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ABSTRACT

We introduce the concept of link credibility, identify therdflation
of page quality and link credibility in popular Web link agsis
algorithms, and discuss how to decouple link credibilignfrpage
quality. Our credibility-based link analysis exhibits ekrdistinct
features. First, we develop several techniques for setoraatically
assessing link credibility for all Web pages. Second, ok &red-
ibility assignment algorithms allow users to assess ciigiin a
personalized manner. Third, we develop a novel credibidaged
Web ranking algorithm — CredibleRank — which incorporatesic
bility information directly into the quality assessmenteafch page

on the Web. Our experimental study shows that our approach is

significantly and consistently more spam-resilient thath iRage-
Rank and TrustRank.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4lfformation Storage and Retrieval]: Sys-
tems and Software kaformation Networks

General Terms: Algorithms, Experimentation

Keywords: Web algorithms, link analysis, credibility, spam, Page-
Rank

1. INTRODUCTION

With millions of Web servers supporting the autonomousisigar
of billions of Web pages, the Web is arguably the most peveasi
and successful distributed computing application todagb\dpam
refers to the type of attacks that manipulate how users vietv a
interact with the Web, degrade the quality of informationtba
Web and place the users at risk for exploitation by Web spasime
Recent studies suggest that Web spam affects a significaitrpo
of all Web content, including 8% of pages [5] and 18% of sifi} [
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Most of the popular link-based Web ranking algorithms, like
PageRank [14], HITS [13], and TrustRank [10], all rely on a-fu
damental assumption that the quality of a page and the gudli
page’s links are strongly correlated: a page ranked higliéber
unlikely to contain lower quality links. This assumptiorgwever,
also opens doors for spammers to create link-based Web $@aam t
manipulate links to the advantage of the Web spammers. Gensi
the following two common link-spam scenarios:

e Hijacking: Spammers hijack legitimate reputable pages and in-
sert links that point to a spammer-controlled page, so thap-
pears to link analysis algorithms that the reputable pagierses
the spam page. For example, in January 2006, a reputablestemp
science department’s web page for new PhD studentsijacked

by a Web spammer, and over 50 links to pornography-relateldl We
sites were added to the page.

e Honeypots: Instead of directly hijacking a link from a reputable
page and risking exposure, spammers often create legitiagiearing
websites ljoneypots) to induce reputable pages to voluntarily link
to these spammer-controlled pages. A honeypot can therauass

its accumulated authority by linking to a spam page.

Both scenarios show how spammers can take advantage of the
tight quality-credibility coupling to subvert popular ksbased Web
ranking algorithms and why the assumption that the qualitg o
page and the quality of a page’s links are highly correlaseelil-
nerable to link-based Web spam.

In this paper we advocate a clean separation of page quality a
link (or reference) quality and argue that the intrinsic lgyaof
a page should be distinguished from its intrinsic link cbd.
Our goal is to assign each page a link credibility score ddfine
terms of link quality, not in terms of page quality. To guidero
understanding of this problem, we address a number of iraport
research questions.

e Can we formally define the concept of credibility to provide a
degree of separation between page quality and link quality?

e What are the factors impacting the computation of credibiéind

to what degree do these factors impact the application stiraari
credibility-based link analysis?

e Can and how will credibility be impacted by the scope of ligga
information considered? E.g., a page’s local links, it'sgghbor’s
links, its neighbor’s neighbor’s links, and so on.

This paper addresses each of these questions in detailviol@ro
an in-depth understanding of link credibility. We develog@i@d-
ibleRank algorithm that incorporates credibility into amhanced
spam-resilient Web ranking algorithm. Concretely, we mikee
unique contributions: First, we introduce the concept ok Ered-
ibility, identify the conflation of page quality and link aibility
in popular link-based algorithms, and discuss how to deledlink
credibility from page quality. Second, we develop seveeaht



nigues for semi-automatically assessing link credibfiiyall Web
pages, since manually determining the credibility of eyeage on
the Web is infeasible. Another unique property of our linkdir
bility assignment algorithms is that they allows users wiifferent
risk tolerance levels to assess credibility in a persoadliman-
ner. Third, we present a novel credibility-based Web ragkilgo-
rithm - CredibleRank - which incorporates credibility infioation
directly into the quality assessment of each page on the Web.

In addition, we develop a set of metrics for measuring therspa
resilience properties of ranking algorithms, and show Huewctred-
ibility information derived from a small set of known spamgea
can be used to support high accuracy identification of new-(pr

considers the transition matrikI as well as am-length static
score vector, which is typically taken to be the uniform vector
e= (1,1 .., 1) We can write the PageRank equation as a com-

bination of these two factors according to a mixing paramete

rp=aM’rp + (1 —a)e 1)

which can be solved using a stationary iterative methodJlédeobi
iterations [6]. To ensure convergence, pages with no dulare
modified to include virtual links to all other pages in the Viggaph
(forcing M to be row stochastic).

TrustRank: The recently proposed TrustRank algorithm [10] sug-

viously unknown) spam pages. We have conducted an extensivegests biasing the PageRank calculation toward pre-tryssigés in

experimental study on the spam resilience of credibildgdd link
analysis over a Web dataset of over 100 million pages, andnale fi
that our proposed approach is significantly and consistentre
spam-resilient than both PageRank and TrustRank.

2. REFERENCE MODEL

In this section, we present the Web graph model and discuss se
eral popular approaches for link-based Web ranking.

