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ABSTRACT
Understanding the spatial preference of mobile and web users is
of great significance to creating and improving location-based rec-
ommendation systems, travel planners, search engines, and other
emerging mobile applications. However, traditional sources of spa-
tial preference – which reflect the patterns of geo-spatial interest of
large numbers of users – have typically been expensive to collect,
proprietary, and unavailable for widespread use. In this paper, we
investigate the viability of new publicly-available geospatial infor-
mation to capture spatial preference. Concretely, we compare a set
of 35 million publicly shared check-ins voluntarily generated by
users of a popular location sharing service with a set of over 400
million private query logs recorded by a commercial hotel search
engine. Although generated by users with fundamentally different
intentions, we find common conclusions may be drawn from both
data sources – (i) that the relative geo-spatial “footprint” of differ-
ent locations is surprisingly consistent across both; (ii) that meth-
ods to identify significant locations results in similar conclusions;
and (iii) that similar performance may be achieved for automati-
cally identifying groups of related locations. These results indicate
the viability of publicly shared location information to complement
(and replace, in some cases), privately held location information.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; J.4 [Computer Application]: Social and Behavioral Sciences

General Terms
Algorithms, Experimentation

Keywords
Location-based services, checkin, queries, spatial data mining

1. INTRODUCTION
Social scientists and geographers have long been interested in

modeling the linkages and flows between locations for better under-
standing a variety of geo-spatial issues including: why and how mi-
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gration flows among countries, regions, and cities; to model com-
merce flows and explain trade relations among trading partners; to
design more efficient roadways and traffic forecasting; to develop
epidemiological models of disease spread; and so forth. This spa-
tial interaction is a cornerstone of geographic theory, “encompass-
ing any movement over space that results from a human process”
[9]. Traditional methods for modeling these flows and the spa-
tial preference of users in one location for another location have
typically relied on expensive and hard-to-maintain data sources,
like the 10-year US Census, which collects massive statistics about
the connections between people and between cities in the United
States.

As a point of excitement, the rise of the web over the past ⇠20
years has seen a commensurate rise in the low-cost collection of im-
plicit linkages and flows among users and locations. For example,
millions of people share their location information passively while
using on-line services like video streaming services (e.g., Amazon
Instant Video, and Netflix), search engines (e.g., Google, Bing), e-
commerce sites (e.g., eBay, and Amazon), and travel planning sites
(e.g., Orbitz, Expedia, and Priceline). By tracking IP addresses,
plaintext queries, and other location identifiers, these proprietary
services have been harvesting huge databases of spatial interaction.
For example, by aggregating user search and purchase decisions,
Amazon can identify the interest level of users in one location
for another location (e.g., more customers in California are buy-
ing Texas guidebooks, which may be an early indicator of future
migration). However, the excitement over these sources of spatial
interaction must be tempered by the proprietary nature of the data.

Fortunately, the past few years have seen the widespread volun-
tary sharing of location information by users of location-sharing
services. As GPS-enabled devices have become ubiquitous, users
of services like Twitter, Foursquare, and Gowalla have begun ac-
tively sharing fine-grained spatial information about their life, in-
terests, and footprints in real-time. This voluntary sharing provides
unprecedented opportunities to study people in different regions,
and the connections between people and places. In comparison
with expensive, proprietary, and often times unavailable resources,
this publicly-shared data offers the promise of new methods appeal-
ing not only to geographers and social scientists, but to computa-
tional researchers and practitioners seeking to create and improve
location-based recommendation systems, travel planners, search
engines, and other emerging mobile applications.

Hence, in this paper, we investigate the viability of new publicly-
available geospatial information to capture spatial preference. Con-
cretely, we explore the spatial preference of users from two large-
scale datasets: a set of private query logs for hotels automatically
recorded by a commercial on-line hotel search engine (Orbitz), and
a set of publicly available check-ins voluntarily generated by users
from a typical location sharing service (Gowalla). The check-in



data includes over 35 million check-ins from 1.2 million users from
Gowalla. The hotel query log data includes all the queries and
bookings for hotels from the hotel search engine in 2011, which in
total includes over 400 million records from over 20 million unique
IPs. We explore in this paper the commonalities and the differences
between these two sources of spatial preference – generated by dif-
ferent user bases with fundamentally different intentions.

Concretely, this paper makes three contributions:
• First, we model the spatial preference of users across both datasets

and measure the relative geo-spatial “footprint” of different lo-
cations via three localness metrics: the mean contribution dis-
tance, the radius of gyration, and the city locality. We find
that though the absolute values of these metrics differ across
datasets, the relative values are surprisingly consistent.

