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ABSTRACT
We introduce the concept of link credibility, identify the conflation
of page quality and link credibility in popular Web link analysis
algorithms, and discuss how to decouple link credibility from page
quality. Our credibility-based link analysis exhibits three distinct
features. First, we develop several techniques for semi-automatically
assessing link credibility for all Web pages. Second, our link cred-
ibility assignment algorithms allow users to assess credibility in a
personalized manner. Third, we develop a novel credibility-based
Web ranking algorithm – CredibleRank – which incorporates credi-
bility information directly into the quality assessment ofeach page
on the Web. Our experimental study shows that our approach is
significantly and consistently more spam-resilient than both Page-
Rank and TrustRank.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software –Information Networks

General Terms: Algorithms, Experimentation

Keywords: Web algorithms, link analysis, credibility, spam, Page-
Rank

1. INTRODUCTION
With millions of Web servers supporting the autonomous sharing

of billions of Web pages, the Web is arguably the most pervasive
and successful distributed computing application today. Web spam
refers to the type of attacks that manipulate how users view and
interact with the Web, degrade the quality of information onthe
Web and place the users at risk for exploitation by Web spammers.
Recent studies suggest that Web spam affects a significant portion
of all Web content, including 8% of pages [5] and 18% of sites [10].
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Most of the popular link-based Web ranking algorithms, like
PageRank [14], HITS [13], and TrustRank [10], all rely on a fun-
damental assumption that the quality of a page and the quality of a
page’s links are strongly correlated: a page ranked higher will be
unlikely to contain lower quality links. This assumption, however,
also opens doors for spammers to create link-based Web spam that
manipulate links to the advantage of the Web spammers. Consider
the following two common link-spam scenarios:
• Hijacking: Spammers hijack legitimate reputable pages and in-
sert links that point to a spammer-controlled page, so that it ap-
pears to link analysis algorithms that the reputable page endorses
the spam page. For example, in January 2006, a reputable computer
science department’s web page for new PhD students washijacked
by a Web spammer, and over 50 links to pornography-related Web
sites were added to the page.
• Honeypots: Instead of directly hijacking a link from a reputable
page and risking exposure, spammers often create legitimate-appearing
websites (honeypots) to induce reputable pages to voluntarily link
to these spammer-controlled pages. A honeypot can then passalong
its accumulated authority by linking to a spam page.

Both scenarios show how spammers can take advantage of the
tight quality-credibility coupling to subvert popular link-based Web
ranking algorithms and why the assumption that the quality of a
page and the quality of a page’s links are highly correlated is vul-
nerable to link-based Web spam.

In this paper we advocate a clean separation of page quality and
link (or reference) quality and argue that the intrinsic quality of
a page should be distinguished from its intrinsic link credibility.
Our goal is to assign each page a link credibility score defined in
terms of link quality, not in terms of page quality. To guide our
understanding of this problem, we address a number of important
research questions.
• Can we formally define the concept of credibility to provide a
degree of separation between page quality and link quality?
• What are the factors impacting the computation of credibility, and
to what degree do these factors impact the application semantics of
credibility-based link analysis?
• Can and how will credibility be impacted by the scope of linkage
information considered? E.g., a page’s local links, it’s neighbor’s
links, its neighbor’s neighbor’s links, and so on.

This paper addresses each of these questions in detail to provide
an in-depth understanding of link credibility. We develop aCred-
ibleRank algorithm that incorporates credibility into an enhanced
spam-resilient Web ranking algorithm. Concretely, we makethree
unique contributions: First, we introduce the concept of link cred-
ibility, identify the conflation of page quality and link credibility
in popular link-based algorithms, and discuss how to decouple link
credibility from page quality. Second, we develop several tech-



niques for semi-automatically assessing link credibilityfor all Web
pages, since manually determining the credibility of everypage on
the Web is infeasible. Another unique property of our link credi-
bility assignment algorithms is that they allows users withdifferent
risk tolerance levels to assess credibility in a personalized man-
ner. Third, we present a novel credibility-based Web ranking algo-
rithm - CredibleRank - which incorporates credibility information
directly into the quality assessment of each page on the Web.

In addition, we develop a set of metrics for measuring the spam
resilience properties of ranking algorithms, and show how the cred-
ibility information derived from a small set of known spam pages
can be used to support high accuracy identification of new (pre-
viously unknown) spam pages. We have conducted an extensive
experimental study on the spam resilience of credibility-based link
analysis over a Web dataset of over 100 million pages, and we find
that our proposed approach is significantly and consistently more
spam-resilient than both PageRank and TrustRank.

2. REFERENCE MODEL
In this section, we present the Web graph model and discuss sev-

eral popular approaches for link-based Web ranking.

2.1 Web Graph Model
Let G = 〈P ,L〉 denote a graph model of the Web, where the

vertexes inP correspond to Web pages and the directed edges in
L correspond to hyperlinks between pages. For convenience, we
assume that there are a total ofn pages (|P| = n) and that pages
are indexed from1 ton. A pagep ∈ P sometimes is referred to by
its index numberi. A hyperlink from pagep to pageq is denoted
as the directed edge(p, q) ∈ L, wherep, q ∈ P . We denote the
set of pages thatp points to asOut(p), and the set of pages that
point to p asIn(p). Typically, each edge(p, q) ∈ L is assigned
a numerical weightw(p, q) > 0 to indicate the strength of the as-
sociation from one page to the other, where

∑

q∈Out(p)w(p, q) =
1. A common approach assigns each edge an equal weight (i.e.
w(p, q) = 1

|Out(p)|
). Other approaches that favor certain edges are

possible.
A Web graphG can be represented by ann×n transition matrix

M where theijth entry indicates the edge strength for an edge
from pagei to pagej. The absence of an edge from one page to
another is indicated by an entry of 0 in the transition matrix:

Mij =

{

w(i, j) if (i, j) ∈ L
0 otherwise

2.2 Link-Based Ranking: Overview
A number of link-based ranking algorithms have been proposed

over the Web graph, including the popular HITS [13], PageRank [14],
and TrustRank [10]. Most of these algorithms assume that a link
from one page to another is counted as a “recommendation vote”
by the originating page for the target page. To illustrate the core
of link-based rank analysis, we below outline PageRank and Trust-
Rank.
PageRank: PageRank provides a single global authority score to
each page on the Web based on the linkage structure of the entire
Web. PageRank assesses the importance of a page by recursively
considering the authority of the pages that point to it via hyper-
links. This formulation counts both the number of pages linking
to a target pageand the relative quality of each pointing page for
determining the overall importance of the target page.