2.1 Web Graph Model
LetG = (P, L) denote a graph model of the Web, where the

vertexes inP correspond to Web pages and the directed edges in

an effort to suppress Web spam (similar to PageRank perzanal
tion suggested in [14] and more fully explored in [11]). ke of
considering the uniform static score vectgrthe TrustRank algo-
rithm considers am-length vectorv that reflects a priori trust in
each page. For example, in a web graph of 5 pages, if pages 1 and
3 are pre-trusted them could be set tov = (3,0, %,0,0). For

n Web pages the TrustRank scores can be denoted by the vector
r¢ = (741,742, ..., Ttn), @and we can write the TrustRank equation
as:

re = aMTry + (1-a)v 2

Determining the a priori trust vectar is of critical importance,

L correspond to hyperlinks between pages. For convenienee, W ang a number of techniques have been suggested, includingh

assume that there are a totahopages (P| = n) and that pages
are indexed fronl ton. A pagep € P sometimes is referred to by
its index numbei. A hyperlink from pagep to pageq is denoted
as the directed edge, q) € L, wherep,q € P. We denote the
set of pages that points to asOut(p), and the set of pages that
point top asIn(p). Typically, each edgép, q) € L is assigned
a numerical weightv(p, ¢) > 0 to indicate the strength of the as-
sociation from one page to the other, wh@%wut(p) w(p,q) =

of expert-selected whitelists, high PageRank pages, gridatty-
segmented trusted pages [10, 19].

In summary, link-based ranking algorithms like HITS, PageR
and TrustRank attempt to estimate a page’s intrinsic quiayitana-
lyzing the hyperlink structure of the Web. Fundamentalig qual-
ity of a page and the quality of its links are tightly coupledsiach
of these ranking algorithms. Returning to Equation 1, a paife
a PageRank score ofcontributesx - r to the pages that it links to,

LA common approach assigns each edge an equal weight (i.e.yhereq is typically in the rangd0.75,0.95]. We have discussed
w(p,9) = 15uigy))- Other approaches that favor certain edges are 4t such tight coupling is not only inadequate in practicediso

possible.
A Web graphg can be represented by anx n transition matrix
M where theij*" entry indicates the edge strength for an edge

from page: to pagej. The absence of an edge from one page to

another is indicated by an entry of 0 in the transition matrix

K 0 otherwise

2.2 Link-Based Ranking: Overview

A number of link-based ranking algorithms have been progpose
over the Web graph, including the popular HITS [13], Page®ad],
and TrustRank [10]. Most of these algorithms assume thatla li

creates Web spam vulnerabilities.

3. LINK CREDIBILITY

In this section, we formally introduce the concept of crdidib
in terms ofk-Scoped Credibility. We shall ground our discussion
of link credibility in the context of Web spam and explore htawv
algorithmically determine a page’s credibility. Conchgtéet C be
acredibility function that instantaneously evaluates the link quality
of a Web page at timet. A score ofC(p, ¢) = 0 indicates that the
pagep is not credible in terms of its links at time In contrast, a
score ofC(p,t) = 1 indicates that the pageis perfectly credible
in terms of its links at time. We observe that a desirable credibility
function should have the following qualities:

from one page to another is counted as a “recommendatioti vote e First, we observe that a page’s link quality should depend on

by the originating page for the target page. To illustrate ¢bre
of link-based rank analysis, we below outline PageRank anstT
Rank.

its own outlinks and perhaps is related to the outlink quatftits
neighbors up to some small numbé) 6f hops away. Hence, link
credibility of pages should be a function of the local chtees-

PageRank: PageRank provides a single global authority score to tics of a page and its place in the Web graph, and not the global

each page on the Web based on the linkage structure of the enti

properties of the entire Web (as in a PageRank-style appyoac

Web. PageRank assesses the importance of a page by relgursive e Second, we observe that relying heavily on a set of known good

considering the authority of the pages that point to it vigpdry
links. This formulation counts both the number of pagesitigk
to a target pagand the relative quality of each pointing page for
determining the overall importance of the target page.

pages (a whitelist) may be problematic. Spammers may attemp
mask their low quality outlinks to spam pages by linking takm
whitelist pages. Also, relying too heavily on a whitelist fink
credibility assignment makes these pages extremely viafab

Forn Web pages we can denote the PageRank authority scoresspammers to corrupt.

as the vectorp, = (7p1,7p2,...,7pn). The PageRank calculation

e Third, we observe that a page’s credibility should be relate



its distance to known spam pages (a blacklist) to penaligeptor
poor quality outlinks.
Generally speaking, the Web is too large and too quickly grgw

to manually label each page as either spam or not spam. We shal

assume that the s@ of all pages can be divided into the set of
known good pages, denoted By, (the whitelist), the set of known
spam pages, denoted B (the blacklist), and the set of pages for
which the user has no experience or judgment, denote@, bithe
unknown pages), such th&t= P, U P, U P,. In practice, only a
fraction of all pages on the Web will belong to either the wligt

or the blacklist{P.. |, |Ps| << |P]).

3.1 Naive Credibility

We begin our analysis of credibility functions by consideria
simple approach that illustrates some of our observatibngeand
serves as a comparison to the propokegtcoped Credibility func-
tion. The naive credibility function assigns a whitelisgpaa per-
fect credibility score of value one, a blacklist page no ity
(value zero), and an unknown page a default credibility e@lu
O0<b<1):

0 ifpep,
Chraive(p,t) =< 0 ifpe P,
1 ifpe Py,

The advantage of this naive credibility assignment is itseea
of evaluation. However it has several apparent drawbackgit- (
makes no effort to evaluate credibility in terms of the lirdfsa
page; (ii) the majority of all paged?,) receive a default credibility
value; and (iii) whitelist pages, though generally higtalify, may
not necessarily be perfectly credible in reality at all time

3.2 k-Scoped Credibility

We next introducé:-Scoped Credibility, which evaluates the cred-
ibility of a page in terms of the quality of a random walk origting
from the page and lasting for up kesteps. Critical to thig-Scoped
Credihility is the notion of gath.

Definition 1 (path) Consider a directed web gragh = (P, L),

an originating page and a destination page A path in the
directed graphg from pagep to pageq is a sequence of nodes:
path(p,q) = (no,ni,...,n;) (Wherep = ng andg = n;) such
that there exists a directed edge between successive nodes i
path,(n;,ni+1) € Lfor0 < i < j — 1. The length|path(p, q)|

of a path isj, the number of edges in the path. There may exist
multiple paths fronp to q.