• Second, we develop a PageRank-like method for identifying
spatially significant locations based on the spatial preference
of users. Through a random walk over the spatial preference
graph linking locations, we find that both datasets reveal similar
significant locations.

• Third, we investigate the potential of mining related clusters of
locations from both datasets based on the spatial preferences
of users. In a comparison against a ground truth of 800 hand-
curated lists of related cities, we find similar performance across
both public and private datasets.

These results indicate the viability of publicly shared location in-
formation via checkins to complement (and replace, in some cases),
privately held location information such as that in proprietary query
logs. The potential of publicly shared location information serving
as a substitute for privately held information could provide new av-
enues of research for social scientists, geographers, as well as com-
puter scientists interested in the geo-spatial flows of ideas, memes,
and geo-targeted applications.

2. RELATED WORK
Researchers have been investigating the spatial properties of large-

scale data for many years. In the context of query logs, there have
been several efforts typically targeted at the spatial properties re-
vealed through text-based queries to large search engines. For ex-
ample, Backstrom et al. [2] introduced a model of spatial variation
for analyzing the geographic distribution of queries using Yahoo’s
query logs. The authors proposes a generative probabilistic model
in which each query has a geographic focus on a map (based on
an analysis of the IP-address-derived locations of users issuing the
query). Gan et al. [7] conduct an analysis of 36 million queries
from AOL, and identified typical properties for queries with a geo-
graphic intention. In addition, they built a classifier that can accu-
rately classify queries into geographic and non-geographic queries.

With the rise of online social networks, there has been a similar
rise in analyzing the spatial patterns revealed. For example, Face-
book researchers [3] observed that Facebook users have more local
friends than distant friends, and that they can predict a Facebook
user’s location with high accuracy given the location for the users’
friends. McGee et al. [12] investigate the relationship between the
strength of the social tie between a pair of friends and the distance
between the pair with a set of 6 million geo-coded Twitter users
and their social relations. They observed that users with stronger
tie strength (reciprocal friendship) are more likely to live near each
other than users with weak ties. Hecht et al. [10] study the local-
ness of user generated content in Flicker and Wikipedia, and they
observe that the content generated by Flickr users is more local
comparing to the content generated by Wikipedia editors. A host
of related work has also focused on mining interesting trajectories
[19], modeling periodic behaviors and mobility patterns [5, 8, 4],

Figure 1: Distance versus Frequency: Check-ins tend to be
more local; 80% of all check-ins are within 100 miles of a user’s
home location. In contrast, query (and booking) locations are
more distant; only 25% are within 100 miles of a user’s home
location.

and studying the correlation between people’s social relations and
their mobility patterns [6]. Others have focused on location recom-
mendation at the point of interest (POI) level based on queries and
bookings for hotels [13], and check-ins in location sharing services
[17, 18, 16]. In the granularity of city-level, researchers have stud-
ied the interaction between cities via on-line social relations [11].

3. DATA
As the basis of this investigation, we consider two large-scale

datasets: a set of private query logs and a set of publicly available
check-ins.

3.1 Private Spatial Resource: Query Logs
The hotel query log data includes a large set of both queries and

bookings for hotels randomly sampled from a commercial on-line
hotel search engine – Orbitz. The dataset includes over 400 million
records, from over 20 million unique IPs all over the world. Each
query (or booking) includes an IP address which can be translated
to a city-level location where the query (or booking) is issued. We
call this the origin location. Each query (or booking) also contains
another city-level location indicating the destination (i.e., the city
where the queried hotel is located).

To focus on legitimate users of the Orbitz search engine, we filter
out IP addresses accounting for an anomalous number of searches
(greater than 2,000 queries each). For example, several thousand
IPs generate from thousands to millions of queries each; most likely,
these are search engine crawlers or bots from other travel search en-
gines). Additionally, we focus on queries (and bookings) originat-
ing from the Continental United States. Considering each unique
IP as a unique user, we consider the corresponding city-level lo-
cation for the IP as the home location for the user, resulting in 69
million queries and 1.1 million bookings.

3.2 Public Spatial Resource: Check-ins
The check-in dataset1 includes over 35 million check-ins from

about 1.2 million users from Gowalla, a popular location-sharing
service. Each of the check-ins includes a fine granular point of in-
terest (POI) location (i.e., where the check-in happened), a times-
tamp (i.e., when the check-in happened), and a piece of short text
(i.e., what the check-in is about). Each check-in’s POI location
links to a particular city, which allows us to group the check-ins
1Please refer to http://infolab.tamu.edu/data for the dataset.

http://infolab.tamu.edu/data


into city-level locations. For each user, we simply consider the city
which has the most check-ins from the user as the home location.