Forn Web pages we can denote the PageRank authority scores
as the vectorrp = (rp1, rp2, ..., rpn). The PageRank calculation

considers the transition matrixM as well as ann-length static
score vectore, which is typically taken to be the uniform vector
e =

(

1
n
, 1

n
, ..., 1

n

)

. We can write the PageRank equation as a com-
bination of these two factors according to a mixing parameter α:

rp = αMT
rp + (1 − α)e (1)

which can be solved using a stationary iterative method likeJacobi
iterations [6]. To ensure convergence, pages with no outlinks are
modified to include virtual links to all other pages in the Webgraph
(forcingM to be row stochastic).
TrustRank: The recently proposed TrustRank algorithm [10] sug-
gests biasing the PageRank calculation toward pre-trustedpages in
an effort to suppress Web spam (similar to PageRank personaliza-
tion suggested in [14] and more fully explored in [11]). Instead of
considering the uniform static score vectore, the TrustRank algo-
rithm considers ann-length vectorv that reflects a priori trust in
each page. For example, in a web graph of 5 pages, if pages 1 and
3 are pre-trusted thenv could be set tov =

(

1
2
, 0, 1

2
, 0, 0

)

. For
n Web pages the TrustRank scores can be denoted by the vector
rt = (rt1, rt2, ..., rtn), and we can write the TrustRank equation
as:

rt = αMT
rt + (1 − α)v (2)

Determining the a priori trust vectorv is of critical importance,
and a number of techniques have been suggested, including the use
of expert-selected whitelists, high PageRank pages, and topically-
segmented trusted pages [10, 19].

In summary, link-based ranking algorithms like HITS, PageRank,
and TrustRank attempt to estimate a page’s intrinsic quality by ana-
lyzing the hyperlink structure of the Web. Fundamentally, the qual-
ity of a page and the quality of its links are tightly coupled in each
of these ranking algorithms. Returning to Equation 1, a pagewith
a PageRank score ofr contributesα · r to the pages that it links to,
whereα is typically in the range[0.75, 0.95]. We have discussed
that such tight coupling is not only inadequate in practice but also
creates Web spam vulnerabilities.

3. LINK CREDIBILITY
In this section, we formally introduce the concept of credibility

in terms ofk-Scoped Credibility. We shall ground our discussion
of link credibility in the context of Web spam and explore howto
algorithmically determine a page’s credibility. Concretely, letC be
acredibility function that instantaneously evaluates the link quality
of a Web pagep at timet. A score ofC(p, t) = 0 indicates that the
pagep is not credible in terms of its links at timet. In contrast, a
score ofC(p, t) = 1 indicates that the pagep is perfectly credible
in terms of its links at timet. We observe that a desirable credibility
function should have the following qualities:
• First, we observe that a page’s link quality should depend on
its own outlinks and perhaps is related to the outlink quality of its
neighbors up to some small number (k) of hops away. Hence, link
credibility of pages should be a function of the local characteris-
tics of a page and its place in the Web graph, and not the global
properties of the entire Web (as in a PageRank-style approach).
• Second, we observe that relying heavily on a set of known good
pages (a whitelist) may be problematic. Spammers may attempt to
mask their low quality outlinks to spam pages by linking to known
whitelist pages. Also, relying too heavily on a whitelist for link
credibility assignment makes these pages extremely valuable for
spammers to corrupt.
• Third, we observe that a page’s credibility should be related to



its distance to known spam pages (a blacklist) to penalize pages for
poor quality outlinks.

Generally speaking, the Web is too large and too quickly growing
to manually label each page as either spam or not spam. We shall
assume that the setP of all pages can be divided into the set of
known good pages, denoted byPw (the whitelist), the set of known
spam pages, denoted byPb (the blacklist), and the set of pages for
which the user has no experience or judgment, denoted byPu (the
unknown pages), such thatP = Pw ∪Pb ∪Pu. In practice, only a
fraction of all pages on the Web will belong to either the whitelist
or the blacklist(|Pw|, |Pb| << |P|).

3.1 Naive Credibility
We begin our analysis of credibility functions by considering a

simple approach that illustrates some of our observations above and
serves as a comparison to the proposedk-Scoped Credibility func-
tion. The naive credibility function assigns a whitelist page a per-
fect credibility score of value one, a blacklist page no credibility
(value zero), and an unknown page a default credibility value θ,
(0 < θ < 1):

Cnaive(p, t) =







0 if p ∈ Pb

θ if p ∈ Pu

1 if p ∈ Pw

The advantage of this naive credibility assignment is its ease
of evaluation. However it has several apparent drawbacks – (i) it
makes no effort to evaluate credibility in terms of the linksof a
page; (ii) the majority of all pages (Pu) receive a default credibility
value; and (iii) whitelist pages, though generally high-quality, may
not necessarily be perfectly credible in reality at all times.

3.2 k-Scoped Credibility
We next introducek-Scoped Credibility, which evaluates the cred-

ibility of a page in terms of the quality of a random walk originating
from the page and lasting for up tok steps. Critical to thisk-Scoped
Credibility is the notion of apath.

Definition 1 (path) Consider a directed web graphG = 〈P ,L〉,
an originating pagep and a destination pageq. A path in the
directed graphG from pagep to pageq is a sequence of nodes:
path(p, q) = 〈n0, n1, ..., nj〉 (wherep = n0 andq = nj ) such
that there exists a directed edge between successive nodes in the
path,(ni, ni+1) ∈ L for 0 ≤ i ≤ j − 1. The length|path(p, q)|
of a path isj, the number of edges in the path. There may exist
multiple paths fromp to q.