We refer to the set of all paths of a specified length (sayhat
originate from a page as Pathy(p). We will sometimes refer to
a specific path of lengtlk originating fromp using the notation
pathy(p), wherepathy(p) € Pathi(p).

Our notion ofk-Scoped Credibility relies on a special type of
path that we call dad path.

Definition 2 (bad path) Consider a directed web gragh= (P, L),
an originating page and a destination page We say that a path
in the directed graply from pagep to pageq is abad path if the
destination page is a spam pages P», and no other page in the
path is a spam pageath(p, q) = (no,n1,...,n;) (Wherep = ng
andg = nj) andq € Py andn; ¢ Py, for0 <i < j —1.

We refer to the set of all bad paths of a specified length (say,
k) that originate from a pagg as BPathy(p). The probability
of a random walker traveling alongkalength path from pagg is

denoted byPr(pathy(p)), and is determined by the probabilistic
edge weights for each hop of the path:

k—1
Pr(pathy(p)) = H w(ni, nit1)

Formally, we define thé&-Scoped Credibility of a page in terms
of the probability that a random walkewoids spam pages after
walking up tok hops away from the originating page. Foe 1,
the k-Scoped Credibility is simply the fraction of a page’s links
that point to non-spam pages. Increasingxtends the scope of
this credibility function by considering random walks ofieasing
length. For an originating pagec P, if p is a spam page, we set
its link credibility to be 0, regardless of the charactécstof the
pages it links to.

Definition 3 (k-Scoped Credibility) LetG = (P, £) be a directed
web graphk be a maximum walk radius whekte> 0, andp € P
be a page in the Web graph. TheScoped Credibility of pagep at
timet, denoted byC' (p, t), is defined as follows

k

Cr(p,t) =1 —Z

=1

Pr(pathi(p))
path;(p)€BPath;(p)

For the special case whenc P, let Ci(p,t) = 0.

In the case that there are no spam pages withirops of page
p, thenp is perfectly credible:Cx(p,t) = 1. In the case that
p itself is a spam page or in the case that all paths originaing
pagep hit a spam page withik hops, therp is not credible at
all: Cx(p,t) = 0. Intuitively, the k-Scoped Credibility function
models a random walker who when arriving at a spam page, be-
comes stuck and ceases his random walk, and for all othespage
the walker continues to walk, for up tohops.

4. COMPUTING CREDIBILITY

In practice, of course, thie-Scoped Credibility function can only
have access to some portion of the entire Web graph, due sivihe
of the Web, its evolution, and the cost of crawling all pagad-
ditionally, only some spam pages will be known to the créitijbi
function through the blacklist. In order to correct the ioa@cy in
computingk-Scoped Credibility due to the presence of an incom-
plete Web graph and a partial blacklist, in this section viituce
the concept of tunabl&-Scoped Credibility, which augments the
basick-Scoped Credibility computation by including a credilyilit
penalty factor as a control knob. Our goals are to bettercgpr
imate thek-Scoped Credibility under realistic constraints and un-
derstand how different parameters may influence the quafity
credibility function.

4.1 Tunable k-Scoped Credibility

The tunablek-Scoped Credibility is a function of two compo-
nents: a random-walk component with respect to the known bad
paths (based on the blacklist) and a penalty component. ity
component is intended to compensate for the bad paths that ar
unknown to the credibility function. We first define the tuteab
k-Scoped Credibility and then focus our discussion on adtire
approaches for assigning the credibility discount facaftset the
problem of an incomplete Web graph and a partial blacklist.

Definition 4 (Tunable k-Scoped Credibility) LetG = (P, L) be
a directed web graptk; be a maximum walk radius wheke> 0,



and~(p) be the credibility penalty factor of a pagec P where
0 < ~(p) < 1. We define theunable k-Scoped Credibility of page
p, denoted byC (p), in two steps: whep ¢ Py:

=1

Cr(p) = (1 -3 Pr(pathz(p)))) ¥(p)

(pathz(P)EBPathz(P)
In the case op € Py, let Cx(p) = 0.

The penalty factory(p) is an important tunable parameter of the
credibility assignment and can be used as the credibilggalint
knob. Since the blacklig®, provides only a partial list of all spam
pages in the Web graph at a given point of time, the penalty fac
tor can be used to update the random walk portion of the credi-
bility calculation to best reflect the possible spam pages dine

not yet on the blacklist. We propose to use a hop-based agiproa
for determining the proper credibility discount factor mneputing
k-Scoped Credibility for each page in the Web graph. To better
understand the advantage of our hop-based approach, weisdso
cuss the optimistic and pessimistic approaches as twoneasréor
selecting the penalty factor for each page.

4.1.1 The Optimistic Approach

This approach defines the credibility penalty factor for ggohy
assigning no penalty at all. In other words, for all pagesass&gn
a credibility discount factor of 1:

Yopt(p) = 1,Vp € P

meaning the random walk component of the tunéb&coped Cred-
ibility is not penalized at all. We call this approach eptimistic
one since itis equivalent to assuming that all spam pagesrettee
blacklist. The optimistic approach will tend to over-esiie the
credibility of pages that link to the spam pages not on thekbist.

4.1.2 The Pessimistic Approach

In contrast, apessimistic approach treats a page witmy j-
length path { < 5 < k) leading to a blacklist page @t credible
within the k-hop scope in the sense ttat paths originating from
such a page are considered bad paths.

Tress(P) = { (1)

A pessimistic approach may be appropriate in circumstanbes
links to spam pages are highly correlated (e.g., if the presef
a link to a blacklist page is always accompanied by anothértb
a spam page that is not on the blacklist). In many circumstsnc
the presence of a single bad path originating at a page méayebe t
result of a temporary linking mistake (as in the hijackingueple
discussed in the introduction) or truly indicative that trege has
only a fraction of links leading to spam pages. Hence, the pes
simistic approach may be too draconian.