Similar to the query log data, the check-in data also reveals each
user’s interest in other “destinations”, in this case by considering
check-in locations outside of the user’s home location. For exam-
ple, a user from Los Angeles who checks-in in New York City in-
dicates that user’s interest in New York. As in the case of the query
log data, we focus only on locations within the Continental United
States and we filter out users with fewer than 20 check-ins each.
The filtering leaves a set of almost 70,000 users and over 15 mil-
lion check-ins from the users.

3.3 Private versus Public
These two resources – one private and one public – are naturally

quite different. Users of these two services vary in their demo-
graphics since location sharing service users tend to be young with
access to a mobile device, while hotel search engine users are more
often representative of the general public with access to a desktop
computer. And of course, users of these two services have funda-
mentally different goals. Hotel queries reflect a user’s future in-
tent; check-ins reveal a user’s current physical movement. Hotel
query logs are more likely to reveal long-distance travel intentions,
whereas check-ins are typically a more local phenomenon reflect-
ing a user’s interest in local restaurants, bars, and stores [5]. Users
of location sharing services are also intentionally sharing their lo-
cation information, whereas users of search engines are not con-
sciously sharing their location with others (though these search en-
gines may log and analyze the user’s queries, IP address, and other
location-revealing artifacts). With these many differences in mind,
we next turn to an investigation of the spatial preference embedded
in these two sources and whether we can find any commonalities
between them. Finding such commonalities could demonstrate the
potential of publicly shared location information serving as a sub-
stitute for privately held information.

4. EXPLORING SPATIAL PREFERENCE
We begin our investigation by exploring the spatial preference

revealed through both datasets. We model the spatial preference
and measure the relative geo-spatial “footprint” of different loca-
tions via three localness metrics: mean contribution distance, ra-
dius of gyration, and city locality.

4.1 Preliminaries
Each query (or booking) in the private dataset and each check-in

in the public dataset reveals a bidirectional relationship between an
origin location and a destination location. In the case of queries
(or bookings) the origin is the city-level location of the user issuing
the query; the destination is the city-level location of the hotel. In
the case of the check-ins, the origin is the user’s home location
(which we define as the city with the most check-ins by the user);
the destination is the city-level location of the current check-in.

To start with, we are interested in investigating the basic proper-
ties of these origin-destination relationships. For each set of queries,
bookings, and check-ins, we bucket all the distances between ori-
gins and destinations into groups. Figure 1 plots the cumulative fre-
quency of the pairs of origin and destination bucketed into groups
of distance. The patterns of the bookings and the queries are almost
identical to each other, with over 5% of the queries (bookings) for
hotels within 10 miles, and about 30% within 100 miles. On the
other hand, the check-ins are much more local comparing to the
hotel queries (bookings). Over 65% of the check-ins are within 10
miles to the users’ home locations, and over 80% are within 100
miles. This difference is our first sign that these two resources re-
flect fundamentally different usages: that people use hotel search

Table 1: Average Value for Cities’ Localness Metrics
Localness Metric MCD (miles) Rg (miles) CL

Queries 869.346 549.904 0.560
Bookings 809.456 522.644 0.569
Check-ins 380.121 134.477 0.614

engines to look for hotels to stay during their business trips or va-
cations, and people use location sharing services to share the real-
time status of their daily activities.

4.2 Spatial Preference
Given pairs of origin location and destination location extracted

from queries (bookings) and check-ins, we quantify the spatial
preferences for each of the cities with a spatial preference prob-
abilistic distribution. Spatial preference is intended to reflect the
aggregate interest level of users in an origin location for a particu-
lar destination location.

Spatial Preference: Let li be an origin location and let l j be
a destination location. Let S(li) be a set of all pairs of origin-
destination records in the dataset that originate from location
li, and let S(li, l j) be a set which includes all pairs of origin-
destination records that originate from location li with a desti-
nation in l j. Then the spatial preference for location li toward
location l j is:

p(li, l j) =
|S(li, l j)|
|S(li)|

Example: For example, suppose we have 10 total records (either
from the query data or the check-in data) with an origin location
of A. Of these, there are three occurrences of <A, A>, two oc-
currences of <A, B>, and five occurrences of <A, C>. Then, the
spatial preferences for location A toward locations A, B, and C are:
p(A,A) = 3

10 = 0.3, p(A,B) = 2
10 = 0.2, and p(A,C) = 5

10 = 0.5.
Hence, users in location A have the strongest preference for loca-
tion C, and the weakest preference for location B.

