22%) 66 (8%) 33 (4%) 22 (3%) 20 (3%) 10 (1%) 8 (1%) 6 (0.8%) 6 (0.8%) 4 (0.5%)

suspicious towards an organized group. Then, we transform our
scores to the label of either organized or organic. It is an organized
group if its score is above 3, and organic if below 3. If its score
is 3, we inspect it again. By such a 5-scale rating, we avoid curtly
labeling a group is organized or organic.

We assign 3 annotators the exactly same set of 1,000 user groups,
and separately ask them to manually label each group as organized
or organic. Since the number of our annotators is odd, if the indi-
vidual decisions of our 3 annotators have a clear “major voting”,
we take it as the final result. The rating usually has an obvious
favor (below or above 3), and we accept a category if it has been
mentioned by at least two annotators. Otherwise, a fourth annota-
tor adds a label and a rating. We finalize a category or rating only
when it has two or more endorsements, and count a user group has
valid labels only if it finally obtains at least one category or rating.

4.3.2 Categorizing a User Group
As said, our categorization aims to infer the common intent of a

group of users who have similar URL-sharing behaviors. The idea
is that organized groups have a much clearer goal in common than
organic groups, even though the purpose can be either improper
(e.g., advertising, spamming) or legitimate (e.g., self-promoting,
preaching). In practice, we do find sometimes speculating the in-
tention is not obvious, so we change to summarize the content of
posted URLs and tweets in this case. In the meanwhile, we find
usually categorizing a group is more difficult than rating it, espe-
cially if the members post quite various subjects or many non-sense
words. Finally, among all the 1,000 randomly picked groups we
have judged, 773 ones have been labeled by at least one of the 12
categories in Table 2.

The category of advertising emphasizes the intention of posting
URLs. It includes everything about absorbing viewer’s attention on
the URL, such as marketing, funds-raising, or even self-promotion
of personal websites or uploads. We have seen instances that all
members in a group shared URLs linking to the exactly same news
articles or blogs. We still think such a group is suspicious to adver-
tising. Moreover, the irrelevance between the content of tweets and
the linked webpages can also indicate the poster is advertising, and
one example is shown in Figure 8.

We make the assumption that Twitter’s official suspension indi-
cates spamming activities to some extent. In addition, if the browser
or the shortening service warns when we click into a URL, we be-

lieve it is a spam URL. Other than that, we label spamming if the
URL links to some typical spam webpage of “phishing” or “mal-
ware”. For instance, we categorize a group full of users like the left-
hand two in Figure 7 into spamming, because their posted URLs
point to the phishing website shown in the rightmost subfigure.

Figure 8: Example users whose group is organized

App-auto-generated is a special category. All users in such a
group posted tweets (containing URLs) automatically generated by
some external app or service. Usually it happens when the poster is
unconscious or at least not intentionally doing so, e.g., using own
Twitter account to log in some mobile game. For entertainment, we
find groups of fans who posted URLs about their supported artists
like we have seen in Figure 1, 2, 3. Sometimes they can be voting
(like in Figure 2 and 3), but many are just bonded by fan’s pas-
sion. Other entertainment groups often talked about music, video
game or anime. News are mostly about politics and technology.
Propaganda usually relates to politics and religion.

Social-media and blog stress the source website. These websites
can host various webpages, and typical examples are youtube.
com, instagram.com, and blogspot.com, etc. This also
explained we found many such groups. The groups of public-
information posted links of public information like traffic or weather.
The posters usually are accounts managed by regional institutions.

Among all these 12 categories, some are capturing the purpose
of posting (e.g., advertising, spamming, propaganda), and some
are summarizing the content of posting (e.g., entertainment, social-
media, news). A user group can have more than one category, e.g.,
mixed with spam, adult, and advertising. In total, from Table 2 we
can see advertising and spamming together take up 66% appear-
ances of all categories. This observation reflects our idea that the



kNN graph model, emphasizing the locally pairwise connection,
can potentially retain many abnormal behaviors.

Another interesting finding is the category of app-auto-generated
surprisingly occupied 22%. Its substantive existence leads to a new
thread for future work: the user-unconscious posting behavior in
social media, caused by some external application. What security
issues could it raise? Do most posts contain URLs? If yes, can our
study of URL sharing be an entry point?