4.1.3 The Hop-Based Approach

The third approach for determining the credibility discbtac-
tor balances the extremes of the optimistic and pessinapficoaches

if |[BPath;j(p)| > 1foranyj,0 <j <k
otherwise

For a bad path of lengtlh originating at page, we associate a
hop-based discount factof.op,; (p), where0 < vnop,;(p) < 1.
By default, we lety,.,,; (p) = 1 if there are no bad paths of length
j originating fromp (i.e. BPath;(p) = 0). The hop-based dis-
count factor can then be calculated as the product of theitwerst
discount factorsynop (p) = [15_; Ynop,s (p)-

Determining the choice of hop-based discount factors t&cati
to the quality of tunablé:-scoped credibility calculation. We be-
low discuss three alternative ways to compte, ; (p). We begin
with a user-defined discount factor(0 < ¢ < 1) to set the initial
hop-based discount for bad paths of length 1, iyg.p,1(p) = ¥.
Then we introduce three approaches for damping the useredefi
discount factor that determine how quickly the discountdaep-
proaches 1 as path length increases. Settiofpse to 0 will result
in a more pessimistic credibility penalty, whereaslose to 1 is
intuitively more optimistic. By tuning) and the damping function
we can balance these extremes.

Constant: One way for damping the initial setting of the user-
defined discount factop for bad paths of increasing length is to
penalize all paths of varying lengths emanating from a pageléy

if there exists one bad path, i.8,Path;(p) # 0. We refer to this
approach as eonstant discount factor since the hop-based discount
does not vary with bad path length:

Yhop,i(p) = ¢

Using a constant damping factor, a page that directly lioka t
spam page results in a credibility penalty that is the samihes
penalty for a more distant path to a spam page.
Linear: The second approach to set the discount factbimesr
in the length of a bad path up to some pre-specified path lehgth
Paths of distancé& or greater are considered too distant to provide
additional evidence of other bad paths, and so the discauattifis
1 for those paths.

C=D_yy4y i<k

Yhop,i(P) = { -
1

L-1

Using a linear damping factor, a path to a spam page that-is far
ther away from the originating page results in a less sevepe h
based discount than the credibility penalty for a diredt bn short
path from the originating pageto a spam page.
Exponential: The third approach for setting the discount factor
is exponential in the length of the path, meaning that the initial
discount factor) for bad paths of length 1 is quickly damped close
to 1 as the bad path length increases.

otherwise

Yhop,i(p) = 1= (1 =)' ™"

Compared with the linear damping factor, the exponentiaifa
ing factor allows the credibility discount for a spam pageb®
quickly damped close to 1. Put differently, when a spam page i
closer to the originating page, the link credibility of p is dis-
counted less than the linear case with respect to the hog.coun

4.2 Implementation Strategy

The k-Scoped Credibility is a local computation, requiring only
an originating page and a forward crawl of all pages withimops

by considering the number and the length of the bad paths for a of the originating page. Hence, the credibility of a page lbamp-
page. A bad path is treated as evidence that there are other ba dated in a straightforward fashion and as often assthep neigh-

paths for an originating page that have been overlooked altleet
partial nature of the blacklist and the incompleteness ef\Web
graph.

bors are refreshed via Web crawls.
In practice, we anticipate computing tlheScoped Credibility
in batch for all Web pages in the current Web graph state after



each Web crawl. The main cost of computing the tunabk&coped
Credibility is the cost of identifying the set of bad paths éach
page and the cost of explicitly computing the path probaédi(re-
call Section 3.2). We propose to calculate the tunabicoped
Credibility for all pages using an equivalent iterative aggeh that
is cheaper and faster. Lét = (P, L) denote a graph model of
the Web andP| = n (recall Section 2.1). We first construct an
n-length indicator vectod = (d1,das,...,d») to reflect whether
a page is in the blacklist or notl; = 1if p; € P, andd, = 0
otherwise.

We next construct an x n transition matrixB that replicates the
original Web graph transition matrixI, but with transition proba-
bilities exiting a blacklist page of 0, to indicate the rantdwalker
stops when he arrives at a blacklist page.

B;j = { OJ

In practice, the matriB need not be explicitly created. Rather,
the original matrixM can be augmented with rules to disregard
blacklist entries.

The penalty factors can be encoded innar n diagonal matrix
T", where the diagonal elements correspond to the per-pagdtpen
factors:

if di & Py
otherwise

I - y() ifi=3j

E 0 otherwise

Finally, then-length tunablek-Scoped Credibility vectoCy;
can be computed:

k
Cpy = (1 — Z BU)dT) -T
j=0
wherel is ann-length vector of numerical value 1s. Note that the
matrix multiplication ofT" can be implemented as an element-wise
vector product, so the expense of a matrix-by-matrix miiti@ion
can be largely avoided.

5. CREDIBILITY-BASED WEB RANKING

We have presented the design of several credibility funstfor
evaluating Web page link quality. In this section, we use tte-
coupled credibility information to augment the page qyaligsess-

ment of each page on the Web with a goal of suppressing Web

spam. Concretely, we demonstrate how link credibility infation
can improve PageRank and TrustRank-style approachesgthiau
credibility-based Web ranking algorithm called CredibdeiR.