Given the definition of spatial preference, we map the spatial
preference originating from four cities across both the private query
data and the public check-in data. Figure 2 highlights the spatial
preference of New York City, Los Angeles, Corpus Christi (Texas),
and West Lafayette (Indiana). In each of the figures, the color and
size of the dots indicate the intensity of the spatial preference from
the origin to the destination: red indicates the top 2% most pre-
ferred cities; blue indicates the top 2% to 20%; cyan indicates the
top 20% to 50%; and yellow indicates the bottom 50%.

As we observe in the figures, the private query data is much
denser compared to the check-in data. This is partially an artifact
of the data collection limits we faced but is also a reflection of the
relative density of these two sources – query logs are inherently a
much larger potential collection than are check-ins. Even with this
difference in density, we note the relative similarity of the spatial
preferences measured across source. People from New York are
most interested in the northeast corridor; people from Los Angeles
are most interested in the west coast; similar observations can be
made for the much smaller locations of Corpus Christi and West
Lafayette.

Additionally, we observe that queries balance their locality with
many distant locations. For example, Figure 2(a) shows that New
Yorkers have many queries for hotels in the New England area,
but they are also interested to travel to the Florida and to the west
coast. Similarly, Figure 2(c) also shows a a balance between lo-
cal queries and for more distant ones. In comparison, the check-in
data – though of a national scale for both New York and Los Ange-
les – is much more local (further confirming the relative localness



(a) New York City (Queries) (b) New York City (Check-ins) (c) Los Angeles (Queries) (d) Los Angeles (Check-ins)

(e) Corpus Christi (Queries) (f) Corpus Christi (Check-ins) (g) West Lafayette (Queries) (h) West Lafayette (Check-ins)
Figure 2: (Color) Spatial Preference for Example Cities. Figures in the left-column are derived from private query logs. Figures in
the right-column are derived from public check-ins. The color and size of the dots indicate the intensity of the spatial preference
from the origin to the destination: top 2% (red); 2-20% (blue); 20-50% (cyan); and the bottom 50% (yellow).

of check-ins versus queries in Figure 1). Queries for hotels are
relatively more local for the two smaller cities, as we can see in
Figure 2(e) and Figure 2(g). In comparison, the check-in spatial
preferences are much sparser and more focused around the origin
location.

4.3 Comparing Localness
Given the spatial preference probabilistic distribution for a spe-

cific location, we can describe each location by measuring its local-
ness. The goal of such a localness measure is to encode the entire
distribution of spatial preferences into a single summary metric. By
evaluating each location, we can directly compare the localness of
locations as described by private query logs and by public check-
ins. Toward this goal, we adopt three complementary measures of
localness:

Mean Contribution Distance (MCD)

Proposed by Hecht et al. [10], the MCD measures the weighted
average of the distances between an origin location and multi-
ple target locations:

MCD(li) = Sl j2S

✓
d(li, l j)⇤ |S(li, l j)|

|S(li)|

◆

where S includes all locations of interest and d(li, l j) denotes
the distance between the origin location li and a target loca-
tion l j. A small value indicates strong localness for a city;
most users in the origin location either query for or check-in
to nearby locations. A large value indicates more global inter-
est; users either query for or check-in to distant locations.

Radius of Gyration (rg)

Adopted for location analysis by Gonzalez et al. [8], the rg
measures the standard deviation of distances between an ori-
gin location and target locations:

rg(li) =

s
1

|S(li)| Â
l j2S

(d(li, l j))2 ⇤ |S(li, l j)|

In essence, the radius of gyration measures both how frequently
and how far people from the origin travel. A low rg typ-
ically indicates a location whose residents travel mainly lo-
cally, while a high radius of gyration indicates a location with
many long-distance travelers.

City Locality (CL)

The third measure of “localness” is city locality, proposed by
Scellato et al. [14]. The city locality for city (li) is formally
defined as:

CL(li) =
1

|S(li)|
⇤ Â

l j2S(li)
|S(li, l j)|⇤ e�d(li,l j)/b

where b is a scaling factor used to normalize the values of lo-
calities so that city localities can be compared using different
data and geographic sizes. The city locality is always normal-
ized between 0 and 1. A city with high localness has a higher
value of city locality. In practice, the scaling factor b is picked
as the mean distance between all the pairs of spatial preference
between different cities.

Provided the three localness metrics above, we compare the lo-
calness between different cities via their localness metrics. To cal-
culate the localness metrics for each of the cities, we firstly filter
out cities without dense data. Specifically, for queries (or book-
ings), cities with fewer than 1000 queries are filtered out. Similarly,
for check-ins, cities with fewer than 1000 check-ins are filtered out.
Based on the remaining cities, we calculate each of the three local-
ness measures across queries, bookings, and check-ins.