We refer to the set of all paths of a specified length (say,k) that
originate from a pagep asPathk(p). We will sometimes refer to
a specific path of lengthk originating fromp using the notation
pathk(p), wherepathk(p) ∈ Pathk(p).

Our notion ofk-Scoped Credibility relies on a special type of
path that we call abad path.

Definition 2 (bad path) Consider a directed web graphG = 〈P ,L〉,
an originating pagep and a destination pageq. We say that a path
in the directed graphG from pagep to pageq is abad path if the
destination page is a spam page,q ∈ Pb, and no other page in the
path is a spam page.path(p, q) = 〈n0, n1, ..., nj〉 (wherep = n0

andq = nj ) andq ∈ Pb andni /∈ Pb, for 0 ≤ i ≤ j − 1.

We refer to the set of all bad paths of a specified length (say,
k) that originate from a pagep asBPathk(p). The probability
of a random walker traveling along ak-length path from pagep is

denoted byPr(pathk(p)), and is determined by the probabilistic
edge weights for each hop of the path:

Pr(pathk(p)) =
k−1
∏

i=0

w(ni, ni+1)

Formally, we define thek-Scoped Credibility of a page in terms
of the probability that a random walkeravoids spam pages after
walking up tok hops away from the originating page. Fork = 1,
the k-Scoped Credibility is simply the fraction of a page’s links
that point to non-spam pages. Increasingk extends the scope of
this credibility function by considering random walks of increasing
length. For an originating pagep ∈ P , if p is a spam page, we set
its link credibility to be 0, regardless of the characteristics of the
pages it links to.

Definition 3 (k-Scoped Credibility) LetG = 〈P ,L〉 be a directed
web graph,k be a maximum walk radius wherek > 0, andp ∈ P
be a page in the Web graph. Thek-Scoped Credibility of pagep at
time t, denoted byCk(p, t), is defined as follows:

Ck(p, t) = 1 −
k
∑

l=1





∑

pathl(p)∈BPathl(p)

Pr(pathl(p))





For the special case whenp ∈ Pb, letCk(p, t) = 0.

In the case that there are no spam pages withink hops of page
p, thenp is perfectly credible:Ck(p, t) = 1. In the case that
p itself is a spam page or in the case that all paths originatingat
pagep hit a spam page withink hops, thenp is not credible at
all: Ck(p, t) = 0. Intuitively, thek-Scoped Credibility function
models a random walker who when arriving at a spam page, be-
comes stuck and ceases his random walk, and for all other pages
the walker continues to walk, for up tok hops.

4. COMPUTING CREDIBILITY
In practice, of course, thek-Scoped Credibility function can only

have access to some portion of the entire Web graph, due to thesize
of the Web, its evolution, and the cost of crawling all pages.Ad-
ditionally, only some spam pages will be known to the credibility
function through the blacklist. In order to correct the inaccuracy in
computingk-Scoped Credibility due to the presence of an incom-
plete Web graph and a partial blacklist, in this section we introduce
the concept of tunablek-Scoped Credibility, which augments the
basick-Scoped Credibility computation by including a credibility
penalty factor as a control knob. Our goals are to better approx-
imate thek-Scoped Credibility under realistic constraints and un-
derstand how different parameters may influence the qualityof a
credibility function.

4.1 Tunable k-Scoped Credibility
The tunablek-Scoped Credibility is a function of two compo-

nents: a random-walk component with respect to the known bad
paths (based on the blacklist) and a penalty component. The penalty
component is intended to compensate for the bad paths that are
unknown to the credibility function. We first define the tunable
k-Scoped Credibility and then focus our discussion on alternative
approaches for assigning the credibility discount factor to offset the
problem of an incomplete Web graph and a partial blacklist.

Definition 4 (Tunable k-Scoped Credibility) Let G = 〈P ,L〉 be
a directed web graph,k be a maximum walk radius wherek > 0,



andγ(p) be the credibility penalty factor of a pagep ∈ P where
0 ≤ γ(p) ≤ 1. We define thetunable k-Scoped Credibility of page
p, denoted byCk(p), in two steps: whenp 6∈ Pb:

Ck(p) =



1 −
k
∑

l=1





∑

pathl(p)∈BPathl(p)

Pr(pathl(p))







·γ(p)

In the case ofp ∈ Pb, letCk(p) = 0.

The penalty factorγ(p) is an important tunable parameter of the
credibility assignment and can be used as the credibility discount
knob. Since the blacklistPb provides only a partial list of all spam
pages in the Web graph at a given point of time, the penalty fac-
tor can be used to update the random walk portion of the credi-
bility calculation to best reflect the possible spam pages that are
not yet on the blacklist. We propose to use a hop-based approach
for determining the proper credibility discount factor in computing
k-Scoped Credibility for each page in the Web graph. To better
understand the advantage of our hop-based approach, we alsodis-
cuss the optimistic and pessimistic approaches as two extremes for
selecting the penalty factor for each page.

4.1.1 The Optimistic Approach
This approach defines the credibility penalty factor for a page by

assigning no penalty at all. In other words, for all pages, weassign
a credibility discount factor of 1:

γopt(p) = 1, ∀p ∈ P

meaning the random walk component of the tunablek-Scoped Cred-
ibility is not penalized at all. We call this approach anoptimistic
one since it is equivalent to assuming that all spam pages areon the
blacklist. The optimistic approach will tend to over-estimate the
credibility of pages that link to the spam pages not on the blacklist.

4.1.2 The Pessimistic Approach
In contrast, apessimistic approach treats a page withany j-

length path (1 ≤ j ≤ k) leading to a blacklist page asnot credible
within thek-hop scope in the sense thatall paths originating from
such a page are considered bad paths.

γpess(p) =

{

0 if |BPathj(p)| ≥ 1 for any j,0 < j ≤ k
1 otherwise

A pessimistic approach may be appropriate in circumstanceswhen
links to spam pages are highly correlated (e.g., if the presence of
a link to a blacklist page is always accompanied by another link to
a spam page that is not on the blacklist). In many circumstances,
the presence of a single bad path originating at a page may be the
result of a temporary linking mistake (as in the hijacking example
discussed in the introduction) or truly indicative that thepage has
only a fraction of links leading to spam pages. Hence, the pes-
simistic approach may be too draconian.