Returning to PageRank (see Equation 1), there are several av

enues for incorporating link credibility information. Weuttine
four alternatives below:

e First, the initial score distribution for the iterative Rdank cal-
culation (which is typically taken to be a uniform distritmrt) can
be seeded to favor high credibility pages. While this modifan

may impact the convergence rate of PageRank, it has no impac

on ranking quality since the iterative calculation will ¥enge to a
single final PageRank vector regardless of the initial sdstibu-
tion.

e Second, the graph structure underlying the transitionimatt
can be modified to remove low credibility pages and edgesvo lo
credibility pages. While this modification may eliminatersm\Web
spam pages, it could also have the negative consequencienof el
nating legitimate pages that are merely of low credibility.

e Third, the edge weights in the transition mathd can be ad-
justed to favor certain edges, say edges to high-credilpkiges.
While this change may have some benefit, a low credibilityepésy
?;/erall influence will be unaffected (sinGe .., (,) w(p,q) =

e Finally, the static score vectar can be changed to reflect the
link credibility information, much like in TrustRank and Ren-
alized PageRank [11, 10]. By skewirgtoward high credibility
pages (or away from low credibility pages) we can give a nagki
boost to these pages, which could have the undesired carsesju
of ranking a low-quality high-credibility page over a higiality
low-credibility page.

Alternatively, we propose a credibility-augmented Webkiag
algorithm that uses credibility information to impact theesof
the vote of each page. CredibleRank asserts that a pagd's qua
ity be determined by two criteria: (1) the quality of the psge
pointing to it; and (2) the credibility of each pointing pagé\
link from a high-quality/high-credibility page counts neothan
a link from a high-quality/low-credibility page. Similgtla link
from a low-quality/high-credibility page counts more thadink
from a low-quality/low-credibility page. By decouplinghk cred-
ibility from the page’s quality, we can determine the crddis
augmented quality of each page through a recursive forialat

Recall that/n(p) denotes the set of pages linkinggtoWe com-
pute the CredibleRank scorg(p) for a pagep as:

re(p)= Y Cl(q)-re(q) - wlg,p)

q€In(p)

This formula states that the CredibleRank score (qualitppge
pis determined by the quality:{(¢)) and the link credibility C'(¢))
of the pages that point to it, as well as the strength of thke lin
w(q, p). In this sense, the link weights are used to determine how
a page’s “vote” is split among the pages that it points to, that
credibility of a page impacts how large or small is the pagete.

We can extend this formulation to consideeb pages, where
we denote the CredibleRank authority scores by the vactos
(re1,Te2, ..., Ten). Recall thatM denotes the x n Web transition
matrix, andv is an n-length static score vector. We can construct
ann x n diagonal credibility matrixXCR. from the link credibility
vector~y, where the elements of the credibility matrix are defined
as:

ifi =7
otherwise

CRi; :{ C(()i)

We can then write the CredibleRank vectgras:

re = a(CR-M) re + (1 — a)v 3)

which, like PageRank and TrustRank, can be solved usingdiarsta
ary iterative method like Jacobi iterations. The matrix tiplica-

tion of CR andM can be implemented as an element-wise vector
product to avoid the expense of a matrix-by-matrix multation.

6. EXPERIMENTAL EVALUATION

In this section, we report the results of an experimentalystaf
credibility-based link analysis over a Web dataset of o\@) thil-
lion pages. We report two sets of experiments — (1) an evatluat
of tunablek-Scoped Credibility and the factors impacting it (like
scopek, discount factor, blacklist size, and damping functiomy a
(2) a study of the spam-resilience characteristics of Gtefiank,
where we show that our proposed approach is significantlgand
sistently more spam-resilient than both PageRank and Ramgt



Figure 1: Credibility Coverage

Blacklist Size
Scope (k) | Small | Medium | Large
1 7% 27% 39%
2 5% 33% 46%
3 26% 73% 79%
4 75% 94% 95%
5 95% 98% 98%
10 99% 99% 99%
6.1 Setup

The experiments reported in this paper use a Stanford WebBas
dataset consisting of 118 million pages and 993 milliondinkhe
dataset was originally collected in 2001 and includes péges a
wide variety of top-level-domains.

Defining what exactly constitutespam is an open question, and
so as a baseline for our experiments we considered porrtograp
related pages in the dataset as spam. Naturally, this isfonary
possible spam definitions and we anticipate revisiting tibjiéc in
our continuing research. Since manually inspecting allrhilBon
pages is an onerous task, we applied a simple procedurerttifyde
spam pages. We first identified all sites with a URL contairang
pornography related keyword (where we define a site by the hos
level information embedded in each page’s URL). This resLiih
11,534 sites and over 1.5 million pages. For these 11,584, site
then sampled a handful of pages from each site and kept cmdg th
sites that we judged to be spam. Applying this filter yieldgaBg
sites consisting of 1,202,004 pages. We refer to these egie
Soam Corpus.

We generated three blacklists by randomly selecting sites f
the Spam Corpus. The first blacklist (referred th asge) contains
20% of the sites in the Spam Corpus (1807 sites, or 0.24% of all
sites); the second blacklisMgdium) contains 10% of the Spam
Corpus (903 sites); the third blackligall) contains just 1% (90
sites).

For the whitelist, we manually selected 181 sites from the to
5000 sites (as ranked by PageRank). These whitelist sitesaah
maintained by a clearly legitimate real-world entity, eitla major
corporation, university, or organization. We additiopadnsured
that each of these 181 sites was not within two-hops of aeyirsit
the Spam Corpus.

We grouped pages in the entire dataset into sites (agairheby t
host information of each page’s URL), resulting in 738,626ss
We constructed a site graph where each site is a node in thh.gra
If a page in one site points to a page in another site we indlate
edge inthe site graph, excluding self-edges. The resul&16,108
edges in the site-level Web graph. We adopted a fairly staraja
proach for defining the edge strength for a site-level edgthas
fraction of page-level hyperlinks pointing from the origtmg site
to the target site (e.g., [12, 16]), and constructed thesttiam ma-
trix M based on these edge weights. For all ranking calculations,
we relied on the standard mixing parameter= 0.85 used in the
literature (e.g., [10, 14]), and we terminated the Jacolthotbafter
50 iterations.

6.2 Credibility Assignment Evaluation

In the first set of experiments, we evaluate tunabi8coped
Credibility and the many factors impacting it.