Table 1 shows the average values of the three localness metrics
for cities in the three datasets. We see that the private queries (and
bookings) naturally reveal a larger scope of interest as compared
to public check-ins. The MCD is around 400 to 500 miles greater;
the radius of gyration is around 400 miles greater, and the city lo-
cality measure is lower (indicating less localness in comparison).
Intuitively, it seems reasonable that check-ins are much more local
since they are more constrained by physical mobility (e.g., I have
to travel to the location, then reveal my location). As a side note,
we see that queries are even less local than bookings, suggesting
the exploratory possibility of querying, versus the reality of actu-
ally booking a hotel (e.g., it’s fun to consider far-flung trips, but in
actuality we tend to book more reasonable destinations).

Further confirming this intuition, we show in Figure 3, the com-
plete distribution for each of the three localness measures across the
private queries (and bookings) versus the public check-ins. We see
that the distributions are approximately Gaussian with the check-
in distribution resulting in smaller mean contribution distance and



Table 2: Values of Localness Metrics for Example Cities
Localness Metric MCD (miles) Rg (miles) CL

Queries Bookings Check-ins Queries Bookings Check-ins Queries Bookings Check-ins
New York City 812.384 932.113 310.563 1278.979 1360.094 747.878 0.418 0.389 0.334

Los Angeles 627.814 619.859 174.568 1056.731 1017.116 541.458 0.551 0.552 0.637
Corpus Christi, TX 435.364 356.841 172.819 693.989 565.083 432.333 0.581 0.618 0.231
West Lafayette, IN 599.479 543.760 121.559 887.397 818.425 282.017 0.510 0.539 0.476

(a) Distribution of Mean Contribution Distance

(b) Distribution of Radius of Gyration

(c) Distribution of City Locality

Figure 3: Distribution of Localness Metrics

smaller radius of gyration, relative to the others. The city local-
ity for check-ins is also skewed more rightward, again conveying
the more localness of the check-in data. Connected to the earlier
side note, we can see that the bookings are more local than queries
based on their distributions.

Finally, we can revisit our four example cities – New York City,
Los Angeles, Corpus Christi, and West Lafayette – in terms of the

three localness metrics. As shown in Table 2, comparing to an
average city, people from New York City really travel to a lot of
distant cities even farther than the places they searched for. For
Los Angeles, the bookings are only slightly more local compared
to the queries, while the differences between bookings and queries
for Corpus Christi and West Lafayette are even larger than the aver-
age gap between queries and bookings. Here our hypothesis is that
the gap between localness of queries, and bookings for a particular
city might be correlated with the city’s demographic information
such as population and economy, plus impacted by geographic con-
straints (e.g., Los Angeles is on the ocean, whereas West Lafayette
is in the middle of the country).

4.4 Summary
So far, we have modeled the spatial preference of users across

both datasets and measured the relative geo-spatial “footprint” of
different locations via their mean contribution distance, the radius
of gyration, and the city locality. We have observed that the pri-
vate queries (and bookings) are less local than the public check-ins,
which casts doubt on the possibility of publicly shared location in-
formation serving as a substitute for privately held information. On
an encouraging note, though, we have seen that the relative local-
ness values are surprisingly consistent. Continuing this exploration
of the spatial preference, we next turn to two studies designed to
leverage spatial preference:
• In the first study, we develop a PageRank-like random walk for

identifying spatially significant locations based on the spatial
preference of users. Do we find that – in spite of their funda-
mental differences – that the two datasets reveal similar signif-
icant locations?

• In the second study, we investigate the potential of mining re-
lated clusters of locations from both datasets based on the spa-
tial preferences of users. Do we find comparable performance
across datasets? Or does one perform significantly better than
the other?

5. STUDY 1: SPATIAL IMPACT
In this section, we explore the possibility of aggregating spa-

tial preference information from multiple locations to provide a
global perspective on the most “impactful” locations. Automati-
cally deriving the significant locations from a location dataset is an
important problem, and one that has potential applications in ur-
ban planning (e.g., what neighborhoods are highly-preferred and
potentially facing an influx of new residents?), in location-based
advertising (e.g., what points-of-interest are more important for a
particular demographic target group?), among many others.

In the following, we formally define two approaches for extract-
ing the significant locations from a location dataset and then we
examine the locations identified over the private query dataset and
the public check-in dataset.