4.1.3 The Hop-Based Approach
The third approach for determining the credibility discount fac-

tor balances the extremes of the optimistic and pessimisticapproaches
by considering the number and the length of the bad paths for a
page. A bad path is treated as evidence that there are other bad
paths for an originating page that have been overlooked due to the
partial nature of the blacklist and the incompleteness of the Web
graph.

For a bad path of lengthj originating at pagep, we associate a
hop-based discount factorγhop,j(p), where0 ≤ γhop,j(p) ≤ 1.
By default, we letγhop,j(p) = 1 if there are no bad paths of length
j originating fromp (i.e. BPathj(p) = ∅). The hop-based dis-
count factor can then be calculated as the product of the constituent
discount factors:γhop(p) =

∏k

j=1 γhop,j(p).
Determining the choice of hop-based discount factors is critical

to the quality of tunablek-scoped credibility calculation. We be-
low discuss three alternative ways to computeγhop,j(p). We begin
with a user-defined discount factorψ (0 < ψ < 1) to set the initial
hop-based discount for bad paths of length 1, i.e.,γhop,1(p) = ψ.
Then we introduce three approaches for damping the user-defined
discount factor that determine how quickly the discount factor ap-
proaches 1 as path length increases. Settingψ close to 0 will result
in a more pessimistic credibility penalty, whereasψ close to 1 is
intuitively more optimistic. By tuningψ and the damping function
we can balance these extremes.
Constant: One way for damping the initial setting of the user-
defined discount factorψ for bad paths of increasing length is to
penalize all paths of varying lengths emanating from a page equally
if there exists one bad path, i.e.,BPathj(p) 6= ∅. We refer to this
approach as aconstant discount factor since the hop-based discount
does not vary with bad path length:

γhop,i(p) = ψ

Using a constant damping factor, a page that directly links to a
spam page results in a credibility penalty that is the same asthe
penalty for a more distant path to a spam page.
Linear: The second approach to set the discount factor islinear
in the length of a bad path up to some pre-specified path lengthL.
Paths of distanceL or greater are considered too distant to provide
additional evidence of other bad paths, and so the discount factor is
1 for those paths.

γhop,i(p) =







(i− 1)

L− 1
(1 − ψ) + ψ if i < L

1 otherwise

Using a linear damping factor, a path to a spam page that is far-
ther away from the originating page results in a less severe hop-
based discount than the credibility penalty for a direct link or short
path from the originating pagep to a spam page.
Exponential: The third approach for setting the discount factor
is exponential in the length of the path, meaning that the initial
discount factorψ for bad paths of length 1 is quickly damped close
to 1 as the bad path length increases.

γhop,i(p) = 1 − (1 − ψ)ψi−1

Compared with the linear damping factor, the exponential damp-
ing factor allows the credibility discount for a spam page tobe
quickly damped close to 1. Put differently, when a spam page is
closer to the originating pagep, the link credibility of p is dis-
counted less than the linear case with respect to the hop count.

4.2 Implementation Strategy
Thek-Scoped Credibility is a local computation, requiring only

an originating page and a forward crawl of all pages withink hops
of the originating page. Hence, the credibility of a page canbe up-
dated in a straightforward fashion and as often as thek-hop neigh-
bors are refreshed via Web crawls.

In practice, we anticipate computing thek-Scoped Credibility
in batch for all Web pages in the current Web graph state after



each Web crawl. The main cost of computing the tunablek-Scoped
Credibility is the cost of identifying the set of bad paths for each
page and the cost of explicitly computing the path probabilities (re-
call Section 3.2). We propose to calculate the tunablek-Scoped
Credibility for all pages using an equivalent iterative approach that
is cheaper and faster. LetG = 〈P ,L〉 denote a graph model of
the Web and|P| = n (recall Section 2.1). We first construct an
n-length indicator vectord = (d1, d2, . . . , dn) to reflect whether
a page is in the blacklist or not:di = 1 if pi ∈ Pb, anddi = 0
otherwise.

We next construct ann×n transition matrixB that replicates the
original Web graph transition matrixM, but with transition proba-
bilities exiting a blacklist page of 0, to indicate the random walker
stops when he arrives at a blacklist page.

Bij =

{

Mij if di 6∈ Pb

0 otherwise

In practice, the matrixB need not be explicitly created. Rather,
the original matrixM can be augmented with rules to disregard
blacklist entries.

The penalty factors can be encoded in ann× n diagonal matrix
Γ, where the diagonal elements correspond to the per-page penalty
factors:

Γij =

{

γ(i) if i = j
0 otherwise

Finally, then-length tunablek-Scoped Credibility vectorC[k]

can be computed:

C[k] =

(

1 −
k
∑

j=0

B
(j)

d
T

)

· Γ

where1 is ann-length vector of numerical value 1s. Note that the
matrix multiplication ofΓ can be implemented as an element-wise
vector product, so the expense of a matrix-by-matrix multiplication
can be largely avoided.

5. CREDIBILITY-BASED WEB RANKING
We have presented the design of several credibility functions for

evaluating Web page link quality. In this section, we use this de-
coupled credibility information to augment the page quality assess-
ment of each page on the Web with a goal of suppressing Web
spam. Concretely, we demonstrate how link credibility information
can improve PageRank and TrustRank-style approaches through a
credibility-based Web ranking algorithm called CredibleRank.

Returning to PageRank (see Equation 1), there are several av-
enues for incorporating link credibility information. We outline
four alternatives below:
• First, the initial score distribution for the iterative PageRank cal-
culation (which is typically taken to be a uniform distribution) can
be seeded to favor high credibility pages. While this modification
may impact the convergence rate of PageRank, it has no impact
on ranking quality since the iterative calculation will converge to a
single final PageRank vector regardless of the initial scoredistribu-
tion.
• Second, the graph structure underlying the transition matrix M

can be modified to remove low credibility pages and edges to low
credibility pages. While this modification may eliminate some Web
spam pages, it could also have the negative consequence of elimi-
nating legitimate pages that are merely of low credibility.