6.2.1 Credibility Coverage

In our first experiment (shown in Figure 1), we examine how
widely the tunablek-Scoped Credibility can assign link credibility
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Figure 2: Average Credibility Error - Varying &

scores to sites beyond the pre-labelled blacklist. By asirgy the
tunable scope parametgr the credibility function will consider
paths of increasing length, meaning that there will be atgresp-

portunity for identifying bad paths. We measure tiwwerage of

k-Scoped Credibility in terms of the scope paramédiea com-
plete blacklist (the Spam Corpus), and a partial blacktistwhere
b cb

_ {p e P|3j,1 <j<kstBPath(p,b') # 0}
" {p€PRj,1<j < kstBPathi(p,b) # 0}]

cov(k,b,b")

where BPathi(p,b) denotes the set of all bad paths to sites in
blacklistb of lengthk that originate from a page. The numerator
corresponds to the count of all sites with at least one pathsite
on the partial blacklist. The denominator corresponds éocthunt
of all sites with at least one path to a site on the completekbit
(the Spam Corpus). So, far = 1, there are 18,305 sites that are
either spam sites or directly link to spam sites; of these 2ré6
on the Medium blacklist or directly link to a site on the Meatiu
blacklist.

There are three interesting observations. First, the dizheo
blacklist is important. A larger blacklist leads to moredarice
of bad paths, and hence will give our tunabkScoped Credibility
function the opportunity to make higher-quality credityilassess-
ments, even for small. Second, even for the Small blacklist — with
just 90 sites — we find fairly reasonable coverage (26%}fer 3.
Third, for largek, nearly all pages have at least one path to a spam
page. Thus, pages that are quite distant from an originaauge
likely have little impact over the credibility of the origiting page.
The choice of¢ should be made with care.

622 Credibility Quality

We next study the quality of the tunableScoped Credibility
function over different settings of the credibility penyafiactor (Fig-
ures 2, 3, and 4). Recall that the penalty factor is used tatepd
the random walk portion of the credibility calculation tdleet the
possible spam pages (or sites, in this case) not yet on thklisia
Our goal is to understand how well the tunabl&coped Credibil-
ity functions perform as compared to theScoped Credibility with
access to the full Spam Corpus.

We consider five different settings for the penalty factothaf
k-Scoped Credibility — the Optimistic, Pessimistic, andehHop-
Based approaches. For each of the Hop-Based approaches — con
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stant, linear, and exponential — we report the results fongial
credibility discount factot) = 0.5. For each of these 5 settings, we
calculated the credibility for each site using only 10% dfsplam
sites (the Medium blackligt).

We evaluate the error for each of these credibility functioner
the Medium blacklist’ versus the actual credibility computed over
the entire Spam Corpus We measure the overall error for a tun-
able credibility functionC' overd’ as the average of the pair-wise
credibility differences with the actual credibility funet C* over
b:

' 1 *
error(C,b,b") = m Z |C™*(p) — C(p)|

peX

whereX is the set of sites with at least one bad path to a site in the
Spam CorpusX = {p € P|3j,1 < j < ks.t. BPath;(p,b) #
0}.

In Figure 2, we report the average credibility error for eath
the five tunablek-Scoped Credibility functions evaluated over in-
creasing values of the scope paraméter

There are three interesting observations. First, the Qgtiitn
penalty factor performs very well, resulting in the lowesémge
credibility error fork >= 2. This indicates that the credibility
scores assigned by the Optimistic approach are the clas¢ket
scores assigned by the credibility function with acceshdcentire
Spam Corpus.

Second, the Pessimistic and Constant penalty factors rperfo
well for k = 2, and then increasingly worse as the scope parameter
k increases. These two approaches are very pessimistignasi
0 or low credibility to sites with even a single bad path. Eot 2,
only sites within a close radius of sites on the blacklistzenal-
ized. Thus we see a fairly low error rate. Asncreases, most sites
have at least one path to a blacklist site (recall Figure i, ae
assigned a 0 or low credibility score, resulting in a higloerate.

Third, the Exponential and Linear approaches result inebett
performance than Pessimistic and Constant, but worse tiptin O
mistic. As k increases, the error increase observed in the Con-
stant approach is avoided since the Exponential and Lirezalty
factors treat long paths less severely. On further inspective
discovered that only these two approaches balance thebditgdi
over-estimation of the Optimistic approach and the undienes
tion of the Pessimistic and Constant approaches.

To further illustrate this over- and underestimation bat&grwe
next report the distribution of credibility scores basedteMedium
blacklist for the Optimistic, Pessimistic, and Hop-Basexponen-
tial) approaches for all sites that point to sites in the S@arpus.
Figure 3 reports the distribution of credibility scoresstes the ac-
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tual credibility scores based on the entire Spam Corpus.Ogite
mistic approach assigns very high credibility for nearls#és that
point to the Spam Corpus, whereas the Pessimistic appraach a
signs 0 credibility to most sites. Only the Hop-Based apgindzal-
ances these over and under estimation errors. As we willhseeri
spam resilience experiments in the following sections llalance
will lead to better spam-resilience than the Optimistic rapch

in all cases, and to better spam-resilience than the Pesigirap-
proach fork > 2.
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Figure 4: Average Credibility Error - Varying

The linear and exponential Hop-Based approaches are also im
pacted by the choice of the initial discount factarln Figure 4, we
report the average credibility error for the linear case fio= 4)
for three setting of) (0.25, 0.50, and 0.75). Itis encouraging to see
that the error drops significantly fér = 2 and is fairly stable for
increasing values o (in contrast to the Constant and Pessimistic
approaches reported in Figure 2).