5.1 Two Methods for Finding Spatial Impact
For a collection of locations L , our goal is to find an ordering

over the locations in L corresponding the relative spatial impact of
locations, so that higher-ranked locations are deemed more signif-



Table 3: Examples of Impact Metrics
Impact Metric ImpactRank D-ImpactRank

City Name Queries Bookings Check-ins Queries Bookings Check-ins
New York City 0.035931 (2) 0.017182 (2) 0.010677 (1) 0.038831 (2) 0.019854 (2) 0.016864 (1)

Los Angeles 0.013607 (9) 0.006141 (11) 0.005895 (7) 0.016910 (6) 0.008049 (8) 0.009194 (6)
Corpus Christi, TX 0.001476 (62) 0.001271 (89) 0.000458 (146) 0.001077 (74) 0.001019 (103) 0.000309 (206)
West Lafayette, IN 0.000073 (726) 0.000065 (1628) 0.000121 (535) 0.000064 (747) 0.000063 (1575) 0.000101 (534)

icant than lower-ranked locations. While the notion of spatial im-
pact is difficult to evaluate, we examine two approaches grounded
in popular web link analysis and assess the orderings generated by
each:

ImpactRank: The first approach propagates the spatial preference
from one location to another, so that in aggregate the locations that
are most preferred by locations that are themselves highly-preferred
are the most “impactful”. Similar to the PageRank approach for
aggregating web links to assign a global importance score to web
pages, ImpactRank can be viewed from the perspective of a biased
random walker. At each location, the random walker chooses to
visit a subsequent location based on the spatial preference of the
current location. As in PageRank, the random walker occasionally
loses interest in his travels and randomly picks a new starting loca-
tion. In the limit, this random walk results in a global ordering over
all locations based on the time spent by the random walker in each
location.

Let S be the set of all locations, and let S(! li) be the set of all
locations that express a non-negative spatial preference in li, such
that p(l j, li) is the spatial preference probability of l j toward li. The
ImpactRank for location li, denoted by IR(li), is then given by:

IR(li) = d Â
l j2S(li)

IR(l j)p(l j, li)+(1�d)
1
|S|

where d is a damping factor (fixed as 0.85 in our experiments).
The ImpactRank scores may be updated iteratively using the power
method.

D-ImpactRank: ImpactRank measures the impact of a particular
location purely based on the spatial preference matrix (which is
essentially a transition matrix defined over locations), but without
consideration for the actual distance between locations. Our goal
is to incorporate this distance so that more distant locations are
more rewarded for the same degree of spatial preference than closer
locations. For example, suppose the spatial preference from A to
B is 0.2 and from A to C is 0.2. If A and B are neighboring cities,
but A and C are separated by 100s of miles, then this method can
reward city C more since it has attracted interest from farther away.
Thus, we extend ImpactRank to D-ImpactRank, by incorporating
the physical distance between locations.

Specifically, we calculate the mean contribution distance (MCD)
between all pairs of locations. Then for each spatial preference
probability from an origin li to a destination l j, we multiply the
original probability by a weight of the distance between li and l j
divided by the weighted average distance. The distance weighted
spatial preference probability p0(l j, li) from l j to li is defined as:

p0(l j, li) = p(l j, li)⇤
dist(l j, li)

MCD
Then the D-ImpactRank scores are calculated with the distance

weighted spatial preference matrix, and the D-ImpactRank scores
for cities are expected to reveal both the cities’ spatial impacts and
the distance of their impacts’ reach. The D-ImpactRank for lo-
cation li can then be defined as in ImpactRank but with updated

Table 4: Top 10 Most Impactful Cities By ImpactRank
Queries Bookings Check� ins

No.1 Las Vegas Las Vegas New York
No.2 New York New York Austin
No.3 Orlando Chicago Orlando
No.4 Miami Orlando San Francisco
No.5 Chicago San Diego Las Vegas
No.6 San Francisco Miami Chicago
No.7 San Diego New Orleans Los Angeles
No.8 Phoenix Washington, DC Bay Lake, FL
No.9 Los Angeles San Antonio Anaheim

No.10 Washington, DC Atlanta Seattle

Table 5: Top 10 Most Impactful Cities By D-ImpactRank
Queries Bookings Check� ins

No.1 Las Vegas Las Vegas New York
No.2 New York New York Austin
No.3 Orlando San Francisco San Francisco
No.4 San Francisco Chicago Orlando
No.5 Miami San Diego Las Vegas
No.6 Los Angeles Seattle Los Angeles
No.7 San Diego Los Angeles Chicago
No.8 Chicago New Orleans Seattle
No.9 New Orleans Washington, DC Bay Lake, FL

No.10 Washington, DC Miami Anaheim

transition probabilities:

DIR(li) = d Â
l j2S(li)

IR(l j)p0(l j, li)+(1�d)
1
|S|

5.2 Measuring Impact
Given the two approaches for measuring spatial impact, we cal-

culate both over the private queries (and bookings) and the public
check-ins. We apply each method to the cities in the Continental
United States with dense spatial preference data. As before, we fil-
ter cities with fewer than 1000 queries (or bookings) and cities with
fewer than 1000 check-ins.