4.3.3 Rating a User Group
For rating, what has been posted matters less, and we care more

on who have posted and how. As mentioned, we look over the pro-
files of all accounts from the same group. We seek for similar pat-
terns between them in self-introduction, name, avatar picture, etc.
We rate above 3 if we see highly overlapped textual patterns in their
tweets such as the posting date, hashtag, language and URL short-
ening. Figure 8 includes two accounts with identical posting time-
line, tweets content, and similar names. Their group is the instance
that we rate 5. It becomes even more dubious when the members
always retweet each other’s tweets. A typical “rate-5” example is
in Figure 7. The users, who have extremely close posting timelines
and names, always retweeted from the other account.

Our rating focuses on the collective behavioral evidences of co-
ordination, independent with the posting purpose. For example,
we find most groups of entertainment are users spontaneously talk
about the subjects they like, but it becomes suspicious when the
URLs link to the same music video page on Youtube. Most groups
of public-information have fairly legitimate goal of posting, but
naturally many accounts are centrally managed so they still have
many common patterns.

If all members in a group have been suspended (and we label
it as a spamming group), we cannot access their accounts so we
conservatively leave them unrated. For those groups of app-auto-
generated or social-media, we mainly judge their postings are whether
advertising-oriented or unconscious, and we usually find most of
them fall into the latter scenarios. The groups of news, social-
media or blog often share popular news, blog article, and online
forum. We rate them low except we find they advertised their own-
related (person or institution) webpages.

4.4 Experiments: Organized vs. Organic

4.4.1 Analyzing Our Labeling
As introduced, we finalize the labeling result for each user group

via adopting the major vote over our 3 annotators. We find 986
groups that have been labeled at least one of the categorization and
rating results, and 602 ones that received both. The fourth annotator
agreed on 871 (88.3%) and 520 (86.4%) ones, respectively. Finally,
we obtain 815 groups with ratings where 325 (40%) are organized
and 490 (60%) are organic.

Those 602 groups with both information of category and rat-
ing give us the opportunity to understand the following questions:
Which subjects our collected groups mostly talked about? What
kinds of content the organized groups and organic groups usually
posted? Are they different? Can we see a relation between the
levels of organized behavior and the types of URL?

We aggregate the average rating each group received by the group
category, and plot the CDFs of our ratings for all 12 categories in
Figure 9. We can see the distributions take on clear gradients. If
we look at the median, 12 categories are evenly divided by the rate
of 3. The groups of spamming, adult, and follow-back are most
likely as organized, followed by advertising, public-information,
and propaganda whose distributions are quite close. Then, blog,

voting, entertainment and news have similar distributions, most of
whose groups are organic. Social-media and app-auto-generated
groups are the least likely organized (recall how we rate them).
These observations reveal the connection between the level of or-
ganized behavior and the inherent content of different categories.
For spamming, adult, follow-back, advertising, they essentially in-
clude those improper ingredients that motivate more organized be-
haviors. On the contrary, the category of app-auto-generated is
user-unconscious, and blog, news, entertainment and social-media
naturally contain more legitimate activities, so their groups tend to
be more organic.

4.4.2 Classifying Organized and Organic Groups
We are ready to build the classifier. In terms of posting behav-

iors in URL sharing, can our proposed group-level features distin-
guish the organized and organic groups? Which features work best?
Which classification algorithm performs best?

To address the issue of class imbalance, we give a hybrid solu-
tion that combines undersampling of the majority class and over-
sampling the rare one. In the end, we have 406 organic and 406
organized groups, and we normalize the values of each feature to
the interval of 0 to 1. To evaluate, we do 10-fold cross validation
and focus on precision, recall, F-measure, and ROC area. We first
consider the two classes are equally important and take the average.
The results are in Figure 10.

Figure 10: Evaluation results by four classification methods

The performance achieves around 0.8 no matter which method
or measure we choose. RandomForest works best with high F-
measure (0.836) and ROC area (0.921). All the results suggest the
potential of our approach for distinguishing organized and organic
user groups, purely based on behavioral signals in URL sharing.