We have also studied the impact of the partial blacklist size
credibility quality. We find that for the Optimistic, Lineaand Ex-
ponential approaches the error rate is fairly stable, vdsettee Pes-
simistic and Constant approaches degrade severely asattidisi
size increases. For these two cases, a larger blacklist teadore
sites within a few hops of the blacklist, resulting in mérscores,
even when the random walk probability of such a bad path is low

6.3 Spam Resilience Evaluation

In the following sections we evaluate the quality of eactdre
bility assignment approach through Web ranking experiseand
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Figure 5: CredibleRank vs. PageRank: Rank Spam Resilience, Value SpaResilience, and Spam Distribution

compare these results with PageRank and TrustRank. We reeasu value function since there is nice intuitive support fotligt is, the

the effectiveness of a Web ranking approach by its spameesd. top-rank positions are quite valuable, while most pos#itave
To quantify spam resilience, we introduce two metrics. Eact- relatively low value. Concretely, the arbitrary value ohkar is
uates the quality of a candidate ranking algorithm versusseline V(z) = 1,000,000z~°%, meaning that the top-ranked site has

ranking algorithm over a set of spam sit&s We refer toX” as a value of$1m, the 100th-ranked site is worti00%, the 10,000th-
portfolio of spam sites. In this paper, we use the Spam Corpus asranked site is wortB10k, and so on. The key here is not to estimate
the portfolio X. We consider the baseline ranking for a portfolio the actual value precisely, but to provide a relative vafuifterent

of |X| sites: B = (B, ..., Bjx|), and a ranking induced by the  rank positions.

candidate ranking algorithth' = (Ex, ..., E|x)).

6.3.1 PageRank versus CredibleRank

Given the above two metrics, we now compare the effective-
ness of CredibleRank to that of PageRank with respect to spam
resilience. Here PageRank is used as the baseline rankiog. F
fairness of comparison, we do not incorporate any whit@lifstr-

Rank-Based Spam Resilience
The first spam resilience metiitR r..., measures the relative change
of theranks of the portfolio sites:

iy R(E3)

SRpank(m) = ==L mation into the CredibleRank calculation, so the staticesvector
> iny R(Bi) in Equation 3 is set to the uniform vector, as it is in PageRank
whereR(E;) returns the rank of sit&; according to the candidate ~ (Equation 1). _ _
ranking algorithm andR(B;) returns the rank of sité; accord- For CredibleRank, we consider the Naive approach and three
ing to the baseline ranking algorithm. By evaluatifi& znx (m) tunablek-Scoped Credibility assignment approaches — Optimistic,

for different values ofn, we may assess the spam resilience of a Pessimistic, and Hop-Based (exponential= 0.5) — using the

ranking algorithm at different levels (e.g., for the topdlgages, ~ Medium blacklist for scope df = 2. In Figures 5(a) and 5(b), we
the top-1000, and so on). A candidate ranking algorithmithat ~ report theSRrank(m) and SRy aiue(m) spam resilience scores
duces a ranking that exactly matches the baseline rankiily, w for m = 1tom = 9,034 (the size of the Spam Corpus) for the

result in SR(m) values of O for all choices of. A ranking al-  four candidate CredibleRank rankings (i.e., Opt, Pess,, tdod
gorithm that induces a more spam-resilient ranking wilutes Naive) versus the baseline PageRank ranking. We are ergealira
positive'S R rank (m) values, meaning that the rank of the portfolio 0 see that for both rank-based and value-based spam nesilieat
will have been reduced. Negative values indicate that theidate @l CredibleRank approaches result in more spam-resii@nitings
algorithm is less spam-resilient than the baseline. versus PageRank, with the Pessimistic performing the blesgly
followed by the Hop-Based approach. The spam resilienddlyap
Value-Based Spam Resilience increases and then peaks over the top-2000 spam sitesatindic
The second spam resilience metric is based on the changéuia that CredibleRank performs well over these top-ranked sytes.
associated value (say, in dollars), and that these valgemano- surement, more lower-ranked sites are considered, which leas
tonically decreasing as the rank position increases. Thafor downward space to move, meaning that the overall spameneséi
a value functionV (), we haveR(i) < R(j) = V(R(i)) > decreases relative to the top-ranked sites. .
ing the relative change in the value of the spam portfolioaunile ~ relative to PageRank, we sorted the sites by rank order éoritip-
candidate ranking algorithm versus the baseline rankiggristhm: Based CredibleRank and PageRank ranking vectors, andedivid
the sites into 20 buckets of an equal humber of sites. Aloeg th
S V(R(E)) x-axis of Figure 5(c) we consider these 20 buckets, from thokéxt
SRvaiue(m) =1—- ==L of top-ranked sites (bucket 1) to the bucket of the bottonked
2 i1 V(R(By)) sites (bucket 20). Along the y-axis, we plot the number ofrpa
whereV (R(E;)) andV (R(B;)) are the values of applying a value  Corpus sites (of the 9,034 total spam sites) in each buckétatWw
function to the rankR(E;) and R(B;) respectively. A positive is immediately obvious is that CredibleRank penalizes spies
SRy aiue Value means that the candidate algorithm is more spam- considerably more than PageRank by demoting spam sites¢o-lo
resilient than the baseline algorithm since the overall@aif the ranked buckets, even when only 10% of the spam sites have been

spam portfolio has been reduced. We consider a power-lakv ran explicitly assigned to the blacklist.
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Our results so far have measured the effectiveness of Qeedib
Rank with respect to its spam resilience. We also would like t
show that CredibleRank does not negatively impact knowrdgoo
sites. Hence, we compared the ranking of each whitelisusiter
PageRank versus its ranking under CredibleRank. We findlkeat
average rank movement is only 26 spots, meaning that we ean fe
fairly confident that CredibleRank is not unduly punishinapd
sites.

6.3.2 TrustRank versus CredibleRank

Recall that TrustRank incorporates whitelist informatiioto the
ranking calculation to favor whitelist sites and the siteattthey
point to over other sites. In this experiment, we comparelibte-
Rank to TrustRank, where TrustRank is used as the baselie ra
ing and for fairness, the CredibleRank approach relies eséime
whitelist-based static score vector used in TrustRank dEqu 2).