We begin by continuing with our earlier example cities – New
York City, Los Angeles, Corpus Christi, and West Lafayette – and
listing their spatial impact scores and ranks (in parentheses) in Ta-
ble 3. The relative rankings across both approaches and across all
three datasets are remarkably consistent with New York > Los An-
geles > Corpus Christi > West Lafayette. This is an encouraging
result and one that fits well with our intuition (especially consider-
ing that Corpus Christi is a popular regional tourist destination as
compared with the college town of West Lafayette).

We next list the top-10 cities with the highest spatial impact in
Table 4 and Table 5, again considering both approaches and all
three datasets. Focusing on Table 4, we see that five of the ten cities
are common between the public check-in dataset and the private
query dataset: New York, Orlando, San Francisco, Chicago, and
Los Angeles. Note that Austin is the original home of the Gowalla
location sharing service and so it receives a large “home field ad-
vantage”. Bay Lake, Florida is the home of Walt Disney World
next to Orlando and so could be considered a sixth similar location
across the public and private datasets. Similarly, we see in Table 5
comparable rankings for the distance-weighted D-ImpactRank with



Figure 4: (Color) Rank Correlation between List of Most Im-
pactful Cities

respect to the original ImpactRank.
Comparing between ImpactRank and D-ImpactRank for only the

top-10 reveals little difference. Hence, we next measure the rank
correlation across approaches using Spearman’s r , which ranges
from 1 to -1, with higher values indicating that two ranked lists are
in relative agreement. As we can see in Figure 4, the rank cor-
relation between approaches and between different datasets varies
quite a bit. The series of red, green, and blue indicate the rank
correlations between lists of top-K most impactful cities ranked by
their ImpactRank scores. The series of cyan, yellow, and magenta
indicate the rank correlations between lists of top K most impactful
cities ranked by their D-ImpactRank scores. We are encouraged to
see that the rank correlation for D-ImpactRank for queries versus
check-ins performs very well over the top-20 results (meaning that
the top-20 are highly correlated based on these two datasets). For
bookings versus check-ins over ImpactRank (in blue), the rank cor-
relation is the worst for K up to 100. At higher values of K, the
rank correlation in all cases converges to around 0.0 primarily due
to data sparsity at the bottom of the ranked list (leading to essen-
tially random rankings at the bottom of the list).

Based on this experimental study, we find that in some cases both
datasets reveal similar significant locations. This result is some-
what surprising considering the key differences between the public
check-ins and the private queries, but is encouraging. In our fol-
lowing study, we continue this exploration of the viability of sub-
stituting publicly-released data for private data with an examination
of extracting similar cities from location datasets.

6. STUDY 2: FINDING SIMILAR CITIES
In previous sections, we characterized a location by its spatial

preference and by the spatial impact derived from aggregating over
these spatial preferences. In this section, we examine whether these
spatial characterizations can be used to automatically extract groups
of similar locations. Finding related groups of locations has poten-
tial impact for optimizing online advertising (e.g., if users in lo-
cation A click on an ad, then perhaps users in the similar location
B will also do so), for improving web search and mobile applica-
tions (e.g., a user querying for a nearby tourist destination can be
recommended other similar spots), and so forth.

Toward finding similar cities, we first define a ground truth of
city similarity, define two metrics for evaluating city similarity, and
then measure city similarity using a vector space interpretation of
spatial preference and spatial impact.

6.1 Defining the Ground Truth
What makes two locations similar? While there are many possi-

ble answers, we adopt a systematic method for finding relationships

among cities by mining 800 expert-curated lists of top cities across
particular categories. The data is available from [1] and lists 101
top cities for each category. For example one of the lists includes
the top cities with the most people having a Doctorate degree; for
this list the top cities are Palo Alto (CA), Bethesda (MD), Brookline
(MA), Cambridge (MA), and Davis (CA). From this perspective,
these five cities can be considered similar. In this same fashion, we
extract the top cities lists for a total of 800 separate city lists. For
each pair of cities, we consider their total number of co-occurrences
among the top city lists as the similarity between the pair of cities.
For example, if two cities co-occur in 400 out of the 800 lists, then
their similarity is 1

2 . Cities that never co-occur on a list will have
a similarity of 0. In addition, for city li, we rank the other cities
according to their similarities (co-occurrences in top city lists) with
city li in descending order.