• Third, the edge weights in the transition matrixM can be ad-
justed to favor certain edges, say edges to high-credibility pages.
While this change may have some benefit, a low credibility pagep’s
overall influence will be unaffected (since

∑

q∈Out(p)w(p, q) =
1).
• Finally, the static score vectore can be changed to reflect the
link credibility information, much like in TrustRank and Person-
alized PageRank [11, 10]. By skewinge toward high credibility
pages (or away from low credibility pages) we can give a ranking
boost to these pages, which could have the undesired consequence
of ranking a low-quality high-credibility page over a high-quality
low-credibility page.

Alternatively, we propose a credibility-augmented Web ranking
algorithm that uses credibility information to impact the size of
the vote of each page. CredibleRank asserts that a page’s qual-
ity be determined by two criteria: (1) the quality of the pages
pointing to it; and (2) the credibility of each pointing page. A
link from a high-quality/high-credibility page counts more than
a link from a high-quality/low-credibility page. Similarly, a link
from a low-quality/high-credibility page counts more thana link
from a low-quality/low-credibility page. By decoupling link cred-
ibility from the page’s quality, we can determine the credibility-
augmented quality of each page through a recursive formulation.

Recall thatIn(p) denotes the set of pages linking top. We com-
pute the CredibleRank scorerc(p) for a pagep as:

rc(p) =
∑

q∈In(p)

C(q) · rc(q) · w(q, p)

This formula states that the CredibleRank score (quality) of page
p is determined by the quality (rc(q)) and the link credibility (C(q))
of the pages that point to it, as well as the strength of the link
w(q, p). In this sense, the link weights are used to determine how
a page’s “vote” is split among the pages that it points to, butthe
credibility of a page impacts how large or small is the page’svote.

We can extend this formulation to considern Web pages, where
we denote the CredibleRank authority scores by the vectorrc =
(rc1, rc2, ..., rcn). Recall thatM denotes then×nWeb transition
matrix, andv is an n-length static score vector. We can construct
ann × n diagonal credibility matrixCR from the link credibility
vectorγ, where the elements of the credibility matrix are defined
as:

CRij =

{

C(i) if i = j
0 otherwise

We can then write the CredibleRank vectorrc as:

rc = α(CR · M)T
rc + (1 − α)v (3)

which, like PageRank and TrustRank, can be solved using a station-
ary iterative method like Jacobi iterations. The matrix multiplica-
tion of CR andM can be implemented as an element-wise vector
product to avoid the expense of a matrix-by-matrix multiplication.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of an experimental study of

credibility-based link analysis over a Web dataset of over 100 mil-
lion pages. We report two sets of experiments – (1) an evaluation
of tunablek-Scoped Credibility and the factors impacting it (like
scopek, discount factor, blacklist size, and damping function); and
(2) a study of the spam-resilience characteristics of CredibleRank,
where we show that our proposed approach is significantly andcon-
sistently more spam-resilient than both PageRank and TrustRank.



Figure 1: Credibility Coverage
Blacklist Size

Scope (k) Small Medium Large
1 7% 27% 39%
2 5% 33% 46%
3 26% 73% 79%
4 75% 94% 95%
5 95% 98% 98%
10 99% 99% 99%

6.1 Setup
The experiments reported in this paper use a Stanford WebBase

dataset consisting of 118 million pages and 993 million links. The
dataset was originally collected in 2001 and includes pagesfrom a
wide variety of top-level-domains.

Defining what exactly constitutesspam is an open question, and
so as a baseline for our experiments we considered pornography
related pages in the dataset as spam. Naturally, this is one of many
possible spam definitions and we anticipate revisiting thistopic in
our continuing research. Since manually inspecting all 118million
pages is an onerous task, we applied a simple procedure to identify
spam pages. We first identified all sites with a URL containinga
pornography related keyword (where we define a site by the host-
level information embedded in each page’s URL). This resulted in
11,534 sites and over 1.5 million pages. For these 11,534 sites, we
then sampled a handful of pages from each site and kept only those
sites that we judged to be spam. Applying this filter yielded 9,034
sites consisting of 1,202,004 pages. We refer to these pagesas the
Spam Corpus.

We generated three blacklists by randomly selecting sites from
the Spam Corpus. The first blacklist (referred to asLarge) contains
20% of the sites in the Spam Corpus (1807 sites, or 0.24% of all
sites); the second blacklist (Medium) contains 10% of the Spam
Corpus (903 sites); the third blacklist (Small) contains just 1% (90
sites).

For the whitelist, we manually selected 181 sites from the top-
5000 sites (as ranked by PageRank). These whitelist sites are each
maintained by a clearly legitimate real-world entity, either a major
corporation, university, or organization. We additionally ensured
that each of these 181 sites was not within two-hops of any site in
the Spam Corpus.

We grouped pages in the entire dataset into sites (again, by the
host information of each page’s URL), resulting in 738,626 sites.
We constructed a site graph where each site is a node in the graph.
If a page in one site points to a page in another site we included an
edge in the site graph, excluding self-edges. The result is 11,816,108
edges in the site-level Web graph. We adopted a fairly standard ap-
proach for defining the edge strength for a site-level edge asthe
fraction of page-level hyperlinks pointing from the originating site
to the target site (e.g., [12, 16]), and constructed the transition ma-
trix M based on these edge weights. For all ranking calculations,
we relied on the standard mixing parameterα = 0.85 used in the
literature (e.g., [10, 14]), and we terminated the Jacobi method after
50 iterations.

6.2 Credibility Assignment Evaluation
In the first set of experiments, we evaluate tunablek-Scoped

Credibility and the many factors impacting it.