In reality, detecting organized user groups becomes more impor-
tant. We especially want to find out organized groups as many as
possible, corresponding to the measure of recall. Thus, we further
show the recall result for the class of organized in Figure 11. We
see those two decision tree based algorithms outperform the other
two, and even better than their own averaged results in Figure 10.
This observation hints us we can prioritize decision tree based al-
gorithms when we solve such a problem in practice.

Another investigation is the feature impact. We select two pop-
ular measures — Chi-squared and Information gain — to evalu-
ate each feature with respect to the class. The full ranking is in
Table 3. We see the rankings by chi-square and information gain
are almost identical. We have 3 interesting discoveries. First, the
two URLs-based features always rank the top 3. This suggests the
URL-related property is the most reliable aspect when we study
URL sharing. Second, if we have two features from the same type
(e.g., lifespan deviation and median), the deviation feature always
has more influence than the median one. One possible explanation
is that the median value is too sensitive compared to the dispersion
value. This tells us those features derived from a relative measure
can be more robust than those from an absolute measure. Third,



Figure 9: The CDFs of our ratings for all 12 types of group categories

Figure 11: The Recall results for the class of organized group by
four classification methods

the feature of poster lifespan deviation performs the best. It favors
our intuition in Section 3.3: User lifespan is one of the strongest
signals to capture the diversity of poster demographics.

Table 3: The rankings of the feature impact measured by Chi-
Squared and Info Gain

Chi-Squared Info Gain
Poster Lifespan Deviation Poster Lifespan Deviation

Average Posting Count Average Posting Count
URL Posting Entropy URL Posting Entropy

Registration Interval Median Registration Interval Median
Poster Lifespan Median Tweets Counts Deviation

Tweets Counts Deviation Poster Lifespan Median
Posting Interval Deviation Posting Interval Deviation
Posting Interval Median Posting Interval Median

Followers Counts Deviation Followers Counts Deviation

We conduct two more informative comparisons of organic ver-
sus organized groups. One is about the number of distinct URL
domains that a group has posted. Our idea is that organized groups
tend to have a much tighter selection of URLs to post than organic
groups, mainly due to their specific common goal of posting. In
Figure 12, we find the significant gap between two classes. More

than 20% of organic groups have mentioned at least 100 different
URL domains in their tweets, and yet the median for organized
groups is merely no more then 10. 20% of organized groups have
posted only one kind of URL domain all along.

Figure 12: Organized vs. Organic: # URL domain names

The final exploration comes back to Twitter itself. We would like
to see how the Twitter’s official monitoring reacts for the two types
of similar user behaviors in URL sharing. So, we calculate the
group-level suspension percentage in each of our groups, i.e., how
many accounts in a group have been suspended. Recall that we
have excluded those groups whose members were all suspended.
We have two interesting observations from Figure 13. On the one
hand, the distributions of our two types of groups are quite discern-
ing. We find 80% of organic groups have less than 10% suspension
percentage, where 80% of organized groups are more than it in
contrast. Twitter’s suspension is for individuals, yet it still reflects
on our user groups formulated through URL sharing. On the other
hand, we find the official suspension still has limited impact on the
organized posting behavior: the median is just around 30%. These



findings suggest the complementary potential of our investigations
on organized user behavior in URL sharing.

Figure 13: Organized vs. Organic: group-level suspension ratio

5. CONCLUSION
In this paper, we are interested in exploring users with similar

behaviors when they share URLs on Twitter. While some users or-
ganically share common interests on certain websites, some are or-
ganized to aggressively promote the same URLs towards a common
goal. This motivates us to tackle the problem of distinguishing or-
ganized and organic users in the context of URL sharing. Focusing
on the behavioral signals of URL-posting, we propose a four-step
approach to model, identify, characterize, and classify those two
types of user groups. We test our approach on four different clas-
sification algorithms and in most cases it performs good in terms
of precision, recall, F-measure, and ROC area. Random Forest al-
gorithm works best with 0.921 ROC. Our experimental analysis
demonstrated the capability of our approach for (i) understanding
users with similar URL-sharing behaviors; and (ii) distinguishing
the level of organized user behaviors in URL sharing.
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