For CredibleRank, we again consider the four link credipili
assignment approaches — Naive, Optimistic, PessimistitHop-
Based — using the medium blacklist. In Figures 6(a) and &{b),
report theSRrank(m) and SRy qiu.(m) spam resilience scores
form = 1tom = 9,034 for the three candidate CredibleRank
rankings versus the baseline TrustRank ranking. As in tlgePa
Rank comparison, we see that all CredibleRank approacket re
in more spam-resilient rankings comparing to TrustRankh wie
Pessimistic and Hop-Based performing the best.

For the Hop-Based CredibleRank and the TrustRank rankiag ve
tors, we report the bucket-based spam site distributioigarg 6(c).
We find that CredibleRank penalizes spam sites considenabig
than TrustRank, pushing most sites into the bottom-ranketdds.

We wish to note that the choice of whitelist is extremely im-
portant for TrustRank. Since links from whitelist sites faeored
over links from other sites, a spammer has a great incerdive- t
duce links from a whitelist site. In our experiments, we fihdas-
ing a whitelist with sites that either link directly to spaiites or
are within several hops of spam sites results in very poamsea
silience for TrustRank. We find for one poor quality whitetisat
CredibleRank has a rank-based spam resilience achievirexa m
mum improvement of 107% over TrustRank, with a 32% improve-
ment over the entire spam corpus. We have also evaluateibiered
Rank and TrustRank using only blacklist information and rte+
listinformation (by skewing the static score vector to riaeklist
sites). Since CredibleRank distinguishes page (or sitaljtgiirom
link credibility, we find that it achieves rank-based spasilience
of up to 134% over TrustRank, with a 16% improvement over the
entire spam corpus.
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6.3.3 Impact of Scope (K)

Our results so far have measured the effectiveness of Qeedib
Rank with respect to the tunabteScoped Credibility function for
k = 2. But what are the implications of changing the scope param-
eter on the spam-resilience of CredibleRank? In Figure 7Tepert
the value-based spam resilience ko= 1 to & = 5 for the Naive
approach and the three tunatileScoped Credibility assignment
approaches — Optimistic, Pessimistic, and Hop-Based (el
1 = 0.5). The Naive approach does not consider scope and so
its spam-resilience is unaffected by changes.imhe Hop-Based
and Optimistic approaches are fairly stable with increg&inFor
k = 1 andk = 2, the Pessimistic approach performs well, since
sites that either directly link or are within 2 hops of blaskkites
have no ranking influence over the sites that they point toe Th
Pessimistic approach severely degrades in spam-resili@nan-
creasing values of until it performs even worse than PageRank
for k = 5. Whenk = 5, nearly all sites have at least one path
to a blacklist site, resulting in a Pessimistic credibiligore of 0.
In the CredibleRank interpretation, this means that nealtlinks
in the Web graph are disregarded and so the resulting raskirey
essentially random.

6.3.4 Impact of Blacklist Sze
We have also explored the impact of the blacklist size on the
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spam resilience of CredibleRank. For the three blacklisssall
(1% of the Spam Corpus), medium (10%), and large (20%) — we
report in Figure 8 the ranking distribution of the Spam Carfur

the Hop-Based CredibleRank versus PageRank. For preisentat
clarity, we divide all sites into 10 buckets in this experitheCred-
ibleRank based on the small blacklist (containing just 9€s3ire-
sults in a remarkable improvement over PageRank. The aatyant
increases as more spam sites are added to the blacklist.

We also evaluated CredibleRank’s spam-resilience versust-T
Rank for varying choices of scope parameférgnd blacklist size,
and we find results of a similar spirit to the ones reportedPage-
Rank in Sections 6.3.3 and 6.3.4, but are omitted here dueeto t
space constraint.

7. RELATED WORK

For an introduction to Web spam, we refer the interestederead
to [9]. Some previous techniques suggested for dealing With
spam include the statistical analysis of Web propertiegtiig]iden-
tification of nepotistic links [4], and several attempts topagate
a “bad” rank to pages based on linking patterns [2, 17]. Sdver
searchers have studied collusive linking arrangements i@itpect
to PageRank, including [1] and [21].

Several researchers have suggested identifying and pieggali
pages that derive a large amount of ranking benefit from s |
e.g., [2], [8], and [17]. With respect to PageRank, previoes
searchers have suggested varying the random walk mixiragrar
ter to favor pages with few links versus pages with many [[4&§.

It is important to note that most of this previous researctois-
plementary to credibility-based link analysis; since GsezRank
integrates spam-resilience into the ranking model, ratthean at-
tempting to identify Web spam outright, it may be augmenté&t w
these alternative algorithms to further enhance its afecess.

Our notion of link credibility has some analogues in trustne
work research, in which computational models are develdped
measuring trust. The authors of [3] argued for distinguighbe-
tween direct trust and recommendation trust. In the comtigter-
to-peer networks, the PeerTrust system models the beiiitygbr
credibility) of peer feedback to guide the trust calculatod nodes
in the network [20]. Link credibility is also somewhat reddtto
the notion of distrust, which has recently received indrenatten-
tion (e.g., [7], [18]). For example, in [7], the authors aedior a
trust propagation technique in which the recommendatidraiso

trusted nodes are discounted completely. Note that ourclia#i-
bility model allows for a continuum of credibility scores.

8. CONCLUSIONS

We have explored the concept of link credibility, preserded
eral techniques for semi-automatically assessing lin#ibikty for
all Web pages, and presented an efficient and yet spamergsili
credibility-based Web ranking algorithm. We also introgda set
of metrics to measure the spam resilience properties oftslieg
based link analysis, and have shown that our credibilitysedaank-
ing algorithm outperforms both PageRank and TrustRank. &Ve h
made a first step towards credibility-based link analysisctoun-
tering Web spam, and we believe that this work will triggerreno
research and discussions on this important topic.
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