6.2.1 Credibility Coverage
In our first experiment (shown in Figure 1), we examine how

widely the tunablek-Scoped Credibility can assign link credibility

Figure 2: Average Credibility Error - Varying k

scores to sites beyond the pre-labelled blacklist. By increasing the
tunable scope parameterk, the credibility function will consider
paths of increasing length, meaning that there will be a greater op-
portunity for identifying bad paths. We measure thecoverage of
k-Scoped Credibility in terms of the scope parameterk, a com-
plete blacklistb (the Spam Corpus), and a partial blacklistb′, where
b′ ⊂ b:

cov(k, b, b′) =
|{p ∈ P|∃j, 1 ≤ j ≤ k s.t.BPathj(p, b

′) 6= ∅}|

|{p ∈ P|∃j, 1 ≤ j ≤ k s.t.BPathj(p, b) 6= ∅}|

whereBPathk(p, b) denotes the set of all bad paths to sites in
blacklistb of lengthk that originate from a pagep. The numerator
corresponds to the count of all sites with at least one path toa site
on the partial blacklist. The denominator corresponds to the count
of all sites with at least one path to a site on the complete blacklist
(the Spam Corpus). So, fork = 1, there are 18,305 sites that are
either spam sites or directly link to spam sites; of these 27%are
on the Medium blacklist or directly link to a site on the Medium
blacklist.

There are three interesting observations. First, the size of the
blacklist is important. A larger blacklist leads to more evidence
of bad paths, and hence will give our tunablek-Scoped Credibility
function the opportunity to make higher-quality credibility assess-
ments, even for smallk. Second, even for the Small blacklist – with
just 90 sites – we find fairly reasonable coverage (26%) fork = 3.
Third, for largek, nearly all pages have at least one path to a spam
page. Thus, pages that are quite distant from an originatingpage
likely have little impact over the credibility of the originating page.
The choice ofk should be made with care.

6.2.2 Credibility Quality
We next study the quality of the tunablek-Scoped Credibility

function over different settings of the credibility penalty factor (Fig-
ures 2, 3, and 4). Recall that the penalty factor is used to update
the random walk portion of the credibility calculation to reflect the
possible spam pages (or sites, in this case) not yet on the blacklist.
Our goal is to understand how well the tunablek-Scoped Credibil-
ity functions perform as compared to thek-Scoped Credibility with
access to the full Spam Corpus.

We consider five different settings for the penalty factor ofthe
k-Scoped Credibility – the Optimistic, Pessimistic, and three Hop-
Based approaches. For each of the Hop-Based approaches – con-



(a) Optimistic (b) Pessimistic (c) Hop-Based (exponentialψ = 0.5)

Figure 3: Distribution of Credibility Scores for Sites That Point to Spam Sites (vs. Actual) [k=3]

stant, linear, and exponential – we report the results for aninitial
credibility discount factorψ = 0.5. For each of these 5 settings, we
calculated the credibility for each site using only 10% of all spam
sites (the Medium blacklistb′).

We evaluate the error for each of these credibility functions over
the Medium blacklistb′ versus the actual credibility computed over
the entire Spam Corpusb. We measure the overall error for a tun-
able credibility functionC over b′ as the average of the pair-wise
credibility differences with the actual credibility function C∗ over
b:

error(C, b, b′) =
1

|X|

∑

p∈X

|C∗(p) − C(p)|

whereX is the set of sites with at least one bad path to a site in the
Spam Corpus:X = {p ∈ P|∃j, 1 ≤ j ≤ k s.t.BPathj(p, b) 6=
∅}.

In Figure 2, we report the average credibility error for eachof
the five tunablek-Scoped Credibility functions evaluated over in-
creasing values of the scope parameterk.

There are three interesting observations. First, the Optimistic
penalty factor performs very well, resulting in the lowest average
credibility error fork >= 2. This indicates that the credibility
scores assigned by the Optimistic approach are the closest to the
scores assigned by the credibility function with access to the entire
Spam Corpus.

Second, the Pessimistic and Constant penalty factors perform
well for k = 2, and then increasingly worse as the scope parameter
k increases. These two approaches are very pessimistic, assigning
0 or low credibility to sites with even a single bad path. Fork = 2,
only sites within a close radius of sites on the blacklist arepenal-
ized. Thus we see a fairly low error rate. Ask increases, most sites
have at least one path to a blacklist site (recall Figure 1), and are
assigned a 0 or low credibility score, resulting in a high error rate.

Third, the Exponential and Linear approaches result in better
performance than Pessimistic and Constant, but worse than Opti-
mistic. As k increases, the error increase observed in the Con-
stant approach is avoided since the Exponential and Linear penalty
factors treat long paths less severely. On further inspection, we
discovered that only these two approaches balance the credibility
over-estimation of the Optimistic approach and the underestima-
tion of the Pessimistic and Constant approaches.

To further illustrate this over- and underestimation balance, we
next report the distribution of credibility scores based onthe Medium
blacklist for the Optimistic, Pessimistic, and Hop-Based (exponen-
tial) approaches for all sites that point to sites in the SpamCorpus.
Figure 3 reports the distribution of credibility scores versus the ac-

tual credibility scores based on the entire Spam Corpus. TheOpti-
mistic approach assigns very high credibility for nearly all sites that
point to the Spam Corpus, whereas the Pessimistic approach as-
signs 0 credibility to most sites. Only the Hop-Based approach bal-
ances these over and under estimation errors. As we will see in our
spam resilience experiments in the following sections, this balance
will lead to better spam-resilience than the Optimistic approach
in all cases, and to better spam-resilience than the Pessimistic ap-
proach fork > 2.

Figure 4: Average Credibility Error - Varying ψ

The linear and exponential Hop-Based approaches are also im-
pacted by the choice of the initial discount factorψ. In Figure 4, we
report the average credibility error for the linear case (for L = 4)
for three setting ofψ (0.25, 0.50, and 0.75). It is encouraging to see
that the error drops significantly fork = 2 and is fairly stable for
increasing values ofk (in contrast to the Constant and Pessimistic
approaches reported in Figure 2).

We have also studied the impact of the partial blacklist sizeon
credibility quality. We find that for the Optimistic, Linear, and Ex-
ponential approaches the error rate is fairly stable, whereas the Pes-
simistic and Constant approaches degrade severely as the blacklist
size increases. For these two cases, a larger blacklist leads to more
sites within a few hops of the blacklist, resulting in more0 scores,
even when the random walk probability of such a bad path is low.