A similar approach was undertaken in the context of free-text
web search engine queries in [15]. Rather than considering spatial
preference as in this paper, the authors looked for common clues in
the text of search engine queries to group related cities. Information
revealed through text queries is a strong indicator of similarity (e.g.,
if many users in two locations are both querying for “molecular
biology”, “PhD”, and “grad school”, then there is good evidence of
a relationship between locations). In contrast, spatial preference is
a less clear indicator of city similarity since only relative interest in
other locations is available for comparison.

6.2 Approach and Metrics
To find related cities, we apply the standard cosine similarity to

vectors based on the spatial preference and the spatial impact of city
pairs. That is, for city i and city j, we can represent each city by a
vector (e.g., based on the spatial preference probabilities). Cosine
similarity is a similarity measurement between the two vectors – in
this case, the vectors associated with city i,~vi, and with city j,~v j:

cos(~vi,~v j) =
~vi ·~v j

|~vi|
��~v j

��

With this approach and the ground-truth data, we use Average
Precision@10 (P@10) and Average NDCG@10 (N@10) to eval-
uate the predicted top similar cities. For each city, we first extract
the top K% of the most similar cities to it in the ground truth data
as the relevant cities to the given city. Then, we calculate the Pre-
cision@10 for the city which measures the percentage of the top
10 predicted similar cities that also belong to the top K% of the
relevant set, which can be formally defined as:

P@10 =
Âli2S

|Stop10(li)\Stop_k%_gt (li)|
10

|Sc|
where S refers to the set of all the cities in the datasets; li denotes
a specific city; Stop10(li) denotes the top 10 similar cities of li pre-
dicted using the similarity metric; and Stop_k%_gt(li) denotes the
top K% similar cities for li in the ground-truth data.

A high value of AvgPrecision@10 indicates that the location
preferences or localness modeled from the data really reveal seman-
tic information for the city, and hence provide hints to find similar
cities. Similarly, we apply Average NDCG@10 to evaluate the
performance considering both the precision of the predicted simi-
lar cities and the positions of the truly similar cities in the predicted
similar city list.

In practice, we extract 10% of the ground truth similar cities for
each city as its ground truth relevant cities. To make sure we have
dense data for each of the cities, for both the queries and bookings,
we only pick the cities in Continental United States with a mini-
mum of 5000 queries from each of the city; and for the check-ins,



Table 6: Performance for Identifying Similar Cities
Queries Bookings Check-ins

Feature Set P@10 N@10 P@10 N@10 P@10 N@10
Spatial Preference 25.17% 56.11% 28.06% 59.81% 24.2% 60.1%

Spatial Impact 22.22% 50.43% 24.71% 52.86% 31.2% 64.7%
Spatial Preference + Impact 28.04% 59.42% 28.97% 60.38% 31.6% 65.2%

we only pick the cities in Continental United States with a mini-
mum of 1000 check-ins.

6.3 Evaluation
Table 6 shows the performance using features of different combi-

nations of spatial preference and spatial impact associated with the
private queries (and bookings) and the public check-ins. We addi-
tionally consider a combined vector representation that is simply
an average of the normalized spatial preference and the normal-
ized spatial impact vectors. Using cosine similarity to calculate the
similarity between these three representations of cities, we observe
strikingly similar results across the public check-ins and the private
queries, as well as fairly stable relative ordering with the combined
representation always yielding the best results.

Focusing on precision@10, we see that about 28% of the top-10
predicted similar cities are considered similar (based on the ground
truth data) based on the query data, but that about 32% are similar
based on the check-in data. Focusing on the average NDCG@10,
we see a similar behavior – with the query data yielding a 60%
result, but the check-ins performing slightly better with 65%.

Based on this experimental study, we find that across these two
fundamentally different datasets, that similar performance may be
achieved for automatically identifying groups of related locations.
Coupled with the observations in the previous section, this is a sec-
ond encouraging result considering the key differences between the
two datasets.

7. CONCLUSION
In this paper, we have investigated two different sources of spa-

tial preference: a set of private query logs recorded by a commer-
cial hotel search engine and a set of publicly shared check-ins vol-
untarily generated by users of a popular location sharing service.
Although generated by users with fundamentally different inten-
tions, we find common conclusions may be drawn from both data
sources, indicating the viability of publicly shared location infor-
mation to complement (and replace, in some cases), privately held
location information. This is especially encouraging since many lo-
cation preference data sources are expensive, proprietary, and often
times unavailable. In contrast, publicly-shared data offers appeal-
ing new avenues of research. Since modeling and exploiting spa-
tial preference is critical for geographers, social scientists, as well
as computer scientists interested in improving location-based rec-
ommendation systems, travel planners, search engines, and other
emerging mobile applications, these conclusions are a starting point
for further research on the strengths and weaknesses of relying on
publicly available datasets.
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