6.3 Spam Resilience Evaluation
In the following sections we evaluate the quality of each credi-

bility assignment approach through Web ranking experiments, and



(a)SRRank(m) (b)SRV alue(m) (c) Spam Distribution

Figure 5: CredibleRank vs. PageRank: Rank Spam Resilience, Value Spam Resilience, and Spam Distribution

compare these results with PageRank and TrustRank. We measure
the effectiveness of a Web ranking approach by its spam resilience.
To quantify spam resilience, we introduce two metrics. Eacheval-
uates the quality of a candidate ranking algorithm versus a baseline
ranking algorithm over a set of spam sitesX . We refer toX as a
portfolio of spam sites. In this paper, we use the Spam Corpus as
the portfolioX . We consider the baseline ranking for a portfolio
of |X | sites: B = (B1, ..., B|X|), and a ranking induced by the
candidate ranking algorithmE = (E1, ..., E|X|).

Rank-Based Spam Resilience
The first spam resilience metricSRRank measures the relative change
of theranks of the portfolio sites:

SRRank(m) =

∑m

i=1R(Ei)
∑m

i=1R(Bi)
− 1

whereR(Ei) returns the rank of siteEi according to the candidate
ranking algorithm andR(Bi) returns the rank of siteBi accord-
ing to the baseline ranking algorithm. By evaluatingSRRank(m)
for different values ofm, we may assess the spam resilience of a
ranking algorithm at different levels (e.g., for the top-100 pages,
the top-1000, and so on). A candidate ranking algorithm thatin-
duces a ranking that exactly matches the baseline ranking, will
result inSR(m) values of 0 for all choices ofk. A ranking al-
gorithm that induces a more spam-resilient ranking will result in
positiveSRRank(m) values, meaning that the rank of the portfolio
will have been reduced. Negative values indicate that the candidate
algorithm is less spam-resilient than the baseline.

Value-Based Spam Resilience
The second spam resilience metric is based on the change invalue
of the spam portfolio. Let us assume that each rank position has an
associated value (say, in dollars), and that these values are mono-
tonically decreasing as the rank position increases. That is, for
a value functionV (·), we haveR(i) < R(j) ⇒ V (R(i)) >
V (R(j)). Hence, we can measure the spam resilience by consider-
ing the relative change in the value of the spam portfolio under the
candidate ranking algorithm versus the baseline ranking algorithm:

SRV alue(m) = 1 −

∑m

i=1 V (R(Ei))
∑m

i=1 V (R(Bi))

whereV (R(Ei)) andV (R(Bi)) are the values of applying a value
function to the rankR(Ei) andR(Bi) respectively. A positive
SRV alue value means that the candidate algorithm is more spam-
resilient than the baseline algorithm since the overall value of the
spam portfolio has been reduced. We consider a power-law rank

value function since there is nice intuitive support for it,that is, the
top-rank positions are quite valuable, while most positions have
relatively low value. Concretely, the arbitrary value of rank x is
V (x) = 1, 000, 000x−0.5, meaning that the top-ranked site has
value of$1m, the 100th-ranked site is worth$100k, the 10,000th-
ranked site is worth$10k, and so on. The key here is not to estimate
the actual value precisely, but to provide a relative value of different
rank positions.

6.3.1 PageRank versus CredibleRank
Given the above two metrics, we now compare the effective-

ness of CredibleRank to that of PageRank with respect to spam
resilience. Here PageRank is used as the baseline ranking. For
fairness of comparison, we do not incorporate any whitelistinfor-
mation into the CredibleRank calculation, so the static score vector
in Equation 3 is set to the uniform vector, as it is in PageRank
(Equation 1).

For CredibleRank, we consider the Naive approach and three
tunablek-Scoped Credibility assignment approaches – Optimistic,
Pessimistic, and Hop-Based (exponentialψ = 0.5) – using the
medium blacklist for scope ofk = 2. In Figures 5(a) and 5(b), we
report theSRRank(m) andSRV alue(m) spam resilience scores
for m = 1 to m = 9, 034 (the size of the Spam Corpus) for the
four candidate CredibleRank rankings (i.e., Opt, Pess, Hop, and
Naive) versus the baseline PageRank ranking. We are encouraged
to see that for both rank-based and value-based spam resilience that
all CredibleRank approaches result in more spam-resilientrankings
versus PageRank, with the Pessimistic performing the best,closely
followed by the Hop-Based approach. The spam resilience rapidly
increases and then peaks over the top-2000 spam sites, indicating
that CredibleRank performs well over these top-ranked spamsites.
As k increases to consider more sites in the spam resilience mea-
surement, more lower-ranked sites are considered, which have less
downward space to move, meaning that the overall spam resilience
decreases relative to the top-ranked sites.

To further demonstrate how CredibleRank demotes spam sites
relative to PageRank, we sorted the sites by rank order for the Hop-
Based CredibleRank and PageRank ranking vectors, and divided
the sites into 20 buckets of an equal number of sites. Along the
x-axis of Figure 5(c) we consider these 20 buckets, from the bucket
of top-ranked sites (bucket 1) to the bucket of the bottom-ranked
sites (bucket 20). Along the y-axis, we plot the number of Spam
Corpus sites (of the 9,034 total spam sites) in each bucket. What
is immediately obvious is that CredibleRank penalizes spamsites
considerably more than PageRank by demoting spam sites to lower-
ranked buckets, even when only 10% of the spam sites have been
explicitly assigned to the blacklist.
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Figure 6: CredibleRank vs. TrustRank: Rank Spam Resilience, Value Spam Resilience, and Spam Distribution

Our results so far have measured the effectiveness of Credible-
Rank with respect to its spam resilience. We also would like to
show that CredibleRank does not negatively impact known good
sites. Hence, we compared the ranking of each whitelist siteunder
PageRank versus its ranking under CredibleRank. We find thatthe
average rank movement is only 26 spots, meaning that we can feel
fairly confident that CredibleRank is not unduly punishing good
sites.

6.3.2 TrustRank versus CredibleRank
Recall that TrustRank incorporates whitelist informationinto the

ranking calculation to favor whitelist sites and the sites that they
point to over other sites. In this experiment, we compare Credible-
Rank to TrustRank, where TrustRank is used as the baseline rank-
ing and for fairness, the CredibleRank approach relies on the same
whitelist-based static score vector used in TrustRank (Equation 2).

For CredibleRank, we again consider the four link credibility
assignment approaches – Naive, Optimistic, Pessimistic, and Hop-
Based – using the medium blacklist. In Figures 6(a) and 6(b),we
report theSRRank(m) andSRV alue(m) spam resilience scores
for m = 1 to m = 9, 034 for the three candidate CredibleRank
rankings versus the baseline TrustRank ranking. As in the Page-
Rank comparison, we see that all CredibleRank approaches result
in more spam-resilient rankings comparing to TrustRank, with the
Pessimistic and Hop-Based performing the best.

For the Hop-Based CredibleRank and the TrustRank ranking vec-
tors, we report the bucket-based spam site distribution in Figure 6(c).
We find that CredibleRank penalizes spam sites considerablymore
than TrustRank, pushing most sites into the bottom-ranked buckets.

We wish to note that the choice of whitelist is extremely im-
portant for TrustRank. Since links from whitelist sites arefavored
over links from other sites, a spammer has a great incentive to in-
duce links from a whitelist site. In our experiments, we find choos-
ing a whitelist with sites that either link directly to spam sites or
are within several hops of spam sites results in very poor spam re-
silience for TrustRank. We find for one poor quality whitelist that
CredibleRank has a rank-based spam resilience achieving a maxi-
mum improvement of 107% over TrustRank, with a 32% improve-
ment over the entire spam corpus. We have also evaluated Credible-
Rank and TrustRank using only blacklist information and no white-
list information (by skewing the static score vector to non-blacklist
sites). Since CredibleRank distinguishes page (or site) quality from
link credibility, we find that it achieves rank-based spam resilience
of up to 134% over TrustRank, with a 16% improvement over the
entire spam corpus.

Figure 7: Impact of Scope [K] (CR vs. PR)

6.3.3 Impact of Scope (K)
Our results so far have measured the effectiveness of Credible-

Rank with respect to the tunablek-Scoped Credibility function for
k = 2. But what are the implications of changing the scope param-
eter on the spam-resilience of CredibleRank? In Figure 7 we report
the value-based spam resilience fork = 1 to k = 5 for the Naive
approach and the three tunablek-Scoped Credibility assignment
approaches – Optimistic, Pessimistic, and Hop-Based (exponential
ψ = 0.5). The Naive approach does not consider scope and so
its spam-resilience is unaffected by changes ink. The Hop-Based
and Optimistic approaches are fairly stable with increasing k. For
k = 1 andk = 2, the Pessimistic approach performs well, since
sites that either directly link or are within 2 hops of blacklist sites
have no ranking influence over the sites that they point to. The
Pessimistic approach severely degrades in spam-resilience for in-
creasing values ofk until it performs even worse than PageRank
for k = 5. Whenk = 5, nearly all sites have at least one path
to a blacklist site, resulting in a Pessimistic credibilityscore of 0.
In the CredibleRank interpretation, this means that nearlyall links
in the Web graph are disregarded and so the resulting rankings are
essentially random.

6.3.4 Impact of Blacklist Size
We have also explored the impact of the blacklist size on the



Figure 8: Impact of Blacklist Size (CR vs. PR)

spam resilience of CredibleRank. For the three blacklists –small
(1% of the Spam Corpus), medium (10%), and large (20%) – we
report in Figure 8 the ranking distribution of the Spam Corpus for
the Hop-Based CredibleRank versus PageRank. For presentation
clarity, we divide all sites into 10 buckets in this experiment. Cred-
ibleRank based on the small blacklist (containing just 90 sites) re-
sults in a remarkable improvement over PageRank. The advantage
increases as more spam sites are added to the blacklist.

We also evaluated CredibleRank’s spam-resilience versus Trust-
Rank for varying choices of scope parameter (k) and blacklist size,
and we find results of a similar spirit to the ones reported forPage-
Rank in Sections 6.3.3 and 6.3.4, but are omitted here due to the
space constraint.

7. RELATED WORK
For an introduction to Web spam, we refer the interested reader

to [9]. Some previous techniques suggested for dealing withWeb
spam include the statistical analysis of Web properties [5], the iden-
tification of nepotistic links [4], and several attempts to propagate
a “bad” rank to pages based on linking patterns [2, 17]. Several re-
searchers have studied collusive linking arrangements with respect
to PageRank, including [1] and [21].

Several researchers have suggested identifying and penalizing
pages that derive a large amount of ranking benefit from spam links,
e.g., [2], [8], and [17]. With respect to PageRank, previousre-
searchers have suggested varying the random walk mixing parame-
ter to favor pages with few links versus pages with many links[15].
It is important to note that most of this previous research iscom-
plementary to credibility-based link analysis; since CredibleRank
integrates spam-resilience into the ranking model, ratherthan at-
tempting to identify Web spam outright, it may be augmented with
these alternative algorithms to further enhance its effectiveness.

Our notion of link credibility has some analogues in trust net-
work research, in which computational models are developedfor
measuring trust. The authors of [3] argued for distinguishing be-
tween direct trust and recommendation trust. In the contextof peer-
to-peer networks, the PeerTrust system models the believability (or
credibility) of peer feedback to guide the trust calculation of nodes
in the network [20]. Link credibility is also somewhat related to
the notion of distrust, which has recently received increasing atten-
tion (e.g., [7], [18]). For example, in [7], the authors argue for a
trust propagation technique in which the recommendations of dis-

trusted nodes are discounted completely. Note that our linkcredi-
bility model allows for a continuum of credibility scores.

8. CONCLUSIONS
We have explored the concept of link credibility, presentedsev-

eral techniques for semi-automatically assessing link credibility for
all Web pages, and presented an efficient and yet spam-resilient
credibility-based Web ranking algorithm. We also introduced a set
of metrics to measure the spam resilience properties of credibility-
based link analysis, and have shown that our credibility-based rank-
ing algorithm outperforms both PageRank and TrustRank. We have
made a first step towards credibility-based link analysis for coun-
tering Web spam, and we believe that this work will trigger more
research and discussions on this important topic